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Livestock represent a possible reservoir for facilitating the transmission of the zoonotic
foodborne pathogen Salmonella enterica to humans; there is also concern that
strains can acquire resistance to antimicrobials in the farm environment. Here, whole-
genome sequencing (WGS) was used to characterize Salmonella strains (n = 128)
isolated from healthy dairy cattle and their associated environments on 13 New York
State farms to assess the diversity and microevolution of this important pathogen
at the level of the individual herd. Additionally, the accuracy and concordance of
multiple in silico tools are assessed, including: (i) two in silico serotyping tools,
(ii) combinations of five antimicrobial resistance (AMR) determinant detection tools
and one to five AMR determinant databases, and (iii) one antimicrobial minimum
inhibitory concentration (MIC) prediction tool. For the isolates sequenced here, in silico
serotyping methods outperformed traditional serotyping and resolved all un-typable
and/or ambiguous serotype assignments. Serotypes assigned in silico showed greater
congruency with the Salmonella whole-genome phylogeny than traditional serotype
assignments, and in silico methods showed high concordance (99% agreement).
In silico AMR determinant detection methods additionally showed a high degree of
concordance, regardless of the pipeline or database used (≥98% agreement among
susceptible/resistant assignments for all pipeline/database combinations). For AMR
detection methods that relied exclusively on nucleotide BLAST, accuracy could be
maximized by using a range of minimum nucleotide identity and coverage thresholds,
with thresholds of 75% nucleotide identity and 50–60% coverage adequate for most
pipeline/database combinations. In silico characterization of the microevolution and
AMR dynamics of each of six serotype groups (S. Anatum, Cerro, Kentucky, Meleagridis,
Newport, Typhimurium/Typhimurium variant Copenhagen) revealed that some lineages
were strongly associated with individual farms, while others were distributed across
multiple farms. Numerous AMR determinant acquisition and loss events were identified,
including the recent acquisition of cephalosporin resistance-conferring blaCMY- and
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blaCTX−M-type beta-lactamases. The results presented here provide high-resolution
insight into the temporal dynamics of AMR Salmonella at the scale of the individual farm
and highlight both the strengths and limitations of WGS in tracking zoonotic pathogens
and their associated AMR determinants at the livestock-human interface.

Keywords: Salmonella, antimicrobial resistance, serotyping, dairy cattle, whole-genome sequencing, evolution,
livestock

INTRODUCTION

The foodborne pathogen Salmonella enterica is estimated to be
responsible for 1.35 million infections, 26,500 hospitalizations,
and 420 deaths each year in the United States alone (Centers
for Disease Control and Prevention, 2021). Despite the fact that
over 2,600 Salmonella serotypes have been described (Issenhuth-
Jeanjean et al., 2014), fewer than 100 of these serotypes are
responsible for the majority of human infections (Centers for
Disease Control and Prevention, 2020). In line with this, some
Salmonella serotypes may share strong associations with a specific
host, an extreme example of which can be seen in the human-
restricted nature of Salmonella Typhi (Uzzau et al., 2000; Boore
et al., 2015). Other serotypes, while not confined exclusively to
infection of a single host, may be adapted to a given reservoir; for
example, Salmonella Choleraesuis, while largely adapted to swine,
occasionally infects humans (Uzzau et al., 2000; Chiu et al., 2004).

Cattle are a potential reservoir from which humans can
acquire salmonellosis, and infected animals can shed Salmonella
at irregular intervals for varying periods of time, regardless
of whether they express clinical signs of bovine salmonellosis
or not (Cummings et al., 2010b; Davidson et al., 2018;
Holschbach and Peek, 2018). The bovine reservoir boasts its
own repertoire of serotypes that can infect humans, with bovine-
associated Salmonella serotype Dublin, known for its rare but
frequently invasive infections in humans, being arguably the most
noteworthy (Taylor et al., 1982; Uzzau et al., 2000; Rodriguez-
Rivera et al., 2014; Harvey et al., 2017; Mohammed et al.,
2017). However, a range of Salmonella serotypes can persist
and thrive in cattle, potentially infecting humans via either
direct contact with infected animals or through food (Gutema
et al., 2019). In a previous survey of 46 dairy cattle herds in
New York State, Salmonella strains isolated from subclinically
infected dairy cattle and associated farm environments spanned
26 serotypes, the most common being Cerro, Kentucky,
Typhimurium, Newport, and Anatum (Rodriguez-Rivera et al.,
2014). Additionally, antimicrobial resistant (AMR) isolates were
observed on several farms, on numerous occasions, suggesting
subclinically infected dairy cattle as a potential source of AMR
Salmonella (Rodriguez-Rivera et al., 2014).

Numerous studies have employed whole-genome sequencing
(WGS) to characterize Salmonella from bovine sources (Mather
et al., 2013; Agren et al., 2016; Carroll et al., 2017b; Delgado-
Suarez et al., 2018; Liao et al., 2019); however, little is
known regarding the evolution and AMR acquisition and
loss dynamics of Salmonella at the single herd/farm level.
Furthermore, the bulk of bovine-associated Salmonella WGS
efforts have focused on clinical veterinary samples and/or

epidemic lineages (e.g., S. Typhimurium DT104). In this study,
128 non-typhoidal S. enterica strains isolated from repeated
sampling on 13 New York State dairy cattle farms between
2007 and 2009 were characterized using WGS. All strains were
isolated from apparently healthy, subclinically infected bovine
hosts, as well as the associated farm environment (Rodriguez-
Rivera et al., 2014). Using WGS, the microevolution of these
persistent lineages within each herd is characterized, as well
as the temporal acquisition and loss of AMR determinants
among them. In addition to offering insight into the genomics
of Salmonella isolated from healthy bovine populations at the
individual herd/farm level, the accuracy and concordance of
multiple in silico serotyping and AMR prediction tools are
evaluated. Finally, an in-depth, critical analysis of the strengths
and limitations of the methods used here is provided, which
includes guidance to researchers who wish to employ WGS for
herd-level pathogen monitoring.

MATERIALS AND METHODS

Isolate Selection
Salmonella enterica isolates (n = 128) obtained from one of 13
dairy farms in New York State were selected to undergo WGS
for this study (Supplementary Table 1). All strains were isolated
from farms that had undergone surveillance for Salmonella for a
period of at least 12 months as described previously (Cummings
et al., 2010a; Rodriguez-Rivera et al., 2014). Strains were isolated
from repeated sampling on each farm between October 2007
and August 2009, from either (i) fecal samples from healthy,
subclinically infected dairy cows (referred to hereafter as “bovine”
isolates), or (ii) farm environmental swabs (referred to hereafter
as “farm environmental” isolates) (Cummings et al., 2010a).
All isolates underwent serotyping, phenotypic antimicrobial
susceptibility testing, and pulsed-field gel electrophoresis (PFGE)
as described previously (Rodriguez-Rivera et al., 2014).

Whole-Genome Sequencing and Data
Pre-processing
Genomic DNA extraction and sequencing library preparation
were performed as described previously (Carroll et al., 2017b),
and the genomes of all 128 Salmonella isolates were sequenced
using an Illumina HiSeq platform and 2 × 250 bp paired-
end reads. Illumina sequencing adapters and low-quality bases
were trimmed using Trimmomatic version 0.33 (using default
parameters for Nextera paired-end reads) (Bolger et al., 2014),
and FastQC version 0.11.9 (Andrews, 2019) was used to confirm
adapter removal and assess read quality. SPAdes version 3.8.0
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(Bankevich et al., 2012) was used to assemble genomes de novo
(using the “careful” option and k-mer sizes of 21, 33, 55, 77, 99,
and 127), and QUAST version 4.5 (Gurevich et al., 2013) and
the “lineage_wf” workflow implemented in CheckM version 1.1.3
(Parks et al., 2015) were used to assess the quality of the resulting
assemblies. MultiQC version 1.8 (Ewels et al., 2016) was used to
aggregate genome quality metrics. Genome quality statistics are
available for all isolates (Supplementary Table 1).

In silico Serotyping
In addition to undergoing traditional serotyping in a laboratory
setting (i.e., serological detection of expressed O and H antigens
using the White-Kauffmann-Le Minor scheme) as described
previously (Rodriguez-Rivera et al., 2014), all 128 assembled
Salmonella genomes (see section “Whole-Genome Sequencing
and Data Pre-processing” above) underwent in silico serotyping
using the command line implementations of (i) the Salmonella
in silico Typing Resource (SISTR) version 1.0.2 (Yoshida et al.,
2016) and (ii) SeqSero2 version 1.1.1 (Zhang et al., 2019)
(using SeqSero2’s k-mer based workflow). Serotypes assigned
using all three methods are available for all 128 isolates
(Supplementary Table 1). In cases where a discrepancy existed
among the traditional serotype designation and one or more
of the in silico methods, the serotype assigned using two out
of the three methods was selected as the final serotype to
be reported (e.g., when assigning strain names to isolates in
the manuscript, for phylogeny annotation). To confirm that
all serotype assignments were reasonable, a phylogeny was
constructed using core single nucleotide polymorphisms (SNPs)
detected in all Salmonella genomes in this study (see section
“Reference-Free Single Nucleotide Polymorphism Identification
and Phylogeny Construction” below).

In silico Antimicrobial Resistance
Determinant Detection
Antimicrobial resistance determinants were detected in each
of the 128 Salmonella genomes using five separate approaches:
(i) ABRicate1 version 0.8 (Seemann, 2018), (ii) AMRFinderPlus
version 3.2.3 (Feldgarden et al., 2019), (iii) ARIBA version
2.14.1 (Hunt et al., 2017), (iv) BTyper version 2.3.3 (Carroll
et al., 2017a), and (v) SRST2 version 0.2.0 (Inouye et al., 2014).
Assembled genomes were used as input for the ABRicate and
BTyper approaches, while trimmed Illumina reads were used as
input for the SRST2 and ARIBA approaches. Prokka version 1.12
(Seemann, 2014) was used to annotate each assembled genome,
and the resulting GFF (.gff) and FASTA (.faa and .ffn) files were
used as input for the AMRFinderPlus approach. For the ABRicate
approach, the following AMR gene databases were tested (each
accessed June 11, 2018 via ABRicate’s abricate-get_db command):
(i) the Antibiotic Resistance Gene-ANNOTation database (ARG-
ANNOT) (Gupta et al., 2014), (ii) the Comprehensive Antibiotic
Resistance Database (CARD) (Jia et al., 2017), (iii) the National
Center for Biotechnology Information’s (NCBI’s) Bacterial AMR
Reference Gene Database (NCBI) (Feldgarden et al., 2019), and
(iv) the ResFinder database (ResFinder) (Zankari et al., 2012).

1https://github.com/tseemann/abricate

For each genome and database combination, minimum AMR
gene identity and coverage thresholds ranging from 50 to 100%
(5% increments) and 0–100% (10% increments) were tested,
respectively. For the BTyper approach, the (i) ARG-ANNOT v3
and (ii) MEGARes version 1.0.1 (Lakin et al., 2017) databases
available with BTyper version 2.3.3 were used, with the minimum
AMR gene identity and coverage thresholds varied in a manner
identical to the ABRicate approach. For the SRST2 approach,
the (i) ARG-ANNOT and (ii) ResFinder databases available
with SRST2 version 0.2.0 were tested, using default thresholds.
For the ARIBA approach, the following databases were tested
(each accessed June 13, 2019 using ARIBA’s getref command): (i)
the version of ARG-ANNOT available with SRST2, (ii) CARD,
(iii) MEGARes, (iv) NCBI, and (v) ResFinder, with all default
thresholds used. For the AMRFinder approach, the latest version
of the AMRFinder database was used (accessed December 6,
2019), along with the organism-specific database for Salmonella.

In silico Prediction of Antimicrobial
Minimum Inhibitory Concentration
Values
The PATRIC3 antimicrobial minimum inhibitory concentration
(MIC) prediction model for Salmonella (Nguyen et al., 2019)
(accessed June 13, 2019) was used to predict MIC values for each
of the 128 Salmonella isolates in this study, using the assembled
genome of each as input (Supplementary Text).

