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Abstract  

HIV-1 persists as a latent reservoir during suppressive antiretroviral therapy (ART). Viral 

rebound occurs upon ART interruption, posing a challenge to cure efforts. Characterizing viral 

populations fuelling rebound is imperative to curing HIV-1. We used longitudinal samples 

collected pretherapy from women in the CAPRISA 002 cohort to create an evolutionary time-

line to determine the pretherapy timepoint when the rebound virus originally entered the long-

lived reservoir. Participants (N=10) were untreated for an average of 5 years then on ART for 

an average of 2 years before viral rebound (defined as >1000 RNA copies/ml). env 

sequences were used to characterize the longitudinal pre-ART evolving viral RNA population, 

the proviral DNA reservoir during ART, and viral RNA in the plasma during rebound. For each 

participant, between 1 and 3 major viral lineages were identified in the plasma during 

rebound. A total of 20 rebound virus lineages were examined for the 10 participants, and 19 

were found to have entered the reservoir around the time of therapy initiation. The one lineage 

estimated to enter the reservoir more than a year before therapy was observed in a participant 

who was untreated for more than 8 years, yet retained moderate CD4 T cell counts. Analysis 

of the viral DNA reservoir, from which the rebound viruses emanated, revealed that while 

95% of rebounding lineages dated to the year before ART initiation, only 61% of unique 

proviruses dated to that time period. Strikingly, for three participants with DNA reservoirs 

dominated by viruses from earlier in untreated infection, only 33% of unique proviruses dated 

to the year before ART initiation, yet 83% of rebounding lineages dated to that time. Our 

results show that rebound virus almost exclusively comes from the portion of the latent 

reservoir that formed around the time of therapy initiation, even when the reservoir is 

composed of diverse sequences from across the pre-ART time period. 
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Author Summary: HIV-1 is maintained in a long-lived reservoir during suppressive therapy. 

Virus rebounds if therapy is discontinued. We found that in most cases rebound virus comes 

from a pool of viral sequences that entered the long-lived reservoir around the time of therapy 

initiation. While the viral DNA reservoir is on average also skewed toward sequences 

replicating around the time of therapy initiation, the rebound virus almost exclusively comes 

from this portion of the latent reservoir, even when the reservoir contained proviruses from 

much earlier in untreated infection. Thus, we hypothesize that there are features of the 

viruses forming the latent reservoir around the time of therapy initiation, or features of the 

host at that time, that select these viruses as initiators of rebound during therapy 

discontinuation. 

 

Short title: Dating When HIV-1 Rebound Virus Entered The Latent Reservoir 
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Introduction 

Although antiretroviral therapy (ART) is effective at controlling viremia in people living with 

HIV (PLWH), the virus persists in a pool of long-lived, latently infected cells, referred to as the 

latent reservoir [1-4]. This reservoir is neither eliminated by ART nor host immune responses 

due to lack of ongoing viral replication and diminished antigen presentation. Therefore, the 

interruption of ART typically results in rapid viral rebound as viral sequences are stochastically 

expressed from the latent reservoir [5-9]. Effective curative strategies will be informed by a 

detailed understanding of how this pool of latently infected cells is established, and the nature 

of the viruses therein [10]. 

 

The latent reservoir is highly stable and is maintained in part by clonal expansion of cells, 

which can be driven by homeostatic proliferation [11], antigen stimulation [12] [13, 14] or 

occasionally by the integration site of the virus [15, 16]. The reservoir of persistent proviruses 

is comprised mostly of cells harbouring defective proviral genomes, thus only a very small 

percentage of cells therein can produce infectious virions [17]. Early initiation of ART is known 

to restrict reservoir size [18] and post-treatment control is observed in a subset of individuals 

who stop ART after being virologically suppressed [19], providing evidence that a functional 

cure may be achievable. However, for the majority of PLWH in low- and middle-income 

settings, ART has historically been initiated during the chronic stages of infection when the 

virus has had the opportunity for extensive diversification and immunosuppression which 

make cure strategies more challenging. 

