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There is a high demand for novel approaches to counter the various challenges
of conventional drug susceptibility testing (DST) for tuberculosis, the most prevalent
infectious disease with significant global mortality. The QMAC-DST system was recently
developed for rapid DST using image technology to track the growth of single cells of
Mycobacterium tuberculosis (MTB). The purpose of this study was to clinically validate
the QMAC-DST system compared to conventional DST. In total, 178 MTB isolates
recovered from clinical specimens in Asan Medical Center in 2016 were tested by both
QMAC-DST and absolute concentration methods using Lowenstein-Jensen media (LJ-
DST). Among the isolates, 156 were subjected to DST using BACTEC MGIT 960 SIRE
kits (BD, Sparks, MD, United States) (MGIT-DST). The susceptibility/resistance results
obtained by QMAC-DST were read against 13 drugs after 7 days of incubation and
compared with those of LJ-DST. Based on the gold standard LJ-DST, the agreement
rates of QMAC-DST for all drugs were 97.8%, 97.9%, and 97.8% among susceptible,
resistant, and total isolates, respectively, while the overall agreement of MGIT-DST tested
for 156 isolates against first-line drugs was 95.5%. QMAC-DST showed the highest
major error of 6.4% for rifampin, however, it could be corrected by a revised threshold
of growth since false-resistant isolates showed grew only half than the true-resistant
isolates. The rapid and accurate performance of QMAC-DST warrants ideal phenotypic
DST for a wide range of first-line and second-line drugs.

Keywords: Mycobacterium tuberculosis, drug susceptibility testing, Lowenstein-Jensen media, clinical
validation, rifampin

INTRODUCTION

Tuberculosis is a major global health problem, and emergence of multidrug-resistant
Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis TB
(XDR-TB) is a threat to public health efforts to control tuberculosis. Therefore, a rapid
drug susceptibility testing (DST) is recommended to detect MDR-TB and XDR-TB by
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Centers for Disease Control and Prevention [CDC] (2006) and
World Health Organization [WHO] (2015). Currently, molecular
methods to detect drug-resistant MTB are widely available
in clinical laboratories due to rapid and robust performance.
However, they are only complementary to phenotypic DST,
because it is limited to detecting resistance of a few primary
drugs whose molecular mechanisms have been well established
(Boehme et al., 2010, 2011; Hanrahan et al., 2012). Two reliable
phenotypic DST methods based on Lowenstein-Jensen agar
medium (LJ-DST) or liquid medium such as the BACTEC MGIT
960 (BD Biosciences, San Jose, CA, United States) have been
endorsed by the World Health Organization [WHO] (2015)
(Rodrigues et al., 2008; Boehme et al., 2010, 2011; Hanrahan
et al., 2012). LJ-DST is the gold standard method for most
anti-tuberculosis drugs, but the average turnaround time is
4 weeks. The MGIT-based DST (MGIT-DST) method provides
a 7-day turnaround time, which is much faster than LJ-DST
(Kim, 2005), but it is labor-intensive and standardized only
for streptomycin, isoniazid, rifampin, and ethambutol (SIRE).
QMAC-DST (QuantaMatrix, Seoul, Korea) was developed based
on microfluidic chip technology to monitor the microscopic
growth of MTB colonies (Choi et al., 2016). It has high
flexibility in the types and concentrations of drugs tested, no
inoculum effects within the wide range of 103–108 cells/mL,
excellent reproducibility when using lyophilized drugs, and
a rapid turnaround time within 7 days (Jung et al., 2018).
For commercialization, a QMAC-DST panel has adapted
critical concentrations (CCs) with automatic reading through
quantification of microscopic growth, unlike the original design
(Jung et al., 2018; Table 1). The purpose of this study was to
compare performance of the QMAC-DST system against the two
WHO-endorsed DST methods, LJ-DST and MGIT-DST.

MATERIALS AND METHODS

Bacterial Isolates
Clinical MTB isolates were consecutively collected at Asan
Medical Center for 12 months from January to December 2015
and stored at 4 ± 2◦C until further testing. All isolates used
in this study were identified as MTB using the AdvanSureTM

TB/NTM real-time PCR (LG Chem, Seoul, Korea) and were
submitted to the reference DST, which were analyzed by the
Korea Institute of Tuberculosis (Osong, Korea). Up to 200
isolates with enrichment of drug-resistant isolates were collected
for the study. All drug-resistant isolates were included, and the
remaining isolates were cultured with the susceptible isolates.
The study isolates were subcultured on L-J media to confirm
viability and purity for this study. This study was approved by the
Institutional Review Board of Asan Medical Center (2015-1346).
In addition, written consent was waived for the patient from
whom the isolate was derived, per the guideline of the in vitro
test method validation protocol with anonymization.