Prediction of Phenotypic
Susceptible-Intermediate-Resistant
Classifications Using in silico Methods
All 128 Salmonella isolates underwent phenotypic antimicrobial
susceptibility testing with a panel of 15 antimicrobials (i.e.,
amikacin, amoxicillin-clavulanic acid, ampicillin, cefoxitin,
ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin,
gentamicin, kanamycin, nalidixic acid, streptomycin,
sulfamethoxazole-trimethoprim, sulfisoxazole, and tetracycline)
using the Sensititre system (Trek Diagnostic Systems Ltd.,
Cleveland, OH, United States) available at Cornell University’s
Animal Health Diagnostic Center as described previously
(Rodriguez-Rivera et al., 2014). A “true” (i.e., phenotypic)
susceptible-intermediate-resistant (SIR) classification for each of
the 15 antimicrobials was obtained for 126 Salmonella isolates
by comparing raw MIC values to NARMS breakpoints for
Salmonella (accessed March 23, 2020; Supplementary Table 1).
For streptomycin, the 1996–2013 NARMS breakpoints were
used, as this was compatible with the concentrations used at the
time of phenotypic testing (Rodriguez-Rivera et al., 2014). For
sulfisoxazole, isolates with MIC > 256 were classified as resistant,
as a concentration of 512 µg/mL was not tested. While raw MIC
values were unavailable for two isolates (BOV_KENT_16_04-
03-08_R8-0967 and ENV_MELA_01_01-10-08_R8-0165;
Supplementary Table 1), both isolates had previously been
categorized as pan-susceptible to all 15 antimicrobials (a
classification that was maintained here, as all in silico methods
correctly classified these isolates as pan-susceptible).

Frontiers in Microbiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 763669

https://github.com/tseemann/abricate
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-763669 October 12, 2021 Time: 14:32 # 4

Carroll et al. Subclinical Bovine Salmonella Genomics

Known AMR determinant/phenotype associations for AMR
determinants detected by each of the AMR determinant detection
pipeline/database combinations described above (see section
“In silico Antimicrobial Resistance Determinant Detection”) were
obtained from (i) Supplementary Table 4 of the AMRFinder
validation paper (Feldgarden et al., 2019) and (ii) CARD
(Supplementary Table 2 and Supplementary Text). An isolate
was predicted to be resistant to a particular antimicrobial
if it possessed one or more AMR determinants known to
confer resistance to that antimicrobial; if it did not possess
any AMR determinants known to confer resistance to that
antimicrobial, the isolate was predicted to be susceptible to
that antimicrobial (Supplementary Table 2). For each AMR
determinant detection pipeline/database combination, the caret
package (Kuhn, 2008) in R version 3.6.1 (R Core Team,
2019) was used to construct a confusion matrix and calculate
accuracy scores, Cohen’s kappa coefficients, and other statistics
(Supplementary Table 3) by treating “true” susceptible/resistant
classifications obtained using phenotypic susceptibility testing as
a reference. Cases of intermediate phenotypic resistance were
treated as susceptible, as it resulted in slightly higher accuracy
scores for all pipeline/database combinations for this particular
data set. Because in silico prediction of susceptibility/resistance
was highly dependent on prior knowledge of AMR determinants
and the antimicrobials to which they conferred resistance,
the concordance of all pipeline/database combinations was
assessed by comparing each pipeline/database combination
to results obtained using the SRST2 pipeline/ARG-ANNOT
database combination.

To assess the ability of the MIC prediction method
implemented in PATRIC3 to predict Salmonella SIR classification
(see section “In silico Prediction of Antimicrobial Minimum
Inhibitory Concentration Values” above), predicted MIC values
for 14 antimicrobials produced using PATRIC3 were used to
predict the SIR status of each of the 128 Salmonella isolates
using the same NARMS breakpoints used for phenotypic testing.
Azithromycin MICs produced by PATRIC3 were excluded, as
azithromycin was not among the 15 antimicrobials used here
for phenotypic testing. The ability of PATRIC3 to predict
amikacin resistance was also not evaluated, as amikacin is not
among the antimicrobials queried by PATRIC3. A confusion
matrix was constructed as described above, using predicted
SIR classifications derived from predicted MIC values produced
by PATRIC3 and NARMS breakpoints. Additionally, the
deviation of raw MIC predictions produced by PATRIC3
(MICPATRIC3) from “true” raw MIC predictions produced using
phenotypic testing (MICPhenotypic) in number of dilution factors
(Ndilution factors) was assessed using the following equation:

Ndilution factors =
ln( MICPATRIC3

MICPhenotypic
)

ln(2)

where ln corresponds to the natural logarithm. For example: if
PATRIC3 predicted an MIC value of 8 and the “true” MIC value
obtained with phenotypic testing was 2, then ln(8/2)/ln(2) = 2;
this means that the PATRIC3 prediction of 8 is+2 dilution factors

away from the “true” MIC of 2 (as dilution used for MIC are 2 fold
serial dilutions, e.g., 2, 4, and 8 µg/mL).

Re-testing of Isolates With Highly
Incongruent Antimicrobial Resistance
Phenotypes
Several (n = 21) isolates possessed a phenotypic AMR SIR
profile which was deemed to be highly incongruent with its
predicted in silico AMR profile, regardless of the in silico
pipeline/database used (Supplementary Table 4). For example,
S. Cerro isolate BOV_CERO_35_10−02−08_R8−2685 was
resistant to nine antimicrobials but did not harbor any known
acquired AMR genes (Supplementary Table 4). Similarly,
S. Newport isolate ENV_NEWP_62_03−05−09_R8−3442 itself
was pan-susceptible, but harbored multiple acquired AMR genes
(e.g., blaCMY−2, floR, sul2, and tetA), which conferred multidrug
resistance in closely related S. Newport isolates (Supplementary
Table 4). To address these incongruencies, 21 selected Salmonella
isolates underwent phenotypic antimicrobial susceptibility re-
testing (conducted September 16, 2020) as described above
(see section “Prediction of Phenotypic Susceptible-Intermediate-
Resistant Classifications Using in silico Methods”), with the
exception of amikacin and kanamycin, as the contemporary panel
did not include these antimicrobials (Supplementary Table 4).

Kanamycin testing was conducted separately using a gradient
diffusion assay (Jorgensen and Ferraro, 2009) according to the
manufacturer’s instructions (BioMérieux Kanamycin Strip KM
256, product number 412381). Briefly, bacterial isolates were
streaked for single colonies onto Brain Heart Infusion [BHI,
Becton Dickinson (BD), Franklin Lakes, NJ, United States] agar
plates from frozen glycerol stocks. Pre-cultures were prepared
by inoculating a single colony in 3 mL Mueller-Hinton (MH)
broth (BD Difco), followed by incubating at 37◦C with shaking
at 200 rpm for 12–14 h. The pre-cultures were used to inoculate
tubes with 5 mL MH broth at 1:200 dilution, and the tubes were
incubated at 37◦C with shaking at 200 rpm for 5 h. Four mL
of melted MH soft agar medium (0.7% agar) were mixed with
100 µL of culture and poured onto Petri plates containing 15 mL
of MH agar medium (0.7% agar), and the plates were dried for
5 min. Kanamycin gradient strips were laid on top of the soft agar,
and the plates were incubated at 35◦C for 18 h. MIC values were
determined by evaluating the inhibition zone using a magnifying
lens according to the manufacturer’s instructions.

Minimum inhibitory concentration values obtained from
re-testing these isolates were interpreted within NARMS
breakpoints as described above (see section “Prediction of
Phenotypic Susceptible-Intermediate-Resistant Classifications
Using in silico Methods”) and are reported in the main
manuscript (with the exception of amikacin; due to its exclusion
from the contemporary panel, original MIC values are reported).
Original and updated MIC and SIR values for all 21 isolates are
available in Supplementary Table 4.

In silico Plasmid Replicon Detection
Plasmid replicons were detected in all Salmonella genome
assemblies using ABRicate and the PlasmidFinder database
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(accessed June 11, 2018 via ABRicate’s abricate-get_db
command). For a plasmid replicon to be considered present in
a genome, minimum nucleotide BLAST (BLASTN) (Camacho
et al., 2009) identity and coverage values of 80 and 60%,
respectively, were used (Carattoli et al., 2014).

Reference-Free Single Nucleotide
Polymorphism Identification and
Phylogeny Construction
A reference-free approach was used to compare the 128
Salmonella genomes sequenced in this study to 442 of the 445
Salmonella genomes described by Worley et al. (2018); three
genomes were omitted because their Sequence Read Archive
(SRA) data was not publicly available at the time of access
(February 20, 2019). Raw reads for each of the 442 publicly
available genomes were downloaded from SRA (Leinonen et al.,
2011; Kodama et al., 2012) and processed and assembled
as described above (see section “Whole-Genome Sequencing
and Data Pre-processing” described above). kSNP3 version 3.1
(Gardner and Hall, 2013; Gardner et al., 2015) was used to
identify core SNPs among all 570 assembled Salmonella genomes,
using the optimal k-mer size determined by Kchooser (k = 19).
IQ-TREE version 1.6.10 (Nguyen et al., 2015) was used to
construct a maximum likelihood (ML) phylogeny using the
resulting core SNPs and the optimal nucleotide substitution
model identified using ModelFinder [determined using model
Bayesian Information Criteria (BIC) values; Supplementary
Text]. Bootstrapping was performed using 1,000 replicates of
the Ultrafast Bootstrap method (Minh et al., 2013; Hoang et al.,
2018). The resulting ML phylogeny was annotated in R using the
bactaxR package (Carroll et al., 2020b; Supplementary Text).

Pan-Genome Characterization
GFF files produced by Prokka (see section “In silico Antimicrobial
Resistance Determinant Detection” above) were used as input
for Roary version 3.12.0 (Page et al., 2015), which was
used to identify orthologous gene clusters at a 70% protein
BLAST (BLASTP) identity threshold. The resulting gene
presence/absence matrix produced by Roary was used as input
for besPLOT2 (Carroll et al., 2020a), which was used to perform
non-metric multidimensional scaling (NMDS) (Kruskal, 1964)
and construct plots in two dimensions using a Jaccard distance
metric (Supplementary Text).

Clustering based on gene presence/absence was assessed for
each of the following grouping factors: (i) serotype, (ii) farm,
and (iii) isolation source (i.e., bovine or farm environmental).
For each of the three grouping factors, the following three
statistical tests were performed, using the gene presence/absence
matrix produced by Roary, a Jaccard distance metric, and 10,000
permutations: (i) the permutest and betadisper functions in R’s
vegan package (Oksanen et al., 2019) were used to conduct
an ANOVA-like permutation test (Anderson, 2006) to test if
group dispersions were homogenous (referred to hereafter as
the PERMDISP2 test); (ii) analysis of similarity (ANOSIM)

2https://github.com/lmc297/besPLOT

(Clarke, 1993) using the ANOSIM function in the vegan package
in R was used to determine if the average of the ranks of within-
group distances was greater than or equal to the average of
the ranks of between-group distances (Anderson and Walsh,
2013); (iii) permutational analysis of variance (PERMANOVA)
(Anderson, 2001) using the adonis2 function in the vegan
package in R was used to determine if group centroids were
equivalent. For all tests, a Bonferroni correction was applied to
correct for multiple comparisons.

Potential clustering based on AMR gene presence/absence
was additionally assessed for the same three grouping factors
(serotype, farm, and isolation source), using the presence and
absence of AMR determinants detected by AMRFinderPlus as
input (i.e., AMR and stress response determinants identified
using the “plus” option in AMRFinderPlus). All steps were
performed as described above, and a Bonferroni correction was
used to correct for multiple comparisons.