 

We [20, 21] and others [22-24] have previously demonstrated through phylogenetic 

approaches that the composition of the pool of long-lived viral sequences that persist on 

therapy is skewed towards viruses that were originally replicating proximal to the time of ART 
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initiation [20-26]. Most of the long-lived viral sequences represent defective viral genomes 

that are not capable of generating infectious virus. While most proviruses that persist in 

people on ART are defective and not capable of generating infectious virus [27],  rebound 

virus must come from the subset of proviruses that are intact. It is possible to induce 

replication of intact proviruses in a quantitative virus outgrowth assay (QVOA) [28, 29]  but 

even these proviruses represent only a subset of the intact viral genome present in the pool 

of cells used in the outgrowth assay [27]. Furthermore, repeated ex vivo stimulation of the 

same QVOA cultures revealed that not all cells are induced on the initial stimulation, 

highlighting the stochastic nature of viral outgrowth [27, 30] as well as differences between 

viral populations identified with QVOA and those emerging during rebound within the same 

individuals [31-34]. This discrepancy suggests that viruses that grow out under the strong 

stimulation of QVOA may not accurately represent the viral variants that rebound in PLWH. It 

is therefore of interest to determine whether there are specific viral characteristics that 

influence which variants emerge during rebound and to confirm whether mechanisms 

impacting formation of the largely defective DNA reservoir also impact the portion of the 

reservoir that rebounds when ART is discontinued. Therefore, characterizing the temporal 

origins and genotypic features of rebound variants will inform the design of cure strategies 

aimed at preventing these variants from entering the long-lived reservoir and/or preventing 

them from rebounding if treatment is stopped. 

 

Characteristics that may influence which viruses emerge upon treatment interruption include 

potential resistance to autologous antibodies [31, 34, 35] and heightened resistance to type 

1 interferons (IFN-I) [36]. Selection of variants based on the host immune environment during 
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rebound may create a selection bottleneck akin to that reported for HIV transmission (see 

[37-40]).  

 

In this study we have explored the origins and genotypic properties of variants emerging 

during a viral rebound event in 10 women living with HIV-1 from Kwa-Zulu Natal who were 

participants in the CAPRISA002 cohort. We characterized pre-therapy virus evolution in 

longitudinal plasma samples to generate a molecular record of virus evolution and estimate 

when subsequent rebound viruses were replicating and therefore when they infected cells 

represented in the long-lived reservoir. Most rebound lineages represented viruses that were 

replicating around the time of therapy initiation, even in the subset of women who had diverse 

viral reservoirs containing a high frequence of cells infected earlier in untreated infection. 

These results show that there are features of the virus and/or host that may limit which 

replication-competent viruses in the latent reservoir can initiate viral rebound after therapy 

discontinuation. 

 

Results 

 

Cohort description  

We identified 10 women living with HIV-1 from the CAPRISA 002 acute infection cohort, 

KwaZulu-Natal, South Africa. These women were selected due to the availability of 

longitudinal samples prior to therapy initiation, starting therapy while in the cohort, and the 

presence of a viremic sample post therapy initiation (i.e. virologic rebound). A viral rebound 

event was defined as plasma viral load of >1000 RNA copies/ml after at least 1 year of 

continuous ART (Figure 1). All women were followed up routinely, starting before HIV-1 

diagnosis, with blood draws approximately every 6 months before and during ART. 
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Figure 1: Participant viral load and suppression history. The graph shows viral load 

(copies/ml plasma) and CD4 count (cells/µl) before and after therapy. Start of therapy is 

designated 0 weeks post ART and indicated by a vertical bar above the graph. Changes to 

the ART regimen are indicated by an x on the line designating ART. The grey shaded area 

indicates the time of the rebound event. 

 

The timing of therapy initiation was dictated by country guidelines at the time. The pretherapy 

period (diagnosis to therapy initiation) was 252 weeks on average; sufficient for extensive 

viral evolution and the development of diverse viral populations in all women. CAP319 was 

untreated for the shortest period of time (111 weeks), yet had sufficient diversity for 

evolutionary analyses. In addition, for the eight women where plasma was available at acute 

infection, four had evidence of multiple transmitted viral lineages based on the presence of 

distinct patterns of shared mutations and clustering on a phylogenetic tree of full-length or 

partial env gene sequences.  
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There was an average of 97 weeks from when members of the cohort initiated ART to the 

last timepoint at which they were documented to have been suppressed (Table 1 and Figure 

1). On average, the rebound population was sampled 30 weeks after the last suppression 

timepoint and viral loads ranged from 4.1 to 5.8 log10  RNA copies/mL during the rebound 

event (Table 1). Nadir CD4+ T cell count was on average cells/μL CD4+ T cell counts prior 

to the rebound event were >400 copies/μL for all women except for CAP283 who did not 

achieve immune reconstitution even after years on ART.  