QMAC-DST
In total, 178 clinical M. tuberculosis isolates were subjected to
QMAC-DST against 13 antimicrobials. The reference isolate, TA
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FIGURE 1 | QMAC-DST system for automated time-lapse imaging of CAT chips using image-processing software analysis. (A) Schematic representation of a CAT
chip with 24 integrated reaction circuits, which is composed of a cross-channel for filling agarose-embedded Mycobacterium tuberculosis cells, and a well
containing each lyophilized anti-tuberculosis drug. (B) After adding 7H9 broth containing 10% OADC, the 0.5% agarose plug filling the cross-channel allowed the
dissolved drug to immediately reach the target concentration and make the drugs contact with the embedded Mycobacterium tuberculosis cells within a circuit. (C)
For each circuit, two fields were taken for time-lapse images at fixed positions near the center of the left arm of the cross-channel on days 1, 2, 5, and 7 of
incubation. Cumulative colony growth per each field was measured to determine resistant (cell growth) or susceptible (no growth) cells in the circuit using image
analysis software.

H37Rv (ATCC 27294), was included in each test run as a
control. Phosphate-buffered saline (PBS, pH 6.8) was used to
suspend cells from colonies grown on L-J media to prepare a
cloudy suspension. Agarose (900 µL, 0.5%; Seakem R© LE agarose,
Lonza, Rockland, ME, United States) solution was prepared by
microwaving and placing in a heat block at 37◦C. The cell
suspension was mixed with agarose solution at a 1:3 volume ratio
after cooling for 3 min (Figure 1; Jung et al., 2018).

All 13 antimicrobials tested, including isoniazid, rifampin,
streptomycin, ethambutol, amikacin, capreomycin, ethionamide,
kanamycin, levofloxacin, moxifloxacin, ofloxacin, para-
aminosalicylic acid (PAS), and rifabutin, were purchased
from Sigma-Aldrich (St. Louis, MO, United States). The
liquid culture medium was Middlebrook 7H9 broth (BBL, BD
Biosciences, Baltimore, MD, United States) supplemented with
10% oleic acid, albumin, dextrose, and catalase (BD Biosciences).
The Cross Agarose channel for Tuberculosis (CAT) chip was
composed of the CCs of each drug. The CCs were based on
the Middlebrook 7H9 broth, which were set up for the MGIT
960 system (World Health Organization [WHO], 2009), except
streptomycin, amikacin, and PAS, which were adjusted according
to a previous study (Jung et al., 2018). The CCs were 0.1,
1.0, 2.0, 5.0, 2.0, 2.5, 2.5, 1.5, 0.5, 2.0, 0.5, 4.0, and 5.0 µg/mL
for isoniazid, rifampin, streptomycin, ethambutol, amikacin,
capreomycin, kanamycin, levofloxacin, moxifloxacin, ofloxacin,
para-aminosalicylic acid (PAS), rifabutin, and ethionamide,
respectively (Woodley, 1986; Kam et al., 2010; Jung et al., 2018).
MTB cell suspension was inoculated as previously described

(Jung et al., 2018). The CAT chip was incubated at 37◦C, and
time-lapsed images were automatically captured on 1, 2, 5, and
7 days of incubation using QDSTTM (QuantaMatrix). Colony
growth of single cells was monitored each day on a 20× field
with an inverted optical microscope, which was always aligned
to the same locus by a focus mark engraved on the bottom of
the chip (Figure 1; Choi et al., 2014, 2016). The binarization
value of the images captured from the fields was calculated as
the sum of the black area (cumulative area of colonies) after
black and white conversion (binarization). The binarization
numbers of each drug-isolate combination were interpreted as
susceptibility (S) and resistance (R) using the threshold setting
of the QMAC-DST program. For each well, interpretation of
susceptibility was duplicated with readings of two separate
fields and accepted when both interpretations were matched.
The results were compared to those of LJ-DST conducted by
the Korea Institute of Tuberculosis. Categorical agreement and
error rates were obtained for each drug-isolate combination
(Clinical Laboratory Standards Institute [CLSI], 2016). To
resolve mismatches between each method, all representative
isolates were subjected to retesting and determination of
resistant mutations.