Reference-Based Core Single Nucleotide
Polymorphism Identification Within
Serotypes
For each individual serotype, core SNPs were identified among
genomes assigned to that serotype using a reference-based
approach. For each serotype, Snippy version 4.3.63 (Seemann,
2019) was used to identify core SNPs among all representatives
assigned to the serotype, using the trimmed Illumina paired-
end reads of each genome as input (see section “Whole-Genome
Sequencing and Data Pre-processing” above) and one of six
high-quality assembled genomes from isolates in this study as a
reference genome (Supplementary Table 1 and Supplementary
Text). Gubbins version 2.3.4 (Croucher et al., 2015) was used to
identify and remove recombination within the full alignment that
resulted, and the filtered alignment produced by Gubbins was
queried using snp-sites version 2.4.0 (Page et al., 2016) to produce
an alignment of core SNPs for each serotype.

Construction of Within-Serotype
Phylogenies
For each serotype, IQ-TREE version 1.6.10 was used to
construct a ML phylogeny, using core SNPs detected among all
isolates assigned to the serotype as input (see “Reference-Based
Core Single Nucleotide Polymorphism Identification Within
Serotypes” section above), the optimal ascertainment bias-aware
nucleotide substitution model selected using ModelFinder, and
1,000 replicates of the UltraFast bootstrap approximation. The
temporal structure of each resulting ML phylogeny was assessed
using the R2 value produced by the best-fitting root in TempEst
version 1.5.1 (Supplementary Table 5; Rambaut et al., 2016).

A tip-dated phylogeny was then constructed for each
serotype using BEAST version 2.5.0 (Bouckaert et al.,
2014, 2019), using the serotype’s corresponding core SNP
alignment as input (Supplementary Text, Supplementary
Table 5, and Supplementary Figure 1). For a detailed

3https://github.com/tseemann/snippy
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description of all temporal phylogeny construction steps,
see the Supplementary Text.

Data Availability
Illumina reads are available for all isolates sequenced in this
study under NCBI Bioproject Accession PRJNA756552. NCBI
BioSample accession numbers for each individual isolate, as
well as all associated metadata and genome quality statistics,
are available in Supplementary Table 1. All BEAST 2 XML
files used for temporal phylogeny construction are available at
https://github.com/lmc297/zru_farms.

RESULTS

In silico Serotyping of Bovine-Associated
Salmonella Resolves Incongruencies
Between Traditional Serotyping and
Whole-Genome Phylogeny
A total of 128 Salmonella strains isolated from healthy (i.e.,
subclinically infected) dairy cattle (n = 39) and their associated
farm environments (n = 89) on 13 different New York State
farms underwent WGS (Supplementary Table 1). In addition
to undergoing traditional serotyping in a laboratory setting, all
isolates were assigned serotypes in silico using both (i) SISTR and
(ii) SeqSero2 (Supplementary Table 1). Importantly, serotypes
assigned in silico using SISTR and/or SeqSero2 were able to
resolve all un-typable and/or ambiguous serotypes assigned using
traditional serotyping (Supplementary Table 1). Furthermore,
in silico serotypes assigned using (i) SISTR’s core-genome multi-
locus sequence typing (cgMLST) approach and (ii) SeqSero2
were both highly congruent with the Salmonella whole-genome
phylogeny (Figure 1) and highly concordant with each other: 127
of 128 (99.2%) Salmonella isolates sequenced in this study were
assigned to identical in silico serotypes using both SISTR cgMLST
and SeqSero2 (Supplementary Table 1), with 100% concordance
observed for six of seven observed in silico serotype groups (i.e.,
S. Anatum, S. Cerro, S. Meleagridis, S. Minnesota, S. Newport,
and S. Typhimurium and its variants, assigned to n = 15, 13, 20,
1, 16, and 27 isolates, respectively). Among S. Kentucky (n = 36),
a single incongruent isolate was observed (ENV_KENT_16_12-
04-07_R8-0061), as SeqSero2 could not detect an O-antigen
within the genome and was thus unable to assign this isolate to
any serotype. This isolate was assigned a serotype of 8,20:-:z6
using traditional serotyping (S. Kentucky has antigenic formula
8,20:i:z6); SISTR classified the isolate as S. Kentucky, and the
isolate clustered among the S. Kentucky isolates sequenced in this
study within the Salmonella whole-genome phylogeny (Figure 1
and Supplementary Table 1).

When variants of the S. Typhimurium serotype (n = 27)
were considered, discrepancies were observed among
traditional serotype assignments and both in silico methods
(Supplementary Table 1). While SeqSero2 could differentiate
between S. Typhimurium and the O5- variant of S. Typhimurium
(also known as S. Typhimurium variant Copenhagen;
“S. Typhimurium Copenhagen” is used hereafter), SISTR

was unable to differentiate the two (Supplementary Table 1),
as noted previously (Ibrahim and Morin, 2018; Zhang et al.,
2019). However, S. Typhimurium and S. Typhimurium
Copenhagen serotype assignments obtained using SeqSero2
and traditional serotyping did not always agree, as five of 27
S. Typhimurium/S. Typhimurium Copenhagen assignments
(18.5%) differed between the two methods (Supplementary
Table 1). For four of the five incongruent isolates, SeqSero2
assigned an isolate to S. Typhimurium Copenhagen, while
traditional serotyping assigned a serotype of S. Typhimurium;
for one isolate, the opposite scenario applied (Supplementary
Table 1). Furthermore, the lineages formed by isolates classified
here as S. Typhimurium Copenhagen using either traditional
serotyping or SeqSero2, as well as two S. Typhimurium
Copenhagen genomes from a previous study (Worley et al.,
2018), were polyphyletic (Figure 1); consequently, the whole-
genome phylogeny could not be used to reliably differentiate
these two variants.

For the remainder of this study, a serotype assigned
consistently with at least two out of the three methods (i.e.,
traditional serotyping, SeqSero2, and SISTR cgMLST) was
selected as the final serotype to be reported for each isolate.
Nine of the 13 farms surveyed here harbored Salmonella
isolates that belonged to a single serotype, while two farms
harbored two serotypes or serotype variants (Farms 25 and
35 harbored Typhimurium/Typhimurium Copenhagen and
Cerro/Newport, respectively; Supplementary Table 1). The
remaining two farms harbored three Salmonella serotypes
(Farms 17 and 62 harbored Kentucky/Newport/Typhimurium
and Cerro/Minnesota/Newport, respectively;
Supplementary Table 1).

In silico Methods Predict Antimicrobial
Susceptibility and Resistance Among
Bovine-Associated Salmonella With High
Accuracy and Concordance
Using a 15-antimicrobial panel and NARMS breakpoints for
Salmonella, more than half of all isolates in this study (81 of
128; 63.3%) were classified as susceptible to all 15 antimicrobials
tested, while 38 isolates (29.7%) were classified as resistant to
two or more antimicrobials (obtained after the 15-antimicrobial
panel was re-run for 22 isolates to resolve discrepancies between
in silico predictions and phenotypic AMR data; Supplementary
Tables 1, 4).

Regardless of choice of AMR determinant detection
pipeline and AMR determinant database, all pipeline/database
combinations performed nearly identically when given the
task of predicting phenotypic AMR susceptibility/resistance to
15 antimicrobials using known AMR determinant-phenotype
associations (Figure 2, Table 1, and Supplementary Tables 2, 3).
Furthermore, all pipeline/database combinations showed an
extremely high degree of concordance (98.0% or greater for
all pipeline/database combinations; Supplementary Figure 2).
The overall accuracy of all in silico AMR determinant detection
pipeline/database combinations ranged from 95.8 to 97.4%,
with the SRST2 AMR detection tool/ARG-ANNOT AMR
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FIGURE 1 | Maximum likelihood phylogeny constructed using core SNPs identified among 570 Salmonella isolate genomes. Publicly available genomes are denoted
by black tip labels (n = 442), while genomes of bovine- and bovine farm-associated strains isolated in conjunction with this study are denoted by colored tip labels
(n = 128). In cases where a discrepancy existed between the traditional serotype designation of an isolate and one or more in silico methods (i.e., SISTR and
SeqSero2), the serotype assigned using two out of the three methods was selected as the final serotype to be used for phylogeny annotation. The phylogeny is
rooted at the midpoint with branch lengths reported in substitutions per site. Core SNPs were identified among all genomes using kSNP3, while the phylogeny was
constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.

determinant database combination achieving the highest
accuracy for this data set (Figure 2, Table 1, and Supplementary
Table 3). The ARIBA/CARD pipeline/database combination
achieved the highest specificity, although all pipeline/database
combinations were able to predict phenotypic AMR with high
specificity (>99.0%; Figure 2, Table 1, and Supplementary
Table 3). Sensitivity ranged from 71.8 to 84.4%, with SRST2
achieving the highest sensitivities (84.4 and 84.0% for the
ARG-ANNOT and ResFinder databases, respectively; Table 1
and Supplementary Table 3).

For the AMR determinant detection pipelines that relied
on nucleotide BLAST (i.e., ABRicate and BTyper), a range of
minimum percent nucleotide identity and coverage thresholds
were additionally tested (i.e., all combinations of 50–100%
nucleotide identity in increments of 5% and 0–100% coverage in
increments of 10%; Supplementary Figure 3) so that the optimal
combination(s) could be established for the isolate genomes
sequenced here. For ABRicate/ARG-ANNOT, ABRicate/NCBI,

and ABRicate/ResFinder, maximum accuracy was achieved
using minimum coverage thresholds of 60, 50, and 50–
60%, respectively, and 75–95% nucleotide identity thresholds
(Supplementary Figure 3). For ABRicate/CARD, minimum
thresholds of 60% coverage and 75% nucleotide identity were
optimal (Supplementary Figure 3). For BTyper/ARG-ANNOT,
maximum accuracy was achieved using 60% coverage and
50–95% nucleotide identity; for BTyper/MEGARes, 50–60%
coverage and 95% nucleotide identity were the optimal thresholds
(Supplementary Figure 3).

The performance of the PATRIC3 in silico MIC prediction
method was additionally evaluated (Figure 3 and Supplementary
Figure 4). PATRIC3 was able to correctly classify Salmonella
isolates as SIR based on NARMS breakpoints with an overall
accuracy of 92.9% [95% confidence interval 91.6–94.1%, accuracy
P-value (accuracy > no information rate) < 1.25E-26; Figure 3].
At the individual antimicrobial level, PATRIC3 achieved >90%
SIR prediction accuracy for 12 of 14 antimicrobials; only
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FIGURE 2 | Confusion matrices showcasing agreement between susceptible-intermediate-resistant (SIR) classification of 128 Salmonella isolates obtained using
phenotypic resistance testing (denoted as the matrix “Reference”) and five in silico methods (denoted as the matrix “Prediction”) for 15 antimicrobials. Accuracy
values above each matrix denote the percentage of correctly classified instances out of all instances. Kappa values above each matrix denote Cohen’s kappa
coefficient for the matrix, reported as a percent. For the phenotypic method, SIR classification was determined using NARMS breakpoints for Salmonella (accessed
March 23, 2020). For the in silico antimicrobial resistance (AMR) determinant detection approaches, combinations of five pipelines and one to five AMR determinant
databases were tested; isolate genomes that harbored one or more AMR determinants previously known to confer resistance to a particular antimicrobial were
categorized as resistant to that antimicrobial (“R”), while those which did not were categorized as susceptible (“S”; see Supplementary Table 2 for all detected
AMR determinants and their associated resistance classifications). For all AMR determinant detection methods, isolates that showed intermediate phenotypic
resistance to an antimicrobial were categorized as susceptible (“S”) rather than resistant, as this classification produced slightly better accuracy scores for all
pipeline/database combinations. For AMR determinant detection methods that relied on nucleotide BLAST (i.e., ABRicate and BTyper), the confusion matrix
obtained using the nucleotide identity and coverage threshold combination that produced the highest accuracy are shown (Supplementary Figure 3); for all other
methods, confusion matrices obtained using default detection parameters are shown.

sulfisoxazole and tetracycline resistance prediction accuracies
were <90% (83.6 and 68.0%, respectively; Figure 3 and
Supplementary Figure 4).