 

Table 1: Cohort characteristics 
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All 10 women were on Reverse Transcriptase (RT) Inhibitor combination therapy prior to 

rebound (Table 1). We screened for the presence of known drug resistance mutations in the 

RT coding region of viral variants in plasma at the rebound event and/or 6 months prior to 
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ART initiation (for one individual RT sequencing failed at the rebound time-point). We found 

evidence of at least one mutation associated with resistance to efavirenz in eight of the 10 

women (Table S1), including the commonly transmitted K103N mutation [41]. For one of 

these women, CAP221, the M184V mutation associated with resistance to lamivudine was 

also identified. However, except for CAP221, we found no evidence to support treatment 

failure due to the presence of known drug resistance mutations at or before the rebound 

event. The women were not participating in a treatment interruption protocol, and we interpret 

the lack of more significant drug resistance mutations in the rebound population as evidence 

that at least 9 of the women had discontinued their therapy giving rise to the presence of 

rebound virus at their next study visit. 

 

Sequence analyses of viral populations before, during and after ART  

Using samples collected from the 10 women in this cohort, we generated an extensive HIV-

1 sequence dataset characterizing virus evolution before ART as well as sequence diversity 

in both the pool of HIV-infected cells in the blood during ART (i.e. the DNA reservoir) and viral 

RNA in the plasma during rebound. Viral sequences were generated in three ways. First, 

three short (approximately 400 bp) amplicons were generated including two partial env (C1C2 

and C4C5) and one nef gene region from viral RNA, representing replicating viral variants 

from approximately every 6 months from study enrolment to ART initiation and at rebound. 

These amplicons were sequenced using Primer ID/UMI deep sequencing on the MiSeq 

platform (Primers shown in Table S2). Second, 3’ half proviral genomes were amplified at 

liming dilution from PBMCs collected just prior to rebound (i.e. the last timepoint at which an 

individual was known to be virologically suppressed) and sequenced with the the PacBio 

platform. Third, full-length env amplicons were generated from viral RNA in the plasma during 

the rebound event and sequenced using the PacBio platform (Primers shown in Table S3).  
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Proviral sequences in people on ART. As in previous studies [17, 27], the pool of infected 

cells in our participants during ART was dominated by defective proviruses (including those 

with hypermutations) (Table 1 and Figures S2-S11). We previously demonstrated that 

masking hypermutated sites in proviral genomes allows these sequences to be included in 

analyses of reservoir formation [21]. Using this approach we were able to examine an 

average of 48 unique proviruses (including masked hypermutated proviruses) per participant 

and estimate when each provirus entered the long-lived DNA reservoir (described below).  

 

Rebound virus sequences. Similar to previous studies [31, 42-44], we observed that rebound 

virus populations in this cohort are oligo clonal and contain a small number of major lineages 

(See example in Figure S1). Major rebound lineages were defined as groups of sequences 

having a unique shared pattern of nucleotides that corresponded to a distinct cluster on a 

phylogenetic tree. Differences of one or a few nucleotides within a lineage were considered 

to be a result of virus replication and evolution in the absence of suppressive ART. These 

analyses and subsequence estimates of the timing of reservoir formation were performed 

using full-length env sequences for 5 participants (CAP221, CAP228, CAP264, CAP283 and 

CAP319) and partial env sequences for the remaining 5 participants (CAP261, CAP292, 

CAP322, CAP361 and CAP407).  

 

On average we identified two major lineages rebounding in each participant (Table 1). 

However, a single major rebound lineage was observed in CAP283 and three major rebound 

lineages were observed for CAP221.  Consistent with previous studies [45], we observed 

evidence of env gene recombination, likely generated by viruses infected the same host cell 
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during rebound (See example in Figure S1), but we cannot rule out the possibility that pre-

existing recombinants were present in cells giving rise to rebounding virus.  

