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Abstract

An RNA switch triggers biological functions by toggling between two conformations. RNA

switches include bacterial riboswitches, where ligand binding can stabilize a bound struc-

ture. For RNAs with only one stable structure, structural prediction usually just requires a

straightforward free energy minimization, but for an RNA switch, the prediction of a less sta-

ble alternative structure is often computationally costly and even problematic. The current

sampling-clustering method predicts stable and alternative structures by partitioning struc-

tures sampled from the energy landscape into two clusters, but it is very time-consuming.

Instead, we predict the alternative structure of an RNA switch from conditional probability

calculations within the energy landscape. First, our method excludes base pairs related to

the most stable structure in the energy landscape. Then, it detects stable stems (“seeds”) in

the remaining landscape. Finally, it folds an alternative structure prediction around a seed.

While having comparable riboswitch classification performance, the conditional-probability

computations had fewer adjustable parameters, offered greater predictive flexibility, and

were more than one thousand times faster than the sampling step alone in sampling-cluster-

ing predictions, the competing standard. Overall, the described approach helps traverse

thermodynamically improbable energy landscapes to find biologically significant substruc-

tures and structures rapidly and effectively.

Introduction

In many organisms, structural rearrangements of RNA switches trigger biological functions.

In bacteria, RNA switches regulate gene expression of mRNA downstream from them [1, 2].

In eukaryotes, they regulate alternative splicing [3]. In viruses, they can be critical in various

stages of the viral life cycle, regulating rates of replication, transcription, RNA dimerization,

etc. [4–9]. Plasticity, the ability to assume more than one structure, can also enhance the adapt-

ability of RNA [10] by permitting it to accommodate distinct conformational phenotypes with

only small perturbations to its genotype.

Current scientific strategies have produced an abundance of prokaryotic data, so most

known RNA switches are in bacteria. To find putative riboswitches in prokaryotic sequences,

common approaches rely on the assumption that the biologic mechanism of the riboswitch is
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at least partially conserved across certain bacteria. Hence, they locate conserved structural ele-

ments upstream of homologous coding regions [11, 12]. The Rfam database [13] provides a

publicly available set of regulatory RNAs, including riboswitches. Although known riboswitch

families are already structurally and functionally diverse [14–16] they probably represent only

a small fraction of all bacterial riboswitches [17]. In any case, they provide invaluable examples

of RNA molecules with stable alternative conformations.

After selective binding to a specific ligand, metabolite, or uncharged transfer RNA, the

structure of a bacterial riboswitch toggles from unbound to the bound state. The conforma-

tional change then influences the expression of a proximal downstream gene. Most ribos-

witches contain two substructures: (1) an aptamer, which binds the ligand or metabolite, and

which is usually structurally conserved; and (2) an expression platform, which undergoes allo-

steric rearrangement to regulate the gene. The thiamine pyrophosphate (TPP) riboswitch is a

typical case illustrating regulation through a structural rearrangement. Fig 1 illustrates sche-

matics of the bound and unbound conformations of the TPP riboswitch in Bacillus subtilis
[18]. Fig 1A illustrates the bound state, where the aptamer in the RNA substructure surrounds

TPP. In the bound state, the aptamer (sequence coordinates 0nt-120nt) stabilizes, causing the

downstream expression platform (coordinates 120nt-190nt) to form a terminator stem loop

(Fig 1A). In the unbound state without the TPP ligand, however, the anti-terminator substruc-

ture in the expression platform is stable, disrupting the terminator substructure (Fig 1B). The

structure of the riboswitch cis-regulates downstream genes by influencing their expression.