Genomic Antimicrobial Resistance
Determinants of Bovine-Associated
Salmonella Are Serotype-Associated
Based on the presence and absence of pan-genome elements
among all 128 Salmonella isolates sequenced here, the Salmonella
pan-genome was more similar within serotype and within
farm than between serotype and between farm, respectively
(PERMANOVA and ANOSIM P < 0.05 after a Bonferroni
correction; Figure 4 and Table 2), with serotypes showing a
higher degree of pan-genome dissimilarity (ANOSIM R = 0.99)
and accounting for a larger proportion of the variance
(PERMANOVA R2 = 0.93) than farms (Figure 4 and Table 2);
however, dispersion among both serotypes and farms differed

(PERMDISP2 P < 0.05 after a Bonferroni correction; Table 2),
indicating that the ANOSIM and/or PERMANOVA tests could
potentially be confounding dispersion with serotype/farm.
Additionally, subclinical bovine Salmonella isolates did not
significantly differ from strains isolated from the associated farm
environment based on pan-genome element presence/absence
(PERMANOVA, ANOSIM, and PERMDISP2 P > 0.05 after a
Bonferroni correction; Figure 4 and Table 2).

Based on the presence and absence of AMR and stress
response determinants detected among all 128 Salmonella
genomes, isolates were more similar within serotype than
between serotypes (PERMANOVA and ANOSIM P < 0.05 and
PERMDISP2 P > 0.05 after a Bonferroni correction; Figure 4
and Table 2). Additionally, isolates were more similar within
farm than between farm based on their AMR and stress response
gene presence/absence profiles (PERMANOVA and ANOSIM
P < 0.05; Figure 4 and Table 2), although significant, potentially
confounding dispersion differences among farms were present
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TABLE 1 | Statistics for the 15-antimicrobial phenotypic susceptibility/resistance prediction task for all antimicrobial resistance (AMR) determinant pipeline/database
combinationsa.

AMR Pipeline AMR
Database

% Accuracy (95%
Confidence
Interval)

Cohen’s
Kappa (%)

Corrected
Accuracy
P-Valueb

Corrected
McNemar’s
Test P-Valueb

Sensitivity (%) Specificity (%)

ABRicate ARG-ANNOT 97.2 (96.3–97.9) 87.3 1.72E-59 2.67E-05 82.8 99.5

ABRicate CARD 97.2 (96.3–97.9) 87.3 1.72E-59 2.67E-05 82.8 99.5

ABRicate NCBI 97.2 (96.3–97.9) 87.4 1.72E-59 9.94E-05 83.2 99.4

ABRicate ResFinder 97.2 (96.3–97.9) 87.3 1.72E-59 2.67E-05 82.8 99.5

AMRFinderPlus NCBI 96.5 (95.6–97.3) 83.9 1.41E-50 1.41E-08 77.5 99.5

ARIBA ARG-ANNOT 96.8 (95.9–97.5) 85.3 7.37E-54 6.63E-07 79.8 99.5

ARIBA CARD 95.8 (94.8–96.6) 79.9 3.08E-42 3.14E-12 71.8 99.6

ARIBA MEGARes 96.5 (95.6–97.3) 84.3 1.41E-50 1.53E-04 80.2 99.1

ARIBA NCBI 96.8 (95.9–97.6) 85.5 1.55E-54 1.06E-06 80.2 99.5

ARIBA ResFinder 96.7 (95.8–97.5) 85.0 3.45E-53 4.15E-07 79.4 99.5

BTyper ARG-ANNOT 97.2 (96.3–97.9) 87.3 1.72E-59 2.67E-05 82.8 99.5

BTyper MEGARes 97.2 (96.3–97.9) 87.3 1.72E-59 2.67E-05 82.8 99.5

SRST2 ARG-ANNOT 97.4 (96.6–98.1) 88.4 1.69E-62 1.63E-04 84.4 99.5

SRST2 ResFinder 97.3 (96.5–98.0) 88.1 9.85E-62 1.04E-04 84.0 99.5

aStatistics were calculated using the confusionMatrix function in the caret package in R, with resistant (“R”) phenotypes/genotypes treated as the “positive” result and
susceptible (“S”) phenotypes/genotypes treated as the “negative” result; See Supplementary Table 3 for an extended version of this table.
bAdjusted using a Bonferroni correction.

FIGURE 3 | (A) Deviation of PATRIC3 predicted minimum inhibitory concentration (MIC) values from “true” MIC values obtained using phenotypic resistance testing
for 14 antimicrobials (Y-axis), reported in number of dilution factors (X-axis). For each box plot, lower and upper box hinges correspond to the first and third
quartiles, respectively. Lower and upper whiskers extend from the hinge to the smallest and largest values no more distant than 1.5 times the interquartile range from
the hinge, respectively. Points represent pairwise distances that fall beyond the ends of the whiskers. Only isolates with raw MIC values available are included (126 of
128 isolates). (B) Confusion matrix showcasing agreement between susceptible-intermediate-resistant (SIR) classification of all 128 Salmonella isolates obtained
using phenotypic resistance testing (denoted as the matrix “Reference”) and PATRIC3 (denoted as the matrix “Prediction”) for 14 antimicrobials. The accuracy value
above the matrix denotes the percentage of correctly classified instances out of all instances. The Kappa value above the matrix denotes Cohen’s kappa coefficient
for the matrix, reported as a percent. For both the phenotypic and PATRIC3 methods, SIR classification was determined using NARMS breakpoints for Salmonella
(accessed March 23, 2020).
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FIGURE 4 | Results of non-metric multidimensional scaling (NMDS) performed using the presence and absence of (A) pan-genome elements (n = 4,102; identified
using Roary), and (B) antimicrobial resistance (AMR) and stress response genes (n = 28; detected using AMRFinderPlus) among 128 bovine-associated Salmonella
isolates, plotted in two dimensions. Points represent isolates, while shaded regions and convex hulls correspond to isolate (1) serotypes (ANAT, Anatum; CERO,
Cerro; KENT, Kentucky; MELA, Meleagridis; NEWP, Newport; TCOP, Typhimurium Copenhagen; TYPH, Typhimurium), (2) farm, and (3) source (BOV, bovine; ENV,
bovine farm environment). For all plots, a Jaccard distance metric was used. For AMR/stress response genes (B), gene names/scores are plotted in dark gray text.

TABLE 2 | Results of PERMDISP2, ANOSIM, and PERMANOVA testsa.

Group PERMDISP2 Raw P-Value (F)b ANOSIM Raw P-Value (R)c PERMANOVA Raw P-Value (R2)d

Pan-genome element presence/absence (n = 4,102)e

Serotype 2.0E-4 (14.3)* <1.0E-4 (0.99)* <1.0E-4 (0.93)*

Farm <1.0E-4 (4.43)* <1.0E-4 (0.54)* <1.0E-4 (0.73)*

Source 0.071 (3.40) 0.99 (−0.07) 0.32 (0.01)

Antimicrobial resistance and stress response gene presence/absence (n = 28)f

Serotype 0.013 (4.46) <1.0E-4 (0.79)* <1.0E-4 (0.85)*

Farm <1.0E-4 (5.52)* <1.0E-4 (0.30)* <1.0E-4 (0.54)*

Source 0.74 (0.01) 0.79 (−0.03) 0.31 (0.01)

aAll tests were performed using a Jaccard dissimilarity metric and 10,000 permutations; raw P-values are reported for all tests, with significant P-values (P < 0.05 after a
Bonferroni correction was applied to all values) denoted with an asterisk (*).
bANOVA-like permutation test applied to results obtained using the PERMDISP2 procedure for the analysis of multivariate homogeneity of group dispersions
(i.e., variances), obtained using the betadisper and permutest functions in the vegan package in R; betadisper is a multivariate analog of Levene’s test for
homogeneity of variances.
cAnalysis of similarities (ANOSIM) test results obtained using the ANOSIM function in the vegan package in R.
dPermutational analysis of variance (PERMANOVA) test results obtained using the adonis2 function in the vegan package in R.
e Identified using Roary and a 70% protein BLAST (BLASTP) identity threshold.
f Detected using AMRFinderPlus.

Frontiers in Microbiology | www.frontiersin.org 10 October 2021 | Volume 12 | Article 763669

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-763669 October 12, 2021 Time: 14:32 # 11

Carroll et al. Subclinical Bovine Salmonella Genomics

(PERMDISP2 P < 0.05; Table 2). As was the case with the
pan-genome in its entirety, subclinical bovine Salmonella isolates
did not significantly differ from farm environmental isolates
based on AMR and stress response gene presence/absence
(PERMANOVA, ANOSIM, and PERMDISP2 P > 0.05 after a
Bonferroni correction; Figure 4 and Table 2).

Each of Two New York State Dairy Farms
Harbors a Unique, Bovine-Associated
Salmonella Anatum Lineage
Fifteen S. Anatum strains encompassing four PFGE types
(Supplementary Table 1) were isolated from subclinical bovine

sources and their associated farm environments on two different
New York State dairy farms (i.e., Farms 39 and 56; Figure 5 and
Table 3). Notably, the S. Anatum lineages circulating on each
farm were distinct at a genomic level, with isolates from each
farm forming a separate clade [posterior probability (PP) = 1
for each; Figure 5]. The two farm-associated lineages were
predicted to share a common ancestor circa 1836 (node age
1836.28 using median node heights; Figure 5), although the age
of the common ancestor could not be dated reliably [node height
95% highest posterior density (HPD) interval 540.85–1978.42;
Supplementary Figure 5].

Salmonella Anatum isolates from Farm 39 shared a common
ancestor circa 2005 (node age 2004.69, node height 95% HPD

FIGURE 5 | Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 15 Salmonella Anatum genomes
isolated from subclinical bovine sources and the surrounding bovine farm environment. Tip label colors denote the ID of the farm from which each strain was
isolated. Branch labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, and branch lengths are reported in years. The
heatmap to the right of the phylogeny denotes (i) the susceptible-intermediate-resistant (SIR) classification of each isolate for each of 15 antimicrobials (obtained
using phenotypic testing and NARMS breakpoints; orange); (ii) presence and absence of plasmid replicons (detected using ABRicate/PlasmidFinder and minimum
nucleotide identity and coverage thresholds of 80 and 60%, respectively; blue); (iii) presence and absence of antimicrobial resistance (AMR) and stress response
genes (identified using AMRFinderPlus and default parameters; green). Core SNPs were identified using Snippy. The phylogeny was constructed using the results of
ten independent runs using a strict clock model, the Standard_TVMef nucleotide substitution model, and the Coalescent Bayesian Skyline population model
implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and TreeAnnotator-2 was used
to construct the phylogeny using median node heights. Abbreviations for the 15 antimicrobials are: AMK, amikacin; AMC, amoxicillin-clavulanic acid; AMP, ampicillin;
FOX, cefoxitin; TIO, ceftiofur; CRO, ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; STR,
streptomycin; SXT, sulfamethoxazole-trimethoprim; SUL, sulfisoxazole; TET, tetracycline.
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1978.46–2007.69; Figure 5 and Supplementary Figure 5). All
Farm 39 S. Anatum isolates possessed identical AMR/stress
response gene profiles, and all isolates were pan-susceptible
except for a single isolate that was resistant to ampicillin
(Figure 5). All Farm 39 S. Anatum isolates additionally harbored
ColRNAI plasmids; a single isolate additionally harbored an IncI1
plasmid that appeared to harbor no AMR genes (Figure 5).