 

Temporal dynamics of reservoir formation. The availability of longitudinal pre-ART RNA 

sequences served as a record of viral evolution prior to ART, allowing us to explore when 

most proviruses entered the DNA reservoir versus when proviruses that give rise to rebound 

entered the long-lived the reservoir. Phylogenetic analyses (see [21] and [20]) revealed that 

on average, 61% of unique proviruses were most closely related to viral RNA circulating just 

before ART initiation, indicated that these proviruses entered the long-lived DNA reservoir 

proximal to ART initiation (Table 1). 

 

In order to explore when variants giving rise to rebound enter the long-lived reservoir, we first 

inferred the ancestor [46] of each of the 20 major rebound lineage and used our previously 

described methods [20, 21], to identify the pre-ART timepoint when each ancestor was 

replicating (i.e. when they became part of the long-lived reservoir). Of the 20 rebound 

lineages observed in our cohort, we estimate that 19 (95%) were produced by cells infected 

in the year before ART initiation (Table 1). This pattern was observed both for participants 

whose DNA reservoir was dominated by cells infected near the time of ART initiation (See 

Figure 2 and Table 1) and for participants in which proviruses from both early and late in 

untreated infection were well represented in the DNA reservoir (See Figure 3 and Table 1). 

The one participant with a rebound lineage estimated to have been produced by reactivation 

of a cell infected more than a year before ART initiation (CAP261, Table 1, Figure 3A) had 

additional features that also distinguished her from other members of the cohort. Specifically, 

CAP261 was untreated for longer than any other participant (> 8 years), had a highly diverse 

rebound population that made it difficult to identify major lineages, and had a DNA reservoir 
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with the highest proportion of cells infected more than a year before ART initiation (79% of 

unique proviruses represented cells infected more than a year before ART initiation). Overall, 

the cohort clearly showed that the initial rebounding population is almost exclusively 

generated by cells infected near the time of ART initiation.  

 

 

Figure 2: Examination of when cells giving rise to rebound were infected in two individuals 

whose DNA reservoirs are primarily composed of cells infected in the year before ART 

initiation (i.e. ‘late reservoirs’). Proviral sequences are shown in black (non-hypermutated 

viral DNA) and gray (masked hypermutated viral DNA). Sequences of viral RNA present in 

the plasma before ART are represented by red to blue (see time scale on the bottom). 

Sequences from the timepoint most proximal to transmission are shown in red and 

sequences from within the last year before therapy initiation are shown in shades of blue. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2025. ; https://doi.org/10.1101/2025.01.29.635391doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.29.635391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3: Examination of when cells giving rise to rebound were infected in two individuals 

whose DNA reservoirs are composed of cells infected from throughout untreated infection 

(i.e. ‘mixed reservoirs’). Proviral sequences are shown in black (non-hypermutated viral DNA) 

and gray (masked hypermutated viral DNA). Sequences of viral RNA present in the plasma 

before ART are represented by red to blue (see time scale on the bottom). Sequences from 

the timepoint most proximal to transmission are shown in red and sequences from within the 

last year before therapy initiation are shown in shades of blue. 

 

Coreceptor usage. V3 sequences were analyzed by geno2pheno to infer the coreceptor 

usage of both proviruses in the DNA reservoir during ART and rebound virus lineages. Three 

participants were identified as having CXCR4-using variants in their DNA reservoir during 

ART. Of these, one participant also had CXCR4-using rebound viruses, while another had 

rebound viruses with coreceptor usage that could not be determined by geno2pheno 

(2%<FPR<10%; see [47]) and the third did not have sufficient env sequence coverage to 

infer coreceptor usage of rebound virus. 
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Discussion 

 

ART is highly successful at suppressing viral replication in people living with HIV-1, yet it is 

not capable of curing the infection as the virus typically rebounds following therapy 

interruption [5-9]. Viral variants that emerge during HIV-1 rebound may possess 

characteristics that facilitate their release from the latent state and determine their ability to 

re-establish active infection. Identifying these characteristics will inform more targeted 

approaches to restricting viral rebound. Furthermore, an improved understanding of the 

formation of the HIV-1 latent reservoir and the origins of viruses that emerge during a rebound 

event is crucial for the development of HIV-1 cure strategies. We have previously 

demonstrated through next-generation sequencing of HIV-1 variants present in cells after 

long-term ART and variants grown out in a viral outgrowth assay following stimulation of these 

cells, that the pool of latently infected cells that persist on ART is predominantly made up of 

viruses that originated from around the time that ART was initiated [20, 21]. Here we 

demonstrate that this finding translates to the origin of HIV-1 variants replicating during a 

rebound event through the generation of a uniquely rich dataset of viral sequences from over 

the course of infection in women living with chronic HIV-1. 