In typical riboswitches, the unbound structure has a lower computed folding energy than

the bound structure, because the ligand is required to stabilize the bound state. Furthermore,

folding kinetics sometimes fine-tune binding. Typically (with some exceptions, e.g., [19, 20]),

the bound state becomes energetically more favorable as the mRNA transcribes and elongates,

so in the presence of an adequate ligand concentration the structure increasingly switches to

the bound state. For instance, for the TPP riboswitch at a sequence elongation of 170nt, the

minimum free energy (MFE) structure [21–23] corresponds to the unbound state; but at an

elongation of 190nt, the MFE structure corresponds to the bound state (Fig 1C). Therefore,

the relative stability of the bound and unbound states of some riboswitches can vary under

different sequence elongations or segment selections. For simplicity and consistency, we

always refer to the less stable structure in the computed energy landscape, whether bound or

unbound, as the alternative structure.

Prediction of alternative structures generally requires extensive analysis of the secondary

structure energy landscape. There are many strategies for alternative structure prediction

(reviewed in [24, 25]). Structural entropy of the RNA folding landscape [26, 27], graph-based

representations [28], Markov-state models [29], abstract shapes [30–34], energy-band-based

sampling [35] base-pair-distance-based alternative structure prediction [36, 37], and the more

recent probability-corrected sampling [38] are just a few examples of using various modeling

techniques to explore the RNA folding landscape.

The Boltzmann ensemble thermodynamic model is the basis of most predictive strategies.

The model conceptualizes the RNA structure of the sequence under scrutiny as a Boltzmann

ensemble, estimating ensemble energies from experimentally derived nearest-neighbor free

energy parameters [39–43]. In the Boltzmann ensemble, the probability Pr(S) of each structure

S is proportional to exp[−E(S)/RT], where E(S) is the free energy of S; R, the universal gas con-

stant; and T, the folding temperature. Prediction of the alternative structure requires an effi-

cient exploration of suboptimal (i.e., lower probability) structural configurations.

The Sampling-Clustering (SC) method is an important strategy for finding alternative

structures [18, 44, 45]. First, suboptimal structures are sampled from the energy landscape,

possibly under various temperatures to increase structural diversity. Then, the samples are
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partitioned into two clusters. The cluster containing the MFE structure corresponds to the sta-

ble structure while the other cluster corresponds to the alternative structure of the RNA under

investigation. Although SC predicts some alternative structures accurately, it fails badly for

others. Indeed, Boltzmann probabilities decrease exponentially with the free energy, with the

potential to increase the SC computational runtimes exponentially [46]. For most riboswitches,

the theoretical computational complexity poses no practical problem, however, because (1)

the candidate riboswitch has only moderate length, or (2) exhaustive sampling is not required.

For other riboswitches, however, the energy difference between the stable and the alternative

structures (as much as 20 kcal/mol [37]) can severely slow the sampling. Furthermore, as the

length n of the RNA sequence increases, the number of structures in the Boltzmann ensemble

explodes exponentially, so traversing the ensemble explicitly becomes infeasible [47].

Instead of the time-consuming method of explicitly traversing structures of the ensemble,

as SC does, in this work we infer the alternative structure from base-pair probabilities. Our

Conditional-Probability (CP) method is as follows: First, the MFE structure is determined.

Then, base-pair probabilities, conditioned on the absence of bonds between the MFE base

pairs and their neighbors are calculated. McCaskill’s algorithm [48–50] efficiently calculates

the exact base-pair probabilities. We then select a stem whose base pairs have high conditional

Fig 1. Two structural states of the thiamine pyrophosphate (TPP) riboswitch in Bacillus subtilis. [18]. A) Riboswitch when TPP is present. TPP ligand

approximate location shown as solid circle. Thi-Box and terminator are formed. B) Riboswitch when TPP is absent. Anti-terminator is formed. The aptamer region is

roughly between 1nt-120nt and the expression platform is roughly between 120nt-190nt (A and B). C) Folding energy of the TPP riboswitch. The unbound state is

more stable, when the elongation is 170nt; the bound state, when the elongation increases to 190nt.

https://doi.org/10.1371/journal.pone.0217625.g001
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probabilities as a “seed”. Finally, we determine the alternative structure by computing the

structure with the lowest free energy of all structures containing the seed. UNAFold and Mfold

[21, 50–53] implement the exact calculations, and in particular we use UNAFold (version

4.0.0) to calculate base-pair probabilities conditioned on the inclusion or exclusion of a given

set of base pairs. Using an independent benchmark [54] consisting of riboswitches [18, 20, 24,

44, 55–71] (S1 Table) and the purine riboswitch family taken from Rfam [13], the Results sec-

tion compares CP and SC predictions of alternative structures for both the prediction accuracy

and computational times. Although CP prediction has very few adjustable parameters, the

Results section also briefly describes the parameter space anecdotally in a single riboswitch to

display the parameters’ impact on CP alternative structure prediction. The Discussion then

examines some implications of our study.