Salmonella Anatum isolates from Farm 56, however, were
considerably more diverse than their Farm 39 counterparts;
while a clade containing six of seven strains shared a very
recent common ancestor (node age 2006.16, node height
95% HPD 1985.37–2008.11; Figure 5 and Supplementary
Figure 5), a unique lineage represented by a single environmental
isolate (ENV_ANAT_56_06-12-08_R8-1402) was present among
S. Anatum from Farm 56 (Figure 5). All S. Anatum isolates
from Farm 56 were predicted to have evolved from a common
ancestor that existed circa 1895 (node age 1895.03), although
this node could not be reliably dated (node height 95%
HPD 1036.89–1989.944; Supplementary Figure 5). Additionally,
S. Anatum isolated from Farm 56 showcased a greater
degree of AMR heterogeneity than those from Farm 39
(Figure 5). Notably, the isolate comprising the unique Farm 56
S. Anatum lineage possessed an IncI1 plasmid and blaCMY−2
and was multidrug resistant (MDR) (resistant to amoxicillin-
clavulanic acid, ampicillin, cefoxitin, ceftiofur, and ceftriaxone;
Figure 5). Three of six S. Anatum strains comprising the
major Farm 56 S. Anatum lineage were pan-susceptible.
The remaining three isolates were resistant to one of (i)
tetracycline, (ii) streptomycin, or (iii) ceftiofur and sulfisoxazole;
the streptomycin-resistant isolate additionally exhibited reduced
susceptibility to chloramphenicol (Figure 5). The tetracycline-
resistant isolate additionally possessed both ColpVC and
IncI1 plasmids and harbored tetracycline resistance gene tetC
(Figure 5). While these data suggest some S. Anatum lineages
queried here have recently acquired AMR, the limited number
of isolates and the large degree of uncertainty for some
phylogeny node ages preclude reliable estimation of AMR
acquisition timeframes.

A Closely Related Salmonella Cerro
Lineage Spans Two New York State Dairy
Farms
Thirteen S. Cerro strains encompassing two PFGE types
(Supplementary Table 1) isolated from two dairy farms (12
from Farm 62 and one from Farm 35) were found to share
a high degree of genomic similarity; isolates differed by, at
most, 12 core SNPs and evolved from a common ancestor
that existed circa March 2008 [node age 2008.21, common
ancestor (CA) node height 95% HPD interval 2007.6–2008.6;
Figure 6, Table 3, Supplementary Figure 6, and Supplementary
Table 5]. While IncI1 and ColRNAI plasmid replicons were
detected in all 13 S. Cerro isolates, only one isolate was
not pan-susceptible (Figure 6). Notably, the isolate from
Farm 35 (BOV_CERO_35_10-02-08_R8-2685) was classified
as resistant to nine antimicrobials using phenotypic methods
(i.e., amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur,
ceftriaxone, chloramphenicol, streptomycin, sulfisoxazole, and

tetracycline); based on the most parsimonious explanation for
AMR acquisition, this lineage acquired AMR after July 2008
(node age 2008.51, CA node height 95% HPD interval 2008.14–
2008.75; Figure 6 and Supplementary Figure 6). However,
no genomic determinants known to confer resistance to these
antimicrobials were detected in the genome of the MDR isolate
(Figure 6), and the MDR phenotype was confirmed in a second,
independent phenotypic AMR test (Supplementary Table 4).

Salmonella Kentucky Strains Isolated
Across Five Different New York State
Dairy Farms Evolved From a Common
Ancestor That Existed Circa 2004
Thirty-six S. Kentucky isolates encompassing two PFGE types
(Supplementary Table 1) isolated across five New York State
dairy farms (i.e., five, seven, nine, seven, and eight isolates
from each of Farm 14, 16, 17, 19, and 42, respectively) were
similar at a genomic level; isolates differed by between 0
and 30 core SNPs and shared a common ancestor that was
predicted to have existed circa January/February 2004 (node age
2004.07, CA node height 95% HPD interval 2000.73–2006.8;
Figure 7, Table 3, Supplementary Figure 7, and Supplementary
Table 5). Two farms harbored a total of three S. Kentucky
isolates, which were not pan-susceptible (two isolates from
Farm 16 and one from Farm 17; Figure 7). Farm 17 harbored
a tetracycline-resistant isolate (ENV_KENT_17_03-11-08_R8-
0815), which possessed an IncI1 plasmid and tetC (Figure 7).
The lineage represented by this isolate was predicted to have
acquired tetracycline resistance after March 2007 (node height
2007.19, CA node height 95% HPD interval 2006.43–2007.84;
Figure 7 and Supplementary Figure 7). The two S. Kentucky
isolates from Farm 16 additionally showed reduced susceptibility
to chloramphenicol, a trait predicted to have been acquired
by these lineages after December 2006/January 2007 (for the
lineage represented by isolate ENV_KENT_16_12-04-07_R8-
0061; node height 2006.98, CA node height 95% HPD interval
2005.95–2007.85) and May 2007 (for the lineage represented by
isolate BOV_KENT_16_02-13-08_R8-0838; node height 2007.38,
CA node height 95% HPD interval 2006.59–2008.10; Figure 7
and Supplementary Figure 7). No corresponding genes that
may encode for reduced chloramphenicol susceptibility were
identified in these two isolates.

A Clonal Salmonella Meleagridis Lineage
Is Distributed Across Two New York
State Dairy Farms and Encompasses
Isolates Carrying blaCTX−M−1
Nineteen S. Meleagridis isolates encompassing two PFGE types
(Supplementary Table 1) were isolated from two dairy farms
(13 and six isolates from Farms 01 and 11, respectively)
and were highly clonal: isolates differed by fewer than
ten core SNPs and evolved from a common ancestor that
existed circa May/June 2007 (node age 2007.42, CA node
height 95% HPD interval 2006.91–2007.75; Figure 8, Table 3,
Supplementary Figure 8, and Supplementary Table 5). All but
three branches within the S. Meleagridis phylogeny had low
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FIGURE 6 | Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 13 Salmonella Cerro genomes isolated
from subclinical bovine sources and the surrounding bovine farm environment. Tip label colors denote the ID of the farm from which each strain was isolated. Branch
labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, and branch lengths are reported in years. The heatmap to the right
of the phylogeny denotes (i) the susceptible-intermediate-resistant (SIR) classification of each isolate for each of 15 antimicrobials (obtained using phenotypic testing
and NARMS breakpoints; orange); (ii) presence of plasmid replicons (detected using ABRicate/PlasmidFinder and minimum nucleotide identity and coverage
thresholds of 80 and 60%, respectively; blue); (iii) presence of antimicrobial resistance (AMR) and stress response genes (identified using AMRFinderPlus and default
parameters; green). Core SNPs were identified using Snippy. The phylogeny was constructed using the results of ten independent runs using a strict clock model,
the Standard_TPM1 nucleotide substitution model, and the Coalescent Bayesian Skyline population model implemented in BEAST version 2.5.1, with 10% burn-in
applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and TreeAnnotator-2 was used to construct the phylogeny using common ancestor
node heights. Abbreviations for the 15 antimicrobials are: AMK, amikacin; AMC, amoxicillin-clavulanic acid; AMP, ampicillin; FOX, cefoxitin; TIO, ceftiofur; CRO,
ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; STR, streptomycin; SXT,
sulfamethoxazole-trimethoprim; SUL, sulfisoxazole; TET, tetracycline.

support (PP ≤ 0.41; Figure 8 and Supplementary Figure 8),
indicating that most nodes were unreliable, likely due to
the isolates being highly clonal. All S. Meleagridis isolates
from Farm 11 were pan-susceptible, possessed no plasmid
replicons, and did not possess any acquired AMR genes
(Figure 8). Among the S. Meleagridis isolates from Farm 01,
one isolate (ENV_MELA_01_10-02-07_R6-0938) was resistant
to ampicillin, ceftiofur, and ceftriaxone, and possessed an
IncN plasmid, macrolide resistance gene mph(A), and beta-
lactamase blaCTX−M−1 (Figure 8). Two additional S. Meleagridis
isolates from Farm 01 each exhibited reduced susceptibility

to either (i) cefoxitin, sulfisoxazole, and tetracycline, or (ii)
ceftiofur (Figure 8).

Kanamycin Resistance Among Each of
Three New York State Dairy Farms
Harboring a Distinct,
Multidrug-Resistant Salmonella Newport
Lineage Is Farm-Associated
Sixteen S. Newport isolates encompassing three PFGE
types (Supplementary Table 1) were isolated from one
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FIGURE 7 | Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 36 Salmonella Kentucky genomes
isolated from subclinical bovine sources and the surrounding bovine farm environment. Tip label colors denote the ID of the farm from which each strain was
isolated. Branch labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, and branch lengths are reported in years. The
heatmap to the right of the phylogeny denotes (i) the susceptible-intermediate-resistant (SIR) classification of each isolate for each of 15 antimicrobials (obtained
using phenotypic testing and NARMS breakpoints; orange); (ii) presence of plasmid replicons (detected using ABRicate/PlasmidFinder and minimum nucleotide
identity and coverage thresholds of 80 and 60%, respectively; blue); (iii) presence of antimicrobial resistance (AMR) and stress response genes (identified using
AMRFinderPlus and default parameters; green). Core SNPs were identified using Snippy. The phylogeny was constructed using the results of ten independent runs
using a relaxed lognormal clock model, the Standard_TVMef nucleotide substitution model, and the Coalescent Bayesian Skyline population model implemented in
BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and TreeAnnotator-2 was used to construct
the phylogeny using common ancestor node heights. Abbreviations for the 15 antimicrobials are: AMK, amikacin; AMC, amoxicillin-clavulanic acid; AMP, ampicillin;
FOX, cefoxitin; TIO, ceftiofur; CRO, ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; STR,
streptomycin; SXT, sulfamethoxazole-trimethoprim; SUL, sulfisoxazole; TET, tetracycline.

of three farms (four, five, and seven isolates from Farms
17, 35, and 62, respectively); all isolates were resistant to
amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur,
ceftriaxone, streptomycin, sulfisoxazole, and tetracycline
(Figure 9). All S. Newport genomes harbored IncA/C2
and ColRNAI plasmids, as well as streptomycin resistance
genes APH(3′′)-Ib and APH(6)-Id (i.e., strAB), beta-
lactamase blaCMY−2, sulfonamide resistance gene sul2, and
tetracycline resistance gene tetA (Figure 9). Notably, the

S. Newport lineage circulating on each farm formed one of
three separate clades (PP = 0.99–1.0) that evolved from a
common ancestor that existed circa March/April 2004 (node
age 2004.23, CA node height 95% HPD interval 2000.42–
2007.85; Figure 9, Table 3, Supplementary Figure 9, and
Supplementary Table 5).

The S. Newport lineages present on Farm 17 and Farm 62
were additionally resistant to chloramphenicol and kanamycin
and possessed chloramphenicol and kanamycin resistance genes
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FIGURE 8 | Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 19 Salmonella Meleagridis genomes
isolated from subclinical bovine sources and the surrounding bovine farm environment. Tip label colors denote the ID of the farm from which each strain was
isolated. Branch labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, and branch lengths are reported in years. The
heatmap to the right of the phylogeny denotes (i) the susceptible-intermediate-resistant (SIR) classification of each isolate for each of 15 antimicrobials (obtained
using phenotypic testing and NARMS breakpoints; orange); (ii) presence and absence of plasmid replicons (detected using ABRicate/PlasmidFinder and minimum
nucleotide identity and coverage thresholds of 80 and 60%, respectively; blue); (iii) presence and absence of antimicrobial resistance (AMR) and stress response
genes (identified using AMRFinderPlus and default parameters; green). Core SNPs were identified using Snippy. The phylogeny was constructed using the results of
ten independent runs using a strict clock model, the Standard_TPM2 nucleotide substitution model, and the Coalescent Bayesian Skyline population model
implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and TreeAnnotator-2 was used
to construct the phylogeny using common ancestor node heights. Abbreviations for the 15 antimicrobials are: AMK, amikacin; AMC, amoxicillin-clavulanic acid;
AMP, ampicillin; FOX, cefoxitin; TIO, ceftiofur; CRO, ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid;
STR, streptomycin; SXT, sulfamethoxazole-trimethoprim; SUL, sulfisoxazole; TET, tetracycline.

floR and APH(3′)-Ia, respectively (Figure 9). The Farm 17
and Farm 62 lineages evolved from a common ancestor
predicted to have existed circa November/December 2005
(node age 2005.91, CA node height 95% HPD interval
2003.77–2007.85; Figure 9 and Supplementary Figure 9). All
members of the Farm 17 lineage additionally harbored a
ColpVC plasmid and shared a common ancestor dated to
circa August/September 2007 (node age 2007.65, CA node
height 95% HPD interval 2007.29–2007.85; Figure 9 and
Supplementary Figure 9). The Farm 62 lineage, which did
not possess the ColpVC plasmid, evolved from a common

ancestor circa August/September 2008 (node age 2008.68, CA
node height 95% HPD interval 2008.42–2008.78; Figure 9 and
Supplementary Figure 9).