 

We constructed a comprehensive timeline of viral evolution from acute infection to the time 

of ART initiation for 10 women who were retrospectively identified as having experienced 

rebound viremia following ART for at least one year. Using this timeline, we estimated when 

rebounding viral variants and latent provirus derived from the last sampled suppressed 

timepoint pre-rebound entered the reservoir based on genetic relatedness to viruses 

replicating from across the pre-ART period of infection. This provided us with the opportunity 
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to address whether rebound viruses represent a random sample of variants in the DNA 

reservoir or have specific characteristics that may facilitate rebound.  

 

For all the women we observed that the rebound virus consisted of one to three distinct 

lineages with evidence of recombination between these lineages. This supports the idea that 

viral rebound is made up of a genetically restricted, oligoclonal population [31, 42-44]. This is 

similar to a recent study which found that the replication-competent reservoir that emerged 

during a rebound event in two individuals represented a genetically restricted subset of the 

overall proviral diversity [24] and is in keeping with earlier findings by others [43, 44]. 

 

Once the rebounding lineages were identified we derived the ancestral sequence of each 

lineage and determined when that sequence likely entered the reservoir. We found that most 

lineages entered the reservoir within the last year pre-ART. This is consistent with previous 

studies of the replication-competent reservoir and proviral DNA [20-24]. Interestingly, the 

seeding of rebound lineages was skewed towards being seeded later in infection even in 

cases where the pool of latent proviruses consisted of a more mixed reservoir representing 

a more even distribution of viruses circulating in the plasma at different timepoints prior to 

ART initiation. This trend indicates a potential selection bottleneck which could be due to 

multiple factors impacting viral transcription (e.g. viral integration site or epigenetic 

modifications) and/or selective pressures exerted on the virus by host immune responses at 

the time of rebound, including the presence of autologous neutralizing antibodies [34].  

 

It is important to note that viral recombinants in the plasma during rebound were not analyzed 

as we suspected that these recombinants emerged due to viral replication during rebound. 

Due to retrospective identification of rebound events and frequency of viral load testing on 
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ART for this cohort, we did not have precise timing for the rebound which could have arisen 

up to 6 months prior to sequencing thereby allowing for lineage recombination. In addition, 

we did not observe any proviral sequences (full-length envs) that were identical to the 

rebound virus. All proviruses that persist likely represent T cells capable of clonal expansion. 

Clones that can stochastically express the resident provirus are likely under tighter control by 

the host immune system, perhaps leading to these clones being on average smaller than 

non-expressing clones and thus more difficult to observe.  

 

There are some additional limitations to our study. Due to the nature of the cohort, we were 

only able to sample viruses from women. Although there is no evidence to suggest that 

biological sex influences viral evolution [48], there is some evidence that biological sex may 

influence reservoir size and reactivation potential [49-52]. Second, we acknowledge that by 

using an inferred ancestral sequence in the dating analysis that we are potentially using a 

viral sequence that may not have existed. However, when timing each individual sequence 

within a lineage this did not change the estimated time the lineage was seeded into the 

reservoir. Third, for half of the participants lineage and timing analysis was performed using 

the shorter Miseq amplicon regions. Due to the length of the amplicons and not being able to 

link regions as originating from the same template, we may have inadvertently timed 

recombinant lineages.  

 

Taken together, these findings indicate that the rebound virus consists of a genetically 

restricted, oligoclonal population that is typically produced by a small number of cells (or 

clones) infected near the time of ART initiation. This further highlights the need for cure 

strategies to target infected cells and virus circulating at or near to ART initiation as these are 

more likely to drive re-emergence of viral replication.  
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Materials and Methods 

 

Study participants. This study included 10 women from the CAPRISA002 cohort from rural 

and urban KwaZulu-Natal, South Africa who were enrolled during acute/primary HIV-1 

infection and were followed-up longitudinally pre-ART during early and chronic stages of 

infection and up to 5 years on ART. Plasma viral load testing and CD4+ T cell counts were 

performed at routine clinic visits (scheduled at 6 month intervals). Women were ART naïve 

for at least 1.8 years (Table 1) and experienced viral rebound after initiating therapy for at 

least 1 year. Viral rebound was described as a viral load above 1000 RNA copies/ml as 

determined by plasma viral load testing. This study was approved by the Biomedical 

Research Ethics committee of the University of KwaZulu-Natal (BE178/150) and the Human 

Research Ethics Committee of the University of North Carolina Chapel Hill in the United 

States and the Human Research Ethics Committee of the University of Cape Town in South 

Africa (588/2015). 