Materials and methods

Sampling-Clustering (SC) procedure for predicting the alternative structure. Given an

RNA sequence, the energy landscape of the RNA is sampled at different temperatures starting

from 300 structures at 37˚C and 150 structures at each temperature value at six decile intervals

towards the melting temperature of the RNA strand, totaling to 1200 samples per RNA. Sam-

ple numbers were selected according to same SC procedure used in [54] for comparison pur-

poses. The samples are then partitioned into two clusters using k-means clustering, using

base-pair Hamming distance dH (the distance dH{S',S"} counts the base pairs that are in either

of the structures S' and S" but not in both). Denote the most energetically stable secondary

structure configuration of a riboswitch by S1; the alternative secondary structure, by S2. As in

[18], the computed MFE structure (denoted by S�
1
) then was used to predict the most stable

structure S1. The lowest-energy structure of the cluster not containing the MFE structure

(denoted by Ŝ�
2
, the over-hat often denoting a sampled quantity in statistics) was used to pre-

dict the alternative structure S2.

Barsacchi Dataset consisting of 20 Riboswitches and 20 Non-coding (Non-riboswitch)

RNAs. An extant benchmark, unchanged, provides sequences and structures for our evalua-

tion of riboswitch classification [54]. Sequence lengths are identical to [54] for comparison

purposes. We refer to the set of 20 riboswitches as 20-riboswitch set. The structures corre-

sponding to twelve of those twenty riboswitches were provided by the authors and are used

here for prediction accuracy calculations. We refer to this subset of sequences as the Barsacchi

Structural dataset set (See S1 Table for names, lengths and number of actual structures avail-

able for each of the 20 riboswitches).

The Purine Riboswitch dataset consisted of the purine riboswitch family. First, the struc-

turally conserved aptamers of purine riboswitch family RF00167 were downloaded from Rfam

(133 sequences roughly 100-nt long), along with the consensus secondary structure which rep-

resented the bound state of the aptamer. Then, each aptamer sequence was extended 100nt

downstream to capture the expression platform of the riboswitch as well. We mapped the con-

sensus structure of the aptamer to the beginning of individual sequences.

Structure visualization. Structures in all figures were done with the aid of the VARNA

software [72].

Conditional-Probability prediction

We first computed the MFE secondary structure S�
1

to predict S1. We then constructed an alter-

native structure S�
2

to predict S2, as follows: Let [i�j] denote a base pair between sequence posi-

tions i and j. Given S�
1
, a base-pair-to-structure distance, and a dissimilarity threshold τ, we
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first build an excluded set EðtÞ consisting of base pairs close to base pairs ½i � j� 2 S�
1
. Let us first

describe base-pair-to-structure distance δbs:

Base-pair distance. Our conditional probability predictions require a base-pair distance

δ(i�j,i'�j') between [i�j] and [i'�j']. Base-pair distance δbb as defined in [22], is

dbbði � j; i
0 � j0Þ ¼ maxfji � i0j; jj � j0jg: ð1Þ

Given a set of base pairs in a structure S', [73] define the base-pair-to-structure distance

dbsði � j; S
0Þ ¼ min

i0 :j02S0
dbbði � j; i

0 � j0Þ: ð2Þ

Now, given a non-negative integer dissimilarity threshold τ, consider the excluded set EðtÞ.
All the base pairs in EðtÞ are selected such that their δbs-distance to S� is less than or equal to τ:

EðtÞ ¼ f½i � j� : dbsði � j; S
�

1
Þ � tg; ð3Þ

McCaskill algorithm. Our methods make heavy use of the McCaskill algorithm [48] for

calculating various probabilities related to the existence of a given base pair [i�j] in the struc-

ture of an RNA sequence at thermal equilibrium. Given the RNA sequence, the Boltzmann

probability of its being in the structure S at thermal equilibrium is Pr(S) = e−E(S)/RT/Z, where

the partition function Z = ∑e−E(S)/RT is a normalizing factor. The McCaskill algorithm effi-

ciently computes the exact probability Pi,j that S contains the base pair [i�j] through recursive

calculations. The calculations combine various partition functions, given here in McCaskill’s

notation. The restricted partition function Qb
i;j for bases from i to j inclusive is the sum of the

Boltzmann weights e−E(S)/RT over the structures Si,j where the base pair [i�j] closes Si,j into a

loop structure. The full partition function Qi;jQi,j for bases from i to j inclusive is the sum of

e−E(S)/RT over the corresponding structures Si,j with and without the base pair [i�j], so for exam-

ple the full partition function is Z = Q1,n. The probabilities Pi,j of individual base pairs [i�j]
within the ensemble of structures S can be computed as Pi,j = ∑S3[i�j]e−E(S)/RT/Z where the sum

is over structures S containing [i�j]. McCaskill’s recursive calculations follow combinatorial

patterns resembling algorithms for determining the MFE structure, computing first Qb
i;j, then

Qi,j, and finally Pi,j from previously computed values for smaller substructures. Due to com-

plexity of McCaskill’s algorithm, we must refer the reader to [48] for details.

Conditional base-pair probabilities. Given a set of excluded base pairs E (e.g., EðtÞ

above), the McCaskill algorithm can also compute the probability that a given base pair [i�j]
exists, under the constraint that none of the base pairs in E are allowed. We denote the proba-

bility as

P�E
i;j � Prf½i � j� 2 Sj½i0 � j0�=2S; 8½i0 � j0� 2 Eg: ð4Þ

(In set theory, “~” often denotes complementation, so it helps suggest exclusion of E in the

superscript of P�E
i;j in Eq (4)). Like calculating the unconstrained base-pair probabilities Pi,j

above, the McCaskill algorithm can calculate the conditional base-pair probabilities in Eq (4)

by using constrained partition functions. Our general plan is to constrain the alternative struc-

ture by avoiding all the base pairs in a neighborhood EðtÞ of the MFE structure, then to identify

base pairs that the constrained structure is likely to contain, and then to fold the alternative

structure around those base pairs.

The UNAfold (version 4.0.0) Software Package [50] calculates both the unconditional prob-

abilities Pi,j and the conditional probabilities P�E
i;j efficiently with the McCaskill algorithm [48].
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Given an excluded set E (e.g., EðtÞ above), next select a seed substructure L�, a longest stem

whose every base pair individually has conditional probability higher than 0.5. Let L denote

any stem (i.e., any ladder), where we permit L to contain bulges (i.e., single unpaired bases).

Let #L count its base pairs.

L� ¼ argmaxLf# LjP�E
i;j > 0:5 for every ½i � j� 2 Lg

S�
2
¼ argmaxS Pr½Sj L

� 2 S�

Finally, S�
2

is predicted as the lowest-energy structure that contains L�. Structure S�
2

of the

given RNA sequence serves to predict S2.

Because the seed lies outside E, by definition it always lies outside S�
1
, so S�

2
6¼ S�

1
. Note that

S�
2

may still incidentally contain some originally excluded base pairs from E (or S�
1
, for that

matter): the excluded base pairs in E are only used to compute the conditional probability dis-

tribution for selecting the seed. Once a seed is selected, it is the only constraint in energy mini-

mization of S�
2

(i.e., S�
2

must contain it). Default calculations for seed-based predictions were

performed at temperature 37˚C and favored the version 3.0 energies of UNAfold, the most

current energy parameters for RNA folding [40].

Generalization to other choices of seeds. We explored several criteria for seed selection.