Unlike the S. Newport lineages present on Farm 17 and
Farm 62, the Farm 35 S. Newport lineage did not possess
kanamycin resistance gene APH(3′)-Ia and was kanamycin-
susceptible (Figure 9). The common ancestor of the Farm
35 S. Newport lineage was dated circa May 2008 (node
age 2008.38, CA node height 95% HPD interval 2008.06–
2008.55). All but one Farm 35 S. Newport isolates were
additionally resistant to chloramphenicol and possessed floR;
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TABLE 3 | Summary of within-serotype evolutionary analysesa.

Serotype Isolates Core SNPs
(Pairwise Range)b

Clock/Population
Modelc

Mean/Median Tree
Height in Years (95%
HPD Interval)d

Mean/Median Evolutionary Rate
in Substitutions/Site/Year (95%
HPD Interval)e

Anatum 15 337 (0–257) Strict/Skyline 1484.9/1837.0
(549.6–1980.1)

1.67 × 10−7/1.48 × 10−7

(6.92 × 10−11–3.86 × 10−7)

Cerro 13 21 (0–12) Strict/Skyline 2008.2/2008.4
(2007.6–2008.6)

9.11 × 10−7/8.94 × 10−7

(3.06 × 10−7–1.57 × 10−6)

Kentucky 36 102 (0–30) Relaxed/Skyline 2004.1/2005.0
(2000.8–2006.8)

6.39 × 10−7/6.34 × 10−7

(2.05 × 10−7–1.07 × 10−6)

Meleagridis 19 27 (0–9) Strict/Skyline 2007.4/2007.5
(2006.9–2007.7)

6.88 × 10−7/6.66 × 10−7

(2.90 × 10−7–1.12 × 10−6)

Newport 16 52 (0–38) Relaxed/Skyline 2004.2/2004.6
(2000.4–2007.8)

9.02 × 10−7/8.22 × 10−7

(2.64 × 10−7–1.65 × 10−6)

Typhimurium (Copenhagen) 27 732 (0–634) Relaxed/Skyline 1936.0/1943.0
(1864.7–1991.4)

1.07 × 10−6/9.66 × 10−7

(2.84 × 10−7–2.05 × 10−6)

aSee Supplementary Table 5 for an extended version of this table; note that evolutionary rates may be higher than previously reported estimates for Salmonella
populations isolated over a longer time frame, due to the small sample sizes and short temporal period characterized here (Moller et al., 2018).
bNumber of core SNPs identified among all genomes within the serotype after removing recombination with Gubbins; the range of pairwise SNP differences between
isolates was calculated using the dist.gene function in the ape package in R.
cThe optimal model selected for the data set; can be a combination of a strict or lognormal relaxed molecular clock (“Strict” or “Relaxed,” respectively) and a Constant
Coalescent or Coalescent Bayesian Skyline population model (“CC” or “Skyline,” respectively); see Supplementary Table 5 for more details.
dThe tree height parameter and its respective 95% highest posterior density (HPD) interval reported by Tracer.
eCorresponds to the clock Rate and rate.mean parameters estimated by BEAST2 for models using strict and lognormal relaxed molecular clock models, respectively, as
reported by Tracer.

BOV_NEWP_35_10-02-08_R8-2688 did not possess floR and
was chloramphenicol-susceptible (Figure 9).

Each of Four Major Lineages Composed
of Salmonella Typhimurium and Its O5-
Copenhagen Variant Is Associated With
One of Three New York State Dairy
Farms
Twenty-seven bovine and farm environmental S. Typhimurium
and S. Typhimurium Copenhagen isolates that encompassed
five PFGE types (Supplementary Table 1) were isolated
from three dairy farms (1, 10, and 16 strains isolated from
Farm 17, 22, and 25, respectively). All isolates queried here
shared a common ancestor that existed circa 1936 (node
age 1935.62, CA node height 95% HPD interval 1864.84–
1991.86; Figure 10, Table 3, Supplementary Figure 10,
and Supplementary Table 5). Notably, the S. Typhimurium
Copenhagen variant was polyphyletic (Figure 10), regardless
of whether traditional or in silico (i.e., SeqSero2) methods
had been used for serotype variant assignment. Additionally,
the S. Typhimurium/S. Typhimurium Copenhagen isolates
sequenced here showcased the most diverse AMR phenotypic
profiles and AMR gene presence/absence profiles (Figures 4, 10).

Isolates from Farm 25 were partitioned into two clades:
one containing S. Typhimurium isolates, and one containing
S. Typhimurium Copenhagen isolates (based on SeqSero2’s
in silico serotype assignments; Figure 10). Farm 25 isolates
assigned to the S. Typhimurium Copenhagen variant (i) shared
a common ancestor that existed circa December 2007/January
2008 (node age 2007.99, CA node height 95% HPD interval
2007.68–2008.21); (ii) were all resistant to ampicillin, kanamycin,

streptomycin, sulfisoxazole, and tetracycline, with reduced
susceptibility to additional antimicrobials observed sporadically;
(iii) all possessed replicons for IncA/C2, IncFIB(AP001918), and
IncFII(s) plasmids; and (iv) all possessed streptomycin resistance
genes aadA12, APH(3′′)-Ib and APH(6)-Id (i.e., strAB), beta-
lactamase blaTEM−1, and antiseptic resistance gene qacE delta
1, with other AMR/stress response genes present sporadically
(Figure 10 and Supplementary Figure 10). Farm 25 isolates
assigned to the S. Typhimurium clade shared a common
ancestor that existed circa July 2007 (node age 2007.55, CA
node height 95% HPD interval 2007.18–2007.78; Figure 10 and
Supplementary Figure 10). All Farm 25 S. Typhimurium isolates
were resistant to cefoxitin; resistance to additional antimicrobials,
along with presence of IncI1 plasmids and blaCMY−2, was
observed sporadically (Figure 10).

The isolate from Farm 17 was predicted to belong to the
S. Typhimurium Copenhagen serotype variant using SeqSero2
and shared a common ancestor with the S. Typhimurium isolates
from Farm 22, which existed circa 2000 (node age 1999.92,
CA node height 95% HPD interval 1991.72–2006.21; Figure 10
and Supplementary Figure 10). Of the ten S. Typhimurium
strains from Farm 22, seven were pan-susceptible (Figure 10).
A bovine strain (BOV_TYPH_22_03−14−08_R8−0865) was
resistant to ampicillin, ceftiofur, and ceftriaxone and was
found to harbor IncI1 and IncI2 plasmids, as well as beta-
lactamase blaCTX−M−55 (Figure 10). The remaining two bovine
isolates were intermediately resistant to chloramphenicol and
additionally resistant to either (i) amoxicillin-clavulanic acid,
ampicillin, and sulfisoxazole, or (ii) tetracycline (Figure 10).
Overall, isolates from Farm 17 and Farm 22 shared a
common ancestor with the Farm 25 S. Typhimurium clade that
existed circa 1988 (node age 1988.02, CA node height 95%

Frontiers in Microbiology | www.frontiersin.org 16 October 2021 | Volume 12 | Article 763669

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-763669 October 12, 2021 Time: 14:32 # 17

Carroll et al. Subclinical Bovine Salmonella Genomics

FIGURE 9 | Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 16 Salmonella Newport genomes
isolated from subclinical bovine sources and the surrounding bovine farm environment. Tip label colors denote the ID of the farm from which each strain was
isolated. Branch labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, and branch lengths are reported in years. The
heatmap to the right of the phylogeny denotes (i) the susceptible-intermediate-resistant (SIR) classification of each isolate for each of 15 antimicrobials (obtained
using phenotypic testing and NARMS breakpoints; orange); (ii) presence and absence of plasmid replicons (detected using ABRicate/PlasmidFinder and minimum
nucleotide identity and coverage thresholds of 80 and 60%, respectively; blue); (iii) presence and absence of antimicrobial resistance (AMR) and stress response
genes (identified using AMRFinderPlus and default parameters; green). Core SNPs were identified using Snippy. The phylogeny was constructed using the results of
ten independent runs using a relaxed lognormal clock model, the Standard_TPM1 nucleotide substitution model, and the Coalescent Bayesian Skyline population
model implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and TreeAnnotator-2
was used to construct the phylogeny using common ancestor node heights. Abbreviations for the 15 antimicrobials are: AMK, amikacin; AMC, amoxicillin-clavulanic
acid; AMP, ampicillin; FOX, cefoxitin; TIO, ceftiofur; CRO, ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic
acid; STR, streptomycin; SXT, sulfamethoxazole-trimethoprim; SUL, sulfisoxazole; TET, tetracycline.

HPD interval 1969.24–2002.47; Figure 10 and Supplementary
Figure 10).

DISCUSSION

Whole-Genome Sequencing Can Be
Used to Monitor Pathogen
Microevolution and Temporal
Antimicrobial Resistance Dynamics in
Animal Reservoirs
Cattle may act as a reservoir for Salmonella and may facilitate
its transmission to other animals (Mentaberre et al., 2013;

Wiethoelter et al., 2015) or humans, either through direct contact
or via the food supply chain (Hoelzer et al., 2011; Cummings
et al., 2012; Mughini-Gras et al., 2014; An et al., 2017; Gutema
et al., 2019). Even outside of a bovine host, Salmonella can
survive in the farm environment for a prolonged amount of
time, making persistent strains a particularly relevant threat to
animal and human health (Rodriguez et al., 2006; Cummings
et al., 2010b; Gorski et al., 2011; Toth et al., 2011; Tassinari
et al., 2019). This threat can be compounded when persistent
strains are exposed to antimicrobials, as a number of studies
have linked antimicrobial exposure to the emergence of AMR in
different foodborne pathogens, including Salmonella, Escherichia
coli, and Campylobacter (Boerlin et al., 2001; McDermott et al.,
2002; Delsol et al., 2003; Dutil et al., 2010; Hoelzer et al., 2017).
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FIGURE 10 | Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 27 Salmonella Typhimurium and
Typhimurium Copenhagen genomes isolated from subclinical bovine sources and the surrounding bovine farm environment. Tip label colors denote the ID of the farm
from which each strain was isolated. Circles to the left of tip labels denote isolates that were assigned to the Typhimurium Copenhagen variant of S. Typhimurium
using SeqSero2 (teal) and/or traditional serotyping (pink). Branch labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis,
and branch lengths are reported in years. The heatmap to the right of the phylogeny denotes (i) the susceptible-intermediate-resistant (SIR) classification of each
isolate for each of 15 antimicrobials (obtained using phenotypic testing and NARMS breakpoints; orange); (ii) presence and absence of plasmid replicons (detected
using ABRicate/PlasmidFinder and minimum nucleotide identity and coverage thresholds of 80 and 60%, respectively; blue); (iii) presence and absence of
antimicrobial resistance (AMR) and stress response genes (identified using AMRFinderPlus and default parameters; green). Core SNPs were identified using Snippy.
The phylogeny was constructed using the results of ten independent runs using a relaxed lognormal clock model, the Standard_TPM1 nucleotide substitution model,
and the Coalescent Bayesian Skyline population model implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to
combine BEAST 2 log files, and TreeAnnotator-2 was used to construct the phylogeny using common ancestor node heights. Abbreviations for the 15 antimicrobials
are: AMK, amikacin; AMC, amoxicillin-clavulanic acid; AMP, ampicillin; FOX, cefoxitin; TIO, ceftiofur; CRO, ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin;
GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; STR, streptomycin; SXT, sulfamethoxazole-trimethoprim; SUL, sulfisoxazole; TET, tetracycline.