 

Illumina MiSeq viral RNA sequencing. Viral RNA was extracted from blood plasma using 

the QIAamp Viral RNA Mini Kit (Qiagen) and reverse transcribed to complementary DNA 

(cDNA) using SuperScript IV Reverse Transcriptase (Invitrogen) and multiplexed cDNA 

primers for HIV-1 genome regions spanning the env C1C2 (HXB2 #6585–6950) and C4C5 

(HXB2 #7371–7685) regions and partial nef (HXB2 #8699–9134) (Table S2), followed by 

RNaseH treatment. The Primer ID method (30, 31), which tags each cDNA molecule with a 

unique 11-nucleotide-long identifier (Primer ID) through its cDNA primer was utilized. The 

cDNA products were purified twice using a 0.7x ratio of Agencourt RNAClean XP magnetic 

beads (Beckman Coulter) to cDNA. Multiplexed PCR amplification was performed using the 
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KAPA2G Fast Multiplex Mix (KAPA Biosystems) with an equal molar amount of each gene-

specific forward primer and a universal reverse primer that binds to a region of the cDNA 

primer (Table S2). The PCR products were purified using a 0.7x ratio of AMPure XP magnetic 

beads (Beckman Coulter) prior to a second PCR step using the Expand High Fidelity PCR 

system (Roche) to incorporate the Illumina Miseq version 1 index adapters. PCR products 

were purified using the MinElute Gel extraction kit (Qiagen). Each amplicon library was 

prepared by pooling PCR products in equal nanogram amounts, purifying using AMPure XP 

beads and sequenced using the Illumina Miseq 2x 300-base paired-end version 3 kit.  

 

Raw reads and resulting Primer ID template consensus sequences were processed as 

previously described [53]. Briefly, raw reads were processed through the MotifBinner pipeline 

(https://github.com/HIVDiversity/MotifBinner2; DOI:10.5281/zenodo.3372204) which 

performed quality filtering of sequences, merged overlapping data and implemented the 

primer ID processing method as described by Zhou et al [54]. The resulting template 

consensus sequences were processed through an in-house pipeline 

(https://github.com/HIVDiversity/NGS_processing_pipeline; DOI: 10.5281/zenodo.3372202) 

which removed any nontarget gene sequences, sequences with degenerate bases and 

deletions >50bp. Thereafter, hypervariable loop regions of env were removed manually and 

in-frame codon alignments were generated for each genomic region. The stop codon present 

in the nef gene region which spans a section at the end of gp41 into nef was trimmed. Pre-

ART RNA sequences will be deposited in Sequence Read Archive (SRA; accession #s will 

be added at publication). 

 

For drug resistance screening, plasma samples were processed and sequenced as 

described above, except primers were selected for the RT coding region (HXB2 #2620-3284) 
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(Table S2). Raw reads were processed through the web-based TCS/Drug Resistance 

Pipeline (https://www.primer-id.org/dr) [54] which quality filters sequence data, merges paired 

end reads, implements the Primer ID processing method to generate cDNA template 

consensus sequences, and creates a report of known drug resistance mutations identified at 

a frequency above a Poisson cut-off for minority mutations potentially associated with error 

of the sequencing platform (3, 4). Amino acid mutations associated with resistance to any of 

the drugs within an individual’s regimen were identified using the Stanford University HIV 

Drug Resistance Database (5, 6).  