Empirically, the stem seed L� was most promising. Other seeds included the single base pair

with highest P�E
i;j value and the union of all base pairs with P�E

i;j > 0:5.

Generalization to other temperatures. The most recent version of UNAfold (version

4.0.0) can make energy calculations at temperatures T = T0 other than 37˚C, permitting the

following generalized procedure. Predict structure S�
1

at 37˚C and construct the excluded set

E ¼ EðtÞ, as above. Calculate all conditional base-pair probabilities fP�E
i;j g and stem seeds L� at

various temperatures T = T0, to predict the alternative structure S�T0

2 .

Generalization by iteration number. The procedure above could be considered the

first step of an iterative process, where subsequent predictions S�i (i = 3,4. . .) can be made by

excluding the union E ¼ E i ¼ E i� 1 [ E i� 2 of base pairs in previous predictions, and then iden-

tifying a seed L�i from the resulting conditional probability distribution fP�E
i;j g.

Notations. The alternative structure prediction S�
2

is associated with adjustable parame-

ters: threshold τ = τ0, temperature T = T0, iteration i, and the type of seed. It is denoted in full

by type-of-seed S�T0
i ðt ¼ t0Þ. For example, the alternative structure predicted with iteration 2

and using τ = 15, at temperature 70˚C, and using a single base pair as the seed is denoted as sin-
gle-base-pair-seed prediction S�70�C

2
ðt ¼ 15Þ. Our notation usually drops the default values, i.e.

S�
2
� S�37�C

2
ðt ¼ 5Þ using stem seed L�. Unless otherwise stated, results used default parameters.

Normalized seed length. The number of base pairs within the seed was divided by the log

of the sequence length SL, (#L�)/log10(SL), to derive Normalized Seed Length.

Results

The Results section focuses on predicting the alternative structure. Here, the most energetically

stable structure prediction is the MFE structure S�
1
, so its precise quality depends on the ther-

modynamic model. Furthermore, both the CP and SC methods use the MFE structure to pre-

dict the most stable structure. Therefore, the Results section omits comment on the stable

structure prediction.

On the other hand, alternative structure prediction is sensitive to sequence elongation (i.e.,

the exact length chosen as the sequence under scrutiny). To avoid the possibility of cherry

picking sequence lengths, our study took an independent “Barsacchi dataset” [54] (without
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change) as our dataset of 20 riboswitches and 20 non-riboswitches. The Barsacchi dataset pro-

vides a gold standard for RNA sequence and actual structures (if actual structures were avail-

able). The next subsection introduces the notations and concepts for the CP prediction using

the TPP tenA riboswitch in Bacillus subtilis [18, 66] (tenA TPP) as a specific example.

The CP prediction method applied to the tenA TPP riboswitch

The CP prediction method uses the computed MFE structure S�
1

to predict the actual stable

structure S1 (a standard prediction method, e.g., [54]); and prediction S�
2

(as described in the

Materials and methods section) to predict the actual alternative structure S2. The predicted

alternative structure S�
2

always has a higher computed energy than the predicted MFE struc-

ture S�
1
.

To predict S�
2
, we first determine a set of base pairs that are “close to” base pairs in S�

1
,

namely all base pairs having distance less than or equal to dissimilarity threshold τ, dbsði �
j; S�

1
Þ � t (see the Materials and methods section for precise mathematical definitions).

Increasing τ therefore excludes progressively more base pairs from the alternative structure S�
2
.

Our default dissimilarity measure is τ = 5. Let EðtÞ be the set of excluded base pairs. Condi-

tioned on the absence of base pairs in EðtÞ, the McCaskill algorithm yields the conditional prob-

ability of any other base pair. The Materials and Methods section defines a longest bulge-

containing stem, L�, where every base pair has a conditional probability higher than 0.5, e.g.,

for tenA TPP, L� contained 7 base pairs. Finally, using the stem L� as a seed, constrained energy

minimization yields S�
2
, which is the minimum energy structure containing L�.