However, AMR acquisition among pathogens in livestock
environments is far from absolute; in the absence of selective
pressures (e.g., antimicrobial exposure), some AMR traits
may be associated with a fitness cost for a given organism
(Melnyk et al., 2015; Hoelzer et al., 2017; San Millan and
MacLean, 2017). Consequently, interventions or changes
in farm management practices (e.g., limiting antimicrobial
use for all or selected antimicrobials, targeted use of

some antimicrobials) may lead to reduced selection of
AMR bacteria (Aarestrup, 2015; Tang et al., 2017; Scott
et al., 2018). As such, the dynamics of AMR acquisition
and loss among livestock-associated bacterial pathogens
are complex and influenced by a wide range of factors,
including the antimicrobials and treatment regimens used,
farm management practices, environmental conditions, and
the biology of the pathogens themselves (Aarestrup, 2015;
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Hoelzer et al., 2017; Davidson et al., 2018; Pereira et al., 2019;
Clarke et al., 2020).

Using a WGS-based approach applied to serially sampled
Salmonella strains isolated over a short time frame (i.e., less than
2 years), the study detailed here reveals that sporadic acquisition
and loss of acquired AMR genes can occur within closely related
populations over a short timescale. One particularly notable
observation is represented by multiple, independent acquisitions
of the beta-lactamase blaCMY among S. Typhimurium and
S. Typhimurium Copenhagen, as all blaCMY acquisition events
within this serotype group were confined to the 2000s. blaCMY
can confer resistance to cephalosporins, including (i) ceftriaxone,
which has been used in human medicine since the early
1980s, and is used to treat invasive salmonellosis cases when
fluoroquinolones cannot be used (e.g., for pediatric salmonellosis
cases), and (ii) ceftiofur, which has been used in veterinary
settings since the late 1980s to treat disease cases among dairy
cattle and other animals (Hornish and Kotarski, 2002; Alcaine
et al., 2005; Liebana et al., 2013; Yang et al., 2016; Carroll et al.,
2017b, 2020a). Because blaCMY often confers resistance to both
ceftriaxone and ceftiofur, there has been concern that the use
of ceftiofur in livestock can contribute to the dissemination of
blaCMY and thus yield bacterial populations that are co-resistant
to ceftriaxone (Alcaine et al., 2005; Tragesser et al., 2006; Carroll
et al., 2017b, 2020a).

Two independent blaCTX−M acquisition events among
S. Meleagridis and S. Typhimurium were additionally observed.
blaCTX−M, which also confers resistance to cephalosporins, was
rarely detected in the United States in the 1990s (Lewis et al.,
2007; Canton et al., 2012). However, blaCTX−M rapidly increased
in prevalence in the United States between 2000 and 2005 (Lewis
et al., 2007; Canton et al., 2012), and there is evidence that
bacterial populations associated with dairy cattle may have been
affected as well. In a study of E. coli isolated from dairy cattle in
the western United States, the prevalence of blaCTX−M was found
to have increased between 2008 and 2012 (Afema et al., 2018).
The results of our study are congruent with these findings, as
all observed blaCTX−M acquisition events were estimated to have
occurred in the 2000s.

Antimicrobial resistance loss events were additionally
observed among the bovine-associated, MDR S. Newport isolates
sequenced here. Prevalence of MDR S. Newport among humans
increased rapidly in the United States within the late 1990s and
early 2000s and was linked to cattle exposure, farm/petting zoo
exposure, unpasteurized milk consumption, and ground beef
consumption (Spika et al., 1987; Gupta et al., 2003; Karon et al.,
2007). While chloramphenicol resistance is often a hallmark
characteristic of MDR S. Newport, the MDR S. Newport lineage
represented by an isolate in this study was chloramphenicol-
susceptible and was predicted to have lost chloramphenicol
resistance gene floR after 2008. These results indicate that
even well-established MDR pathogens can still be subjected to
temporal changes in AMR profile.

Due to the global burden that AMR pathogens impose
on the health of humans and animals, numerous agencies
have called for improved monitoring of pathogens and their
associated AMR determinants along the food supply chain

(World Health Organization, 2014, 2017; Centers for Disease
Control and Prevention, 2019). The study detailed here
showcases how WGS can be used to identify temporal changes in
the resistomes of livestock-associated pathogens at the farm level.
However, further sequencing efforts querying (i) a larger selection
of Salmonella strains isolated from livestock on individual farms
(ii) over a longer timeframe are needed to determine whether the
AMR dynamics observed here are merely sporadic, or rather are
indications of larger trends.

Bovine-Associated Salmonella Lineages
With Heterogeneous Antimicrobial
Resistance Profiles May Be Present
Across Multiple Farms or Strongly
Farm-Associated
Geography has been shown to play an important role in shaping
bacterial populations (Achtman, 2008; Strachan et al., 2015),
including some Salmonella lineages (Carroll et al., 2017b; Palma
et al., 2018; Fenske et al., 2019; Liao et al., 2020). However,
for some foodborne pathogens, including some Salmonella
populations, global spread of lineages due to human migration
and movement of food and animals can often obfuscate local
phylogeographic signals (Wong et al., 2015; Llarena et al., 2016;
The et al., 2016; Palma et al., 2018).

In the study detailed here, Salmonella lineages isolated from
cattle and their associated environments on 13 separate farms
in a confined geographic location (i.e., New York State) were
found to vary in terms of the farm-specific signal they possessed;
some lineages (i.e., S. Anatum, S. Newport, S. Typhimurium,
S. Typhimurium Copenhagen, some S. Kentucky populations)
were found to be strongly associated with a particular farm,
while other lineages (i.e., S. Cerro, S. Meleagridis, some
S. Kentucky populations) were distributed across multiple farms.
Multiple scenarios may explain the existence of Salmonella
lineages distributed across multiple farms, including movement
of livestock, humans, pets, and/or wildlife (Skov et al., 2008;
Hoelzer et al., 2011; Palma et al., 2018) or introduction
via feed; however, additional metadata (e.g., farm geography,
proximity to other farms in the study, and management practices)
are needed to draw further conclusions. Even with limited
metadata available, WGS data can provide important insights
into Salmonella transmission and introduction on farms, as
shown in this study. For example, for one farm (i.e., Farm 25), two
Salmonella Typhimurium clonal groups were present (i.e., one
representing Typhimurium and one representing Typhimurium
Copenhagen), each of which shared a common ancestor dated
circa 2007. WGS data can be used to identify time frames in
which Salmonella lineages may have emerged in a given farm
or region, which could help pinpoint root causes (e.g., changes
in management practices that occurred around the predicted
time of emergence).

While the characterization of additional, larger strain sets
from more geographically diverse farms is essential, our data
suggest that specific Salmonella clones may persist on a given
farm. This suggests that WGS databases covering isolates from a
large number of farms could be used to develop initial hypotheses
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about farm sources of Salmonella strains. While such applications
are tempting, it is crucial that these types of data are only used for
initial hypothesis generation; rigorous, critical epidemiological
investigations are essential before any conclusions regarding
strain source are drawn.

In silico Serotyping of Bovine-Associated
Salmonella Can Outperform Traditional
Serotyping
Well into the genomic era, serotyping remains a vital
microbiological assay that allows Salmonella isolates to
be classified into meaningful, evolutionary units. Serotype
assignments are used to facilitate outbreak investigations
and surveillance efforts, construct salmonellosis risk
assessment frameworks, and inform food safety and public
health policy and decision-making efforts (Yoshida et al.,
2016; Gutema et al., 2019). Importantly, serotyping is
used worldwide to monitor salmonellosis cases among
humans and animals, including cattle (Gutema et al., 2019;
Centers for Disease Control and Prevention, 2020).

In this study, serotypes assigned using traditional phenotypic
methods were compared to serotypes assigned using two in silico
methods (i.e., SISTR and SeqSero2). Notably, both in silico
serotyping approaches outperformed traditional Salmonella
serotyping for this data set. Serotypes assigned using SISTR’s
cgMLST approach and/or SeqSero2 were congruent with the
Salmonella whole-genome phylogeny and were able to resolve
all un-typable, ambiguous, and incorrectly assigned serotypes
(Supplementary Table 1). It is essential to note that the data set
queried here is far too small and, thus, inadequate to formally
benchmark these tools. Furthermore, all serotypes studied here
were among the ten most frequently reported serotypes of
Salmonella isolated from subclinical cattle between 2000 and
2017 (Gutema et al., 2019), indicating that they are well-
represented in public databases and thus likely do not pose
a significant challenge to in silico tools. However, the results
observed here reflect observations made in several recent studies,
which queried greater numbers of isolate genomes and/or a
wider array of diverse Salmonella serotypes (Yachison et al., 2017;
Ibrahim and Morin, 2018; Diep et al., 2019; Banerji et al., 2020;
Uelze et al., 2020). In their analysis of 1,624 animal- and food-
associated (i.e., non-human) Salmonella isolate genomes assigned
to 72 serotypes, Uelze et al. (2020) reported that SISTR and
SeqSero2 achieved the highest and second-highest accuracy of
all tested in silico Salmonella serotype assignment tools, correctly
serotyping 94 and 87% of isolates, respectively. However, unlike
the results observed here, the authors note that neither tool
outperformed traditional serotyping conducted by Salmonella
reference laboratories. Similarly, in a study of 813 Salmonella
isolates, SISTR outperformed the original version of SeqSero (i.e.,
SeqSero 1.0) with serotype prediction accuracies of 94.8 and
88.2%, respectively (Yachison et al., 2017).

With WGS data in hand, in silico serotyping is rapid, scalable,
inexpensive, and reproducible (Uelze et al., 2020). Nevertheless,
it is important to be mindful of the strengths and weaknesses
of different in silico serotyping tools. In their benchmarking

study, Uelze et al. (2020) recommended SISTR as the optimal
contemporary tool for routine in silico Salmonella serotyping
based on overall accuracy; however, they additionally report
that the raw read mapping approach implemented in SeqSero2
(i.e., “allele mode”) outperforms SISTR for prediction of
monophasic variants. Banerji et al. (2020) did not assess the
performance of SISTR on their data set, as it requires assembled
genomes and not raw reads (another potential drawback if
a high-quality assembly is not available or obtainable for an
isolate of interest); however, they found that both SeqSero
and MLST approaches misidentified monophasic variants,
particularly among the important monophasic S. Typhimurium
lineage. Among the bovine-associated Salmonella strains
sequenced here, a combination of S. Typhimurium strains
that possessed the O5 epitope, and those that did not (i.e.,
S. Typhimurium Copenhagen) was observed. Importantly,
SISTR was unable to differentiate S. Typhimurium from
S. Typhimurium Copenhagen, while SeqSero2 could, as reported
previously (Ibrahim and Morin, 2018; Zhang et al., 2019). While
the differentiation of S. Typhimurium from its O5- counterpart
may not be essential for all microbiological applications, it
is important to be aware of this limitation; S. Typhimurium
Copenhagen has been responsible for outbreaks and illnesses
around the world (Luceron et al., 2017; Tack et al., 2020) and
can be multidrug-resistant, as demonstrated here and elsewhere
(Frech et al., 2003; Tack et al., 2020).

While serotypes assigned in silico using SISTR and SeqSero2
are highly accurate and congruent, each tool has strengths and
limitations; as such, an approach that utilizes both methods, such
as the one employed here, may increase accuracy and minimize
potential misclassifications. Results from other studies support
this (Yachison et al., 2017; Banerji et al., 2020). For example,
in an analysis of 520 primarily human-associated Salmonella
isolate genomes, Banerji et al. (2020) found that serotypes
assigned in silico using SeqSero showed 98% concordance with
traditional serotyping and outperformed serotype assignment
using seven-gene MLST. However, when SeqSero and seven-
gene MLST were used in combination, in silico serotyping
accuracy surpassed 99%, consistent with our results that a
combination of SeqSero2 and cgMLST-based serotyping (as
implemented in SISTR) improved in silico serotyping accuracy.
Overall, the results provided here lend further support to
the idea that in silico serotyping may eventually replace
traditional serotyping as WGS becomes more widely used
and accessible (Yachison et al., 2017; Banerji et al., 2020;
Uelze et al., 2020).