 

PacBio full-length env sequencing of rebound virus. Full-length HIV-1 env was 

sequenced from RNA in the plasma during rebound was performed as previously described 

[55], utilizing the single unique molecular identifier (sUMI) approach. Briefly, viral RNA was 

extracted from plasma using the QIAamp viral RNA Mini Kit (Qiagen), with the volume of 

plasma extracted dependant on the viral load of the sample. For samples with high viral loads 

(HVL) equal to or more 5,000 copies/ml, a volume sufficient to give 20,000 copies were 

extracted and for low viral loads (LVL) less than 5,000 copies/ml RNA was extracted from 1-

2 ml of plasma. Extraction was followed by cDNA synthesis using SuperScript IV (Invitrogen) 

with a 1 h incubation at 50°C, supplemented with ThermaStop-RT (Sigma-Aldrich). cDNA 

was treated with RNase H (Invitrogen), prior to the removal of unincorporated primers using 

Agencourt RNAClean XP magnetic beads (Beckman Coulter) at a 1x ratio. After cDNA 

synthesis, samples were processed differently dependant on whether they were HVL or LVL. 

For HVL samples the estimated number of amplifiable copies in the cDNA was determined 

using nested PCRs at limiting dilution and inputting the number of positives per dilution into 

the Web program Quality (https://indra.mullins.microbiol.washington.edu/quality/) [55]. 

Thereafter, 50 copies of cDNA were added to each of 6-8 reactions of first round PCR for 
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each sample, and after PCR the reactions were pooled. For LVL samples, the cDNA was split 

equally across 10 first round PCR reactions and screened in a second round PCR with 35 

cycles of amplification. All first-round products identified as positive in the screen were 

pooled. For HVL and LVL samples the pooled first round reactions were size selected and 

purified using the BluePippin instrument (Sage Science) with the 0.75% Agarose Dye Free 

cassette (Sage Science). After purification, 4-12 second round PCR reactions were 

performed per sample with 20-22 cycles of amplification. Each positive, per sample, was 

pooled prior to purification using AMPure XP magnetic beads (Beckman Coulter) at a 0.7x 

ratio. Pooled, purified samples were quantified using the Qubit dsDNA HS Assay Kit 

(ThermoFisher) and pooled in equimolar amounts prior to library preparation and sequencing 

on a SMRT cell 8M 15 h movie on the Sequel IIe (Pacific Biosciences). 

 

Raw reads were processed using the PORPIDpipeline 

(https://github.com/MurrellGroup/PORPIDpipeline) [55]. Briefly, raw reads were initially 

filtered for quality and length, prior to demultiplexing. Thereafter, UMI barcodes were 

extracted and a fastq file was generated per UMI with further filtering out of heteroduplexes 

and any UMIs with poor quality such as small UMI families with less than 5 circular consensus 

sequences (CCS) or UMIs that were shorter than the expected 8 bp length. Thereafter 

consensus sequences were generated for each UMI and run through a within run 

contamination check to identify any index hopping events. Sequences were then aligned 

using Multiple Alignment using Fast Fourier Transform (MAFFT) [20] followed by trimming of 

insertions at the end of sequences, discarding of any off-target sequences and removal of 

sequences with large deletions (deletions > 250bp) and premature stop codons. Finally, 

sequences were compared to longitudinal sequencing for each participant to check for cross-

contamination between participant sequences. 
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env sequencing analysis. Coreceptor usage was predicted from the V3 region of the 3’half 

genomes and full length env sequences from proviral DNA and plasma viral RNA using 

geno2pheno [coreceptor] 2.5 (https://coreceptor.geno2pheno.org) [56]. Sequences with a 

FPR < 2% were considered as CXCR4-using and those with a FPR ≥ 10% as CCR5-using, 

with those between 2% and 10% considered indeterminant [47]. 

 

Variable loop length and glycosylation sites for proviral DNA and rebound virus sequences 

were compared using the Variable Region Characteristics tool on the Los Alamos National 

Laboratory (LANL) database 

(https://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/index.html). 

Prior to phylogenetic analysis the sequences were screened for evidence of potential within 

host recombination using RDP4 v4.101. Potential recombinants were identified as minor 

lineages in the rebound population using this tool and a Highlighter Plot to assign discrete 

regions of the sequence to different major outgrowth virus lineages. 

 

Inferring ancestors of rebound lineages. To better understand the infected cell (or cell 

clone) giving rise to rebound in participants, we identified sequences comprising putative 

lineages and inferred the ancestor of each lineage. Lineages and potential recombinants 

were identified based on shared mutation patterns indicated by highlighter and match plots 

generated using Phylobook (https://github.com/MullinsLab/phylobook) [57] (Figure S1).  