Empirical results motivated our defaults for L� and τ. Our choice of τ provides some insight

into our methods. Briefly, for τ = 0 the excluded set Eðt¼0Þ
¼ f½i � j� : ½i � j� 2 S�g is precisely the

set of base pairs in S�
1
. Empirically, Eðt¼0Þ

often excluded too few base pairs to make S�
2
ðt ¼ 0Þ

markedly different from S�
1
. We selected S�

2
� S�

2
ðt ¼ 5Þ as our default for alternative structure

prediction. Fig 2 illustrates the actual alternative structure (here, unbound structure) of tenA
TPP and its corresponding predictions. Fig 2A illustrates the actual alternative structure S2

with its aptamer region and anti-terminator stem. Fig 2B illustrates S�
2
, with the stem seed L�

shown in red.

The established approach for predicting the two structural states of a riboswitch uses a Sam-

pling-Clustering (SC) method. Every SC computation in this article followed standard proto-

col by sampling RNA structures at many different temperatures. Fig 2B illustrates alternative

structure prediction under SC (see the Materials and methods section for details of our SC

implementation). As we can see, for this elongation of TPP riboswitch, the CP method recog-

nizes critical substructures of the alternative structure better than the SC method.

Fig 3 displays the energy landscape for the tenA TPP example. Fig 3A displays a standard

depiction of an energy landscape, where the X-axis gives base-pair Hamming distance to S�
1

for each sampled structure S. Because our main interest is structural prediction of S2, Fig 3B

depicts our Alternative-Structure-Referenced (ASR) energy landscape, where the X-axis gives

base-pair Hamming distance of each sampled structure S to S2. Structural dissimilarities of

predictions to S2 are better illustrated in the ASR energy landscape than in the standard energy

landscape.

Conditional-Probability gave base-pair prediction performance superior to

Sampling-Clustering

To assess predictive accuracy of CP and SC, a subset of the Barsacchi dataset provided 12

riboswitches with known actual alternative structures S2 (our “Barsacchi Structural dataset”).

Structural prediction of RNA switches

PLOS ONE | https://doi.org/10.1371/journal.pone.0217625 June 12, 2019 7 / 21

https://doi.org/10.1371/journal.pone.0217625


Within the Barsacchi Structural dataset, we compared S2, our gold standard, to three predicted

alternative structures: Ŝ�
2

(from SC), S�
2
ðt ¼ 0Þ (from CP, with τ = 0), and S�

2
(from CP, with

default τ = 5). For the three predicted alternative structures Ŝ�
2
, S�

2
ðt ¼ 0Þ, and S�

2
, we calculated

their sensitivity and specificity values (i.e., total-SEN and total-PPV in [74]), along with the F

Fig 2. Prediction of the alternative structure of tenA TPP riboswitch. Sequence length in the Barsacchi Dataset was 190nt. A) The actual alternative structure S2

(here, the unbound state), with the approximate locations of the aptamer substructure and the anti-terminator stem as indicated. B) The CP-predicted alternative

structure S�
2
. The stem seed L� = {28. . .34�178. . .184} is shown in red. C) The SC-predicted alternative structure Ŝ�

2
(See Materials and methods for details).

https://doi.org/10.1371/journal.pone.0217625.g002
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measure, another measure of prediction accuracy [75]. Table 1 gives the overall performance

of the three predictions (S2 Table gives the details of performance for each riboswitch). The

total-SEN, total-PPV, and F measure ordered the performance of the three predictions consis-

tently: S�
2
ðt ¼ 0Þ was slightly inferior to Ŝ�

2
, but S�

2
was noticeably superior to them both.

Conditional-Probability was about 1000 times faster than Sampling-

Clustering

In computational speed on the Barsacchi Structural dataset, CP was more than three orders

of magnitude faster than SC (see Table 1). Computations were parallelized, so the longest

sequence in the dataset, here the LysC Lysine riboswitch (243nt), determined the speeds. Typi-

cal CP runtimes increased with increasing dissimilarity thresholds, but even a dissimilarity

threshold of half the length of the sequence, τ = 122, only increased the CP runtime to 6 sec-

onds. Our SC runtimes included the sampling step, but not the clustering step. The whole CP

computation of S�
2

(i.e., under default value τ = 5) took around a second, whereas the sampling

step of SC alone took more than 18 mins.