Limitations of the in silico Antimicrobial
Resistance Method Evaluation Presented
Here, and Considerations for Future
Antimicrobial Resistance Monitoring
Efforts Among Livestock and Beyond
In addition to studying the microevolution and AMR dynamics
of bovine Salmonella on a genomic scale, the study presented
here compared results obtained from numerous in silico AMR
characterization pipelines that attempt to replicate traditional
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microbiological assays used to characterize AMR Salmonella.
More specifically, each of the following tools was applied to the
set of 128 bovine-associated Salmonella genomes sequenced here:
(i) combinations of five in silico AMR determinant detection
pipelines (i.e., ABRicate, AMRFinderPlus, ARIBA, BTyper, and
SRST2) and one to five AMR determinant databases (i.e., ARG-
ANNOT, CARD, MEGARes, NCBI, and ResFinder); and (ii) an
in silico MIC prediction tool (i.e., PATRIC3).

Here, all AMR determinant detection pipelines and AMR
determinant databases showed an extremely high degree of
concordance; regardless of pipeline or database selection, all
tools performed nearly identically on an SIR-prediction task
relative to (i) “true” SIR classifications based on NARMS
breakpoints and “true” MIC values obtained for a panel of
15 antimicrobials, and (ii) each other. A previous, small-
scale (n = 111) WGS-based study of AMR Salmonella
observed similarly high rates of concordance among several
in silico AMR determinant detection tools (Cooper et al.,
2020). However, in addition to its small sample size, this
study also relied on Salmonella strains isolated from a single
source (broiler chickens) in a single country (Canada) over
an extremely short temporal range (December 2012–2013).
Similarly, the study detailed here is not a formal benchmarking
study, and it is essential that its numerous limitations
are pointed out.

First and foremost, the study conducted here relied on
WGS data from an extremely small sample of Salmonella
isolates (n = 128) from a single source (dairy cattle and their
surrounding farm environments) in a confined geographic
area (New York State, United States) isolated over a short
temporal range (fewer than 2 years). While all isolates were
“unique” (i.e., each strain was isolated from a separate sampling
event of a unique source), many isolates were highly similar
at both the genomic and pan-genomic level (e.g., S. Cerro,
S. Meleagridis), indicating that, in some cases, the same lineage
was being sampled repeatedly over time. Consequently,
this relatively miniscule sample is unrepresentative of
AMR pathogens and, more specifically, Salmonella as a
whole; readers should not infer the general superiority or
inferiority of any AMR detection tool or database tested,
and the results obtained here should not be extrapolated to
external data sets.

Secondly, the data set queried here was heavily biased toward
susceptible isolates. More than half of all isolates were pan-
susceptible to the 15 antimicrobials included on the panel,
and only 21 unique phenotypic SIR profiles were observed.
Congruent with this, relatively little diversity was observed
in terms of AMR gene profile (e.g., the AMRFinderPlus
pipeline produced 20 unique AMR/stress response determinant
presence/absence profiles among the 128 isolates sequenced
here). This is not particularly surprising; numerous studies have
shown that the resistomes of bovine-associated Salmonella tend
to be less diverse than Salmonella isolated from humans (Afema
et al., 2015; Carroll et al., 2017b), as well as some other animals
(Mellor et al., 2019). Furthermore, the resistomes of Salmonella
isolated from subclinical cattle, such as the isolates queried in this
study, have been shown to be less diverse than the resistomes of

Salmonella isolated from cattle showing clinical signs of disease
(Afema et al., 2015).

The relative homogeneity of the subclinical Salmonella bovine
resistome and bias toward antimicrobial-susceptible isolates
have important implications for the AMR pipeline/database
comparison conducted here. For this data set, stringent and
conservative approaches are rewarded, as isolates that do not
possess AMR determinants are more likely to be predicted to
be susceptible. While it is possible that different AMR detection
tools may perform better on WGS data from pathogens with
more diverse resistomes, very few formal benchmarking studies
of in silico AMR determinant detection tools currently exist
(Hendriksen et al., 2019). The choice of AMR determinant
database in combination with the choice of pipeline, on the other
hand, can clearly affect AMR determinant identification in a
critical way. For example, the ARG-ANNOT database (Gupta
et al., 2014), a manually curated AMR determinant database
first published in 2014, is not updated as frequently as other
AMR databases (e.g., CARD, NCBI, and ResFinder). Since it
was last updated in May 2018 (accessed May 25, 2020), at the
time of our study, the database does not yet include three novel
plasmid-mediated genes (mcr-8, -9, and -10) that can confer
resistance to colistin, a last-resort antibiotic used to treat MDR
and extensively drug resistant infections (Wang et al., 2018, 2020;
Carroll et al., 2019). Similarly, versions of tools that rely on even
older versions of this database would not be able to detect all
members of the continuously growing repertoire of mcr genes.
For the low-diversity subclinical bovine Salmonella resistomes
queried here, the use of a smaller database was inconsequential,
as reflected in the high congruency of all methods and databases
observed here. For some studies, a manually curated database of
AMR genes that is updated conservatively may possibly even be
desirable, as such a database may yield less noise and improve
interpretability and reproducibility. However, for pathogens with
more diverse resistomes (e.g., human clinical isolates, isolates
from geographic regions with different antibiotic use practices),
the omission of critically important genes could be a disastrous
flaw. Similar to our results, a large study (n = 6,242) querying
NARMS isolates belonging primarily to the S. enterica species
(n = 5,425) observed a high degree of concordance between
NCBI’s AMRFinder tool and ResFinder (this study was used to
validate AMRFinder and the NCBI AMR determinant database)
(Feldgarden et al., 2019). However, when differences between
tools were observed, the vast majority (81%) were attributed
to differences in database composition (Feldgarden et al., 2019;
Hendriksen et al., 2019).

Thirdly, the small sample size (n = 128) and sparsity of
AMR isolates available in this study limited the methods
that could be used to formulate the AMR tool/database
comparison. The approach used here was similar to the one
used to validate the AMRFinder tool (Feldgarden et al., 2019)
in that it relied on known AMR-determinant/AMR phenotype
associations available in the literature (see Supplementary
Table 4 of Feldgarden et al.) (Feldgarden et al., 2019).
As such, the approach used here does not account for
previously unobserved genotype/phenotype associations.
Furthermore, different variants of the same AMR gene may
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yield different AMR phenotypes; for example, some variants
of the OXA beta-lactamases are able to confer resistance
to cephalosporins, while others are not (Evans and Amyes,
2014). All AMR determinant detection pipelines tested here
produced nearly identical genes calls among the 128 isolates
sequenced here, and all detected AMR determinants were
manually annotated in a consistent fashion; while the overall
accuracy of all pipeline/database combinations tested here could
likely be optimized if more accurate, data set-specific AMR
genotype/phenotype associations could be derived, congruency
among tools/databases would likely remain high.

Classifying bacterial pathogens into discrete SIR groups using
AMR determinant detection methods is challenging, as it requires
users to have a great degree of prior knowledge regarding
the AMR determinants that are detected, the antimicrobials
of interest, and the pathogen being studied. PATRIC3’s MIC
prediction tool (Nguyen et al., 2019) offers a promising departure
from this framework, as it allows for the prediction of MIC
values directly from WGS data. Interpreting the resulting in silico
MIC values does not require any prior knowledge on the user
end, and results can be harmoniously integrated into the SIR
framework using clinical breakpoints. Among the Salmonella
isolates sequenced here, SIR classification using PATRIC3
resulted in an overall accuracy of 93%. However, all of the
limitations of this study described above for AMR determinant
detection (e.g., small sample size, AMR sparsity bias, single-
source, single geographic region, small temporal range) apply to
in silico MIC prediction as well; for example, when “intermediate”
resistance predictions produced via PATRIC3 are re-classified as
“susceptible” (as was done for the AMR determinant detection
approaches used here), PATRIC3’s accuracy for this data set
increases to 96.0% and is on par with all other AMR prediction
methods tested here. Readers should thus interpret comparisons
among these methods with caution.

Benchmarking and validating AMR detection and prediction
tools is notoriously challenging (Feldgarden et al., 2019), and
very few researchers have undertaken this task (Hendriksen et al.,
2019). While high congruency may be observed among tools
(Clausen et al., 2016), identification of a clear “optimal” method
for in silico AMR characterization has remained elusive, as the
few available benchmarking studies differ in terms of the tools
tested, the AMR database(s) used, and the data set(s) chosen
for benchmarking. Furthermore, the underlying WGS data can
affect pipeline performance (Clausen et al., 2016; Feldgarden
et al., 2019). For example, assembly quality has been shown to
influence AMR determinant detection for methods that rely on
assembled genomes (Clausen et al., 2016; Hendriksen et al., 2018,
2019). Thus, whether a read- or assembly-based method performs
optimally can depend on a given data set (e.g., sequencing quality,
the organism being studied). Another criticism of BLAST-
based AMR gene detection methods among assembled genomes
has been the choice of thresholds used for considering AMR
determinants present or absent (Hendriksen et al., 2019). Here,
no significant differences were observed between the accuracy
of read-based ARIBA and SRST2 and assembly-based ABRicate,
AMRFinderPlus, and BTyper. Additionally, for BLAST-based
methods, a relatively wide range of optimal nucleotide identity

and coverage values were found to maximize accuracy, with
thresholds of 75% identity and 50–60% coverage adequate for
most pipeline/database combinations. Overall, when selecting
an in silico AMR characterization method, researchers should
take into account not only practical considerations (e.g., whether
reads or assembled genomes are available, the quality of
reads and/or assembled genomes), but also the biology of the
pathogen being studied (e.g., by querying organism-specific,
AMR-conferring point mutations). To assess the robustness of
in silico AMR predictions, researchers may additionally consider
employing multiple in silico AMR characterization tools and/or
databases in combination, as well as testing various AMR gene
detection thresholds.

Finally, it is essential to note that accuracy estimates for
in silico AMR characterization tools relative to gold-standard
phenotypic methods are only as reliable as the phenotypic data
they rely on. Previous studies of Salmonella that attempted to
predict phenotypic AMR using in silico methods (McDermott
et al., 2016; Cooper et al., 2020) have reported accuracy values
between 98 and 100%. For this data set, the highest accuracy
achieved was 97.4% (for SRST2/ARG-ANNOT). However,
sensitivity (i.e., the ability of an in silico pipeline/database
combination to correctly classify an isolate as phenotypically
resistant to an antimicrobial) was lower for this study (71.8–
84.4%) than sensitivity estimates calculated in a study of
MDR Salmonella that included bovine isolates from New York
State (97.2%) (Carroll et al., 2017b). As mentioned above,
this could be due to the sparsity of AMR among isolates in
this data set (i.e., predicting susceptible, rather than resistant
phenotypes, is incentivized here). However, it is important to
note that the AMR phenotypes of several isolates were highly
incongruent with their respective AMR genotypes, regardless of
the tool/database used for in silico AMR prediction. For example,
one S. Cerro isolate (BOV_CERO_35_10-02-08_R8-2685) was
reported to be phenotypically resistant to nine antimicrobials
but did not possess any acquired AMR determinants known to
produce this phenotypic AMR profile. A recent case study in
which WGS and phenotypic methods were used to characterize
Salmonella isolates from raw chicken identified numerous
AMR genotype/phenotype discrepancies resulting in both false
negative and false positive predictions for in silico methods (Zwe
et al., 2020). In this case study, the authors attributed these
discrepancies to heteroresistant Salmonella subpopulations (i.e.,
a subpopulation of bacteria that exhibits a range of susceptibility
to a particular antimicrobial). The possibility that several
heteroresistant Salmonella populations were characterized here
cannot be discounted, as isolates underwent phenotypic AMR
characterization and WGS separately (i.e., years apart). Other
biological phenomena, such as plasmid loss during storage or
culturing, or unknown/undetected resistance genes or mutations,
could also contribute to discrepancies (Hendriksen et al., 2018).
However, it is also possible that one or more incongruent isolates
was mislabeled and/or mishandled during AMR phenotyping,
genomic DNA extraction, and/or WGS. While removal of these
isolates from the data set would increase overall prediction
accuracy, the high congruency among AMR genotyping methods
would be unaffected.
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