After excluding recombinants, a maximum likelihood approach was used to infer the ancestor 

of each rebound lineage [46].  
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Droplet digital PCR. Total DNA was extracted from PBMCs using the DNeasy Blood and 

Tissue Kit (Qiagen), and purified DNA was eluted in DEPC-treated water (Ambion). HIV-1 

DNA copy number and cell concentration was determined using droplet digital PCR (ddPCR) 

as previously described [21] , using primers and probes for the region spanning the end of 

the 5’ LTR and the start of gag (HXB2 # 684–810) and the cellular gene RPP30. ddPCR 

reactions comprised Supermix for Probes (no dUTP) (Bio-Rad), primers, probes with DNA 

no-template controls included in every run and DNA from the 8E5 cell line (containing a 

defective copy of an integrated HIV-1 genome) as a positive control. All reactions were run in 

duplicate. Droplets were generated using QX200 Automated Droplet Generator (Bio-Rad), 

and thermal cycling was performed using a C1000 Touch Thermal Cycler (Bio-Rad). Plates 

were read on a QX200 Droplet Reader (Bio-Rad). 

 

Half-genome amplification of HIV-1 proviral DNA and PacBio library construction. A 

near full length HIV-1 proviral DNA amplicon was amplified in the first round of PCR (HXB2 

#623-9686), done at limiting dilution, followed by 3’ half genome amplification (HXB2 #4653-

9632) in the second round of PCR as previously described [21] . PCR was performed using 

Platinum Taq DNA Polymerase High Fidelity (Thermo Fisher Scientific). HIV-1 proviral DNA 

was added such that each reaction contained on average one copy of HIV-1 proviral DNA, 

based on ddPCR estimates, which produced rates of PCR products that indicated 

amplification was occurring at end-point dilution. A no-template control was included on each 

plate. To facilitate multiplexing, PacBio barcodes were added to the second round forward 

and reverse primers (4653F and OFM19, respectively). Second-round PCR products were 

analysed on a 0.8% agarose gel and visualized with a UV gel imager. 
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Uniquely barcoded amplicons were pooled and purified by gel extraction in a 0.8% agarose 

gel using the Minelute Gel Extraction kit (Qiagen). The SMRTbell Template Prep Kit 1.0 

(Pacific Biosciences) was used to prepare the amplicon library, which was then submitted for 

PacBio sequencing with a movie time of 10 h. Sequences were demultiplexed by barcode 

and analysed using the PacBio Long Amplicon Analysis package. The on-ART viral 

sequences will be deposited in GenBank (accession #s will be added at time of publication). 

 

Analysis of HIV-1 proviral DNA sequences. 3’ half HIV-1 proviral DNA sequences from 

each participant were aligned using MUSCLE3.8.425 and compared to consensus 

sequences produced from MiSeq RNA from the transmission timepoint. If a single barcode 

was associated with multiple sequences that differed by 5 or fewer nucleotides, sequences 

that differed from the most abundant sequence were discarded. Sequences with different 

barcodes that appeared clonal on the tree were aligned and the number of nucleotide 

differences was enumerated. If the suspected clonal sequences had fewer than 5 nucleotide 

differences, the sequences were collapsed into a consensus sequence for all downstream 

analyses. Following this, the hypervariable loops in env were removed.  Potentially 

hypermutated HIV-1 proviral DNA sequences were identified using Hypermut 2.0 

(https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html) using participant-

specific, transmission MiSeq RNA consensus sequences as the reference. Sequences that 

were identified by Hypermut 2.0 as potentially hypermutated were processed using an in-

house Ruby script to mask hypermutated positions by replacing the hypermutated positions 

with an ‘N’. Thereafter, non-hypermutated and masked hypermutated proviral DNA 

sequences were trimmed into regions corresponding to the longitudinal MiSeq RNA 

sequences. 
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Phylogenetics and statistical analysis. As in our previous studies [20, 21], three methods 

(distance, clade support, and phylogenetic placement) were used to analyse each alignment 

and estimate the pre-ART timepoint when each proviral and rebound viral sequence was 

circulating. Alignments were run through the web-based Outgrowth Virus Dating Pipeline 

(https://primer-id.org/ogv) which is based on the custom pipeline (https://github.com/veg/ogv-

dating) used in our previous studies. The three methods were used to separately analyze 

each amplicon.  
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