Mycobacteria Growth Indicator Tube
(MGIT) Drug Susceptibility Testing
MGIT-DST was performed with the same set of isolates a few
months after completion of QMAC-DST using the BACTEC
MGIT 960 SIRE kit, according to the manufacturer’s instructions.
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Briefly, 800 µL of OADC supplement and 100 µL of drugs
were added to each MGIT tube. A few colonies on the L-J
medium were picked up and suspended in PBS by vortexing
to prepare a homogeneous suspension of McFarland 0.5. From
this suspension, a 1:5 dilution was prepared using PBS, of
which 500 µL samples were inoculated into each drug-containing
tube and a growth control tube (Siddiqi et al., 2012; Adami
et al., 2017). The drugs were used at the final concentrations
recommended by the manufacturer: 1.0 µg/mL streptomycin,
0.1 µg/mL isoniazid, 1.0 µg/mL rifampin, and 5.0 µg/mL
ethambutol (Piersimoni et al., 2006). MGIT-DST data were
available for 156 isolates, excluding those that were contaminated
or failed to grow. The major error (ME), very major error
(vME), and agreement rate among the three methods (LJ-DST,
MGIT-DST, QMAC-DST) were calculated for each drug (Table 3;
Clinical Laboratory Standards Institute [CLSI], 2016).

Resolution of Discrepancies With
Molecular Diagnostic Method
For isolates showing discrepant results, a QMAP Dual-ID
(Quantamatrix, Seoul, Republic of Korea) was performed to detect
rifampin-resistant mutations. Five wild-type probes representing
the wild-type sequence of 81bp hot-spot region (codon 509-
534) and five mutant-type probes (513CCA, 516TAC, 516GTC,
526TAC, 531TTG) were used in this study (Wang et al., 2017c).

PCR was performed using 10 µL of Taq HS Perfect Mix
(TaKaRa Bio INC., Kusatsu, Shiga, Japan), 2 µL of biotinylated
primer mixture, 2–3 µL of sample DNA, and distilled water
to a final volume of 20 µL. The PCR thermal cycling
conditions were as follows: pre-denaturation for 5 min at
94◦C, followed by 40 cycles of 30 s at 94◦C, 30 s at 65◦C,
and final extension of 10 min at 72◦C. Biotinylated PCR
products were denatured at 25◦C for 5 min in denaturation
solution. Add 45 µL of provided hybridization solution and
probe-coupled microdisks in the provided glass MatriPlate
(Brooks, Chelmsford, MA, United States). Transfer 1200 rpm for
30 min. The microdisks were washed three times with 100 µL
of washing buffer, incubated with 50 µL of staining buffer
(Streptavidin R-phycoerythrin conjugate, ProZyme, San Leandro,
CA, United States) at 35◦C for 10 min, and washed three times.
The results were detected as median fluorescence intensity values
using fluorescence microscopy images in the QMAP2.0 Scanner
(QuantaMatrix) (Wang et al., 2017a,b,c).

RESULTS

Comparison of QMAC-DST and
MGIT-DST With LJ-DST
The concordance results of QMAC-DST and MGIT-DST are
shown in Table 1. The overall agreement rate of QMAC-DST to
LJ-DST for the 13 drugs was 97.8% and that of MGIT-DST for
first-line drugs was 95.5%. All drugs showed an agreement rate
greater than 90%, except PAS. A vME of QMAC-DST was 25%
among the PAS-resistant isolates because there was one mismatch
found among four resistant isolates.

Comparison of Three Methods for
Primary Drugs
The discrepant results for primary drugs between each method
are shown in Table 2. Rifampin showed the lowest overall
agreement rate between QMAC-DST and the reference method.

Compared to LJ-DST, the ME and vME rates and overall
agreement rates of QMAC-DST and MGIT DST were calculated
(Table 3). The QMAC-DST showed ME in 2 (1.7%) for
isoniazid, 10 (7.3%) for rifampin, 1 (0.7%) for ethambutol,
and 6 (4.2%) for streptomycin, which resulted in total ME of
3.5% but no vME. Therefore, QMAC-DST showed the lowest
agreement for rifampin at 93.6%. MGIT-DST showed a low ME
of 2.2%, but vME was observed in 3 (15.8%) for rifampin, 7
(70%) for ethambutol, and 2 (14.3%) for streptomycin, which
resulted in a 19.8% total vME (Table 3). Among four tested
drugs, MGIT-DST showed the lowest agreement for ethambutol
at 93.6% due to the occurrence of ME in 3 (2.1%) and
vME in 7 (70.0%). The concordance rates of QMAC-DST
to MGIT-DST were 94.2% for isoniazid, 91.0% for rifampin,
93.0% for ethambutol, and 95.5% for streptomycin. The overall
agreement rates between methods were as follows: 95.5% (MGIT
vs. L-J method), 97% (QMAC vs. L-J method), and 93.4%
(QMAC vs. MGIT).

Analysis of ME Cases of Rifampin in
QMAC-DST
Eight of ten isolates showing ME in DST for rifampin were
confirmed as resistant mutations by the QMAP Dual ID
method, which were all resistant in both LJ-DST and MGIT-
DST (Table 4). To investigate rifampin’s mechanism of ME, we
analyzed images of ME cases compared to isolates that were
correctly interpreted to be susceptible or resistant (Figure 2A).
Colony growth in these ME cases was less than those for resistant
cases but clearly more than those for true susceptible results. The
binarization value denoting cumulative area of colonies of these
ME cases showed intermediate values between the susceptible
and resistant reads, which were only half of the resistant reads
in average (Figure 2B).

DISCUSSION

In this study, QMAC-DST showed a high agreement rate
of 97.8% compared to the gold standard method. All drugs
except PAS showed a concordance rate of more than 90%
in both susceptible and resistant isolates. The microfluidic
chip technique applied in QMAC-DST is efficient and highly
accommodating in terms of speed and choice of drugs tested
because it has adapted the same technology as the established
rapid automated antimicrobial susceptibility testing systems
for bacterial pathogens, QMAC-dRAST (QuantaMatrix) (Kim
et al., 2018). Therefore, compared with other rapid culture-
based methods like MGIT, QMAC-DST had an advantage of
high throughput, less labor-intensive procedures, and wide
availability of various first- and second-line drugs in a
single run, similar to QMAC-dRAST. Several phenotypic DST
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TABLE 4 | Agreement of drug susceptibility testing using QMAC-DST compared to drug susceptibility testing using BACTEC MGIT 960.

Drugs MGIT No. (%) of QMAC-R/MGIT-S
isolates

No. (%) of QMAC-S/MGIT-R
isolates

No. (%) of agreement

No. of susceptible
isolates

No. of resistant Isolates

Isoniazid 117 39 5 (4.3) 4 (10.3) 147 (94.2)

Rifampin 139 17 13 (9.4) 1 (5.9) 142 (91.0)

Ethambutol 150 6 8 (5.3) 3 (50.0) 145 (93.0)

Streptomycin 141 15 6 (4.3) 1 (6.7) 149 (95.5)

Total 547 77 32 (5.9) 9 (11.7) 583 (93.4)

INH, Isoniazid; RIF, Rifampin; EMB, Ethambutol; SM, Streptomycin; QMAC-R/MGIT-S, isolates that were susceptible to drug susceptibility testing using BACTEC MGIT
960-DST but resistant to drug susceptibility testing using QMAC-DST; QMAC-S/MGIT-R, isolates that were resistant to drug susceptibility testing using BACTEC MGIT
960-DST but susceptible to drug susceptibility testing using QMAC-DST.

FIGURE 2 | Analysis of QMAC-DST images of isolates showing major error of rifampin DST compared to resistant and susceptible isolates. (A) Colony growth of
major error cases was greater than susceptible cases, but clearly lesser than resistant cases. (B) The binarization value denoted cumulative area of colonies. The
value of the major error cases was intermediate between resistant and susceptible cases at day five and seven of incubation.

techniques other than MGIT-DST have been established for
a rapid turnaround time. Sensititre MYCOTB MIC plate
(Trek Diagnostic Systems, Cleveland, OH. United States),
microscopic observation drug susceptibility testing method,

colorimetric redox DST method (Woods et al., 2015), and
phage amplification technology (Albay et al., 2003) are currently
available in clinical laboratories. However, they are often
limited to first-line drugs, labor intensive, low throughput,
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or have poor safety issues. Sensititre MYCOTB using 96-
well microtiter plates has an advantage to measure real MIC
and cover first and second-line drugs as QMAC-DST, but it
requires a 3-week incubation for the final read (Lee et al.,
2019). Moreover, the high agreement rate to the reference
method signifies superior performance combined with its
efficiency, which makes QMAC-DST an ideal phenotypic DST
system in clinical laboratory, especially in high TB-prevalent
countries such as Korea.

No vME found in QMAC-DST showed a high advantage
in diagnostic performance. For PAS, showing outliers of ME
requires further evaluation with more PAS-resistant isolates
because only four resistant isolates were included and one of
those was missed in this study. In comparison, MGIT-DST
showed lower agreement than QMAC-DST and significant vME.
The overall agreement rate of MGIT-DST to LJ-DST was 95.5%,
which was slightly lower than previously reported values of 96–
97% (Tukvadze et al., 2012; Lawson et al., 2013). This lower
agreement rate may be due to the lower resistance rates of the
tested isolates in this study compared to those in the previous
study. Because this study evaluated only 10 ethambutol-resistant
isolates, the vME of MGIT-DST reached 70% when seven isolates
were missed by MGIT-DST. Ethambutol resistance is difficult
to detect accurately using any phenotypic method because
the minimum inhibitory concentration ranges of ethambutol-
susceptible and ethambutol-resistant isolates are close to each
other. Therefore, the WHO-recommended reference methods
are based on various concentrations in the range of 2.0–
7.5 µg/mL (Rüsch-Gerdes et al., 1999; Said et al., 2012). In a
meta-analysis, the pooled mean based on a high ethambutol
concentration of 5 µg/mL as in this study showed the highest
agreement with molecular DST (Cheng et al., 2014). In this study,
both MGIT-DST and QMAC-DST used 5 µg/mL of ethambutol.
In contrast, LJ-DST used 2 µg/mL of ethambutol. Therefore, the
reason for the large difference between MGIT-DST and QMAC-
DST remains unclear. Comparison of the MGIT-DST and LJ-
DST revealed that all first-line drugs showed high concordance
rates of greater than 95% in susceptible isolates, but relatively
low concordance rates in resistant isolates. The vME of MGIT-
DST for isoniazid and rifampin was as high as 10.5% and 15.8%,
respectively. Because these two drugs showed very low vME with
MGIT-DST in previous studies (Piersimoni et al., 2006; Hwang
et al., 2014; Zhao et al., 2014), the relatively small number of
resistant isolates was assumed as the only cause of the high vME
(Said et al., 2012; Zhao et al., 2014). The higher correlation of
QMAC-DST with LJ-DST than MGIT-DST could be explained
by its adaptation to the same critical concentrations as LJ-DST.
Because vME is the most critical error, this low vME of QMAC-
DST warrants diagnostic use.

Comparison of QMAC-DST and LJ-DST revealed high
concordance rates of greater than 95%, except for rifampin,
in the susceptible isolates and 100%, except for ethambutol,
rifabutin, and PAS, in the resistant isolates. There was a large
number of the false resistant readings in the rifampin DST.
Image analysis indicated that resistance was overcalled due to
erroneous reading of growth in rifampin wells. Rifampin is a
surrogate marker for detecting MDR when used as a resistant

and primary drug for tuberculosis. Therefore, the rifampin
DST is critical (Pang et al., 2014), especially in Korea, in
which the recent prevalence of rifampin resistance is 5.7%
(Lee et al., 2015). Because QMAC-DST results were obtained
by observing the growth of single cells using microscopic
techniques, threshold settings to discriminate growth may be
difficult when only a part of a cell grows as a natural variation
of each isolate (Ahmad et al., 2016). However, most of false
resistance was found in rifampin wells, and sub-inhibitory
effect of rifampin was presumed to play a role. Rifampin is
a bactericidal drug that stops protein synthesis by inhibiting
DNA-dependent RNA polymerase, however, rifampin also could
activate transcription of the quorum-sensing promoter gene
at sub-inhibitory concentrations (Acar and Goldstein, 1996).
Moreover, the patterns of activation differed in liquid compared
to solid media (Goh et al., 2002). Therefore, the effects of
conditions, such as agar-embedded bacteria immersed in liquid
medium (i.e., QMAC), on growth characteristics of MTB
remain unclear. Hence, the breakpoint of QMAC-DST has been
optimized further for rifampin based on this study, and thus all
MEs have been successfully adjusted.

A limitation of this study was that it did not contain a sufficient
number of resistant isolates for all drugs. The resistance to
second-line drugs is still very low, mostly less than 3% in Korea
(Lee et al., 2015). Another limitation is that pyrazinamide (PZA),
a first-line drug, was not included in the QMAC-DST panel.
Because (PZA) requires different pH values, unlike other drugs, it
is currently under development to add to the QMAC-DST panel.

CONCLUSION

In conclusion, QMAC-DST is a rapid and accurate alternative to
conventional DST. Additionally, QMAC-DST is highly valuable
in cases of treatment failure or contact history for MDR-TB
patients because it can test various first- and second-line drugs.
This fully automated, high-throughput DST system is particularly
suitable for high-capacity laboratories.
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