Fig 3. Energy landscape of tenA TPP. The open blue square represents the computed MFE structure S�
1
; the open red

circle, the actual alternative structure S2; the solid red diamond, the CP-predicted alternative structure S�
2
; and the open

red square, the SC-predicted alternative structure Ŝ�
2
. Blue and red dots represent samples of the MFE-containing and

alternative clusters, respectively (see the Materials and methods section for details on our SC implementation). A) A

standard depiction of an energy landscape, where the MFE structure S�
1

provides the reference structure at distance 0.

B) The Alternative-Structure-Referenced (ASR) energy landscape, where the actual alternative structure S2 provides

the reference structure at distance 0. Some important base-pair Hamming distances can be read directly from Fig 2A

and 2B: dHfS2;S�1g ¼ 83 (from both 2A and 2B); dHfŜ�2;S
�
1
g ¼ 59 and dHfS�2;S

�
1
g ¼ 69 (from 2A). dHfŜ�2;S2g ¼ 103

and dHfS�2;S2g ¼ 36 (from 2B).

https://doi.org/10.1371/journal.pone.0217625.g003

Table 1. Alternative-structure prediction performance in the Barsacchi Structural dataset.

Predicting the alternative structure via total-SEN (%) total-PPV (%) F measure Time

SC 43.0 37.4 0.100 00:18:23x

CP under zero threshold 36.2 31.1 0.084 00:00:01

CP under the default threshold 51.3 46.1 0.121 00:00:01

The text explains the performance measures. The (parallelized) computational time reflects the longest sequence in the dataset, the LysC Lysine riboswitch (243nt). The

SC time (marked x) does not include the clustering computation. All computations were performed on a 12 core Intel(R) Xeon(R) 2.93GHz CPU. The performance of

SC Ŝ�
2
, CP under zero threshold S�

2
ðt ¼ 0Þ, and CP under the default threshold S�

2
are shown below.

https://doi.org/10.1371/journal.pone.0217625.t001
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Riboswitch classification

To compare how well CP and SC can classify RNA sequences into riboswitch or non-ribos-

witch, we used the full Barsacchi Dataset (20 riboswitches vs. 20 non-riboswitches). SC classi-

fied each sequence according to the average silhouette value of the two clusters of samples; CP,

according to normalized seed length (see the Materials and methods section). Compared to

non-riboswitches, riboswitches tend to have both a higher average silhouette value [54] and

normalized seed length (4.00bp for riboswitches; 3.50bp for non-riboswitches). Fig 4 displays

the corresponding ROC curves for SC (in blue) and CP (in red).

We tuned the SC computations more extensively in riboswitch classification than in other

parts of our study, exploring multiple temperatures or 37˚C alone to generate the samples,

since performance of SC can highly depend on sampling parameters. To make our comparison

to the best SC performance, we included Vienna RNA results, which had been previously

used on Barsacchi Dataset. SC classification performance was better at 37˚C alone (area under

curve 0.5825, solid blue in Fig 4) than at multiple temperatures (area under curve 0.455) under

the UNAFold software. Area under curve was higher using Vienna RNA at 37˚C alone (0.676,

dashed blue in Fig 4). In our hands and on the Barsacchi Dataset, the performance of the CP-

based classifier was comparable to SC under Vienna RNA sampling when differentiating

riboswitches from non-riboswitches (0.6385 for CP compared to 0.676 for SC, difference

0.0375±0.1227 with two-tailed p-value 0.76 [76]), and higher compared to SC under UNAFold

(0.5825).

The seeds L� pointed to critical substructures in the purine riboswitch

family

The Materials and Methods section details the construction of our Purine Riboswitch dataset

from Rfam. The Purine Riboswitch dataset contained 133 sequences, each of length about

200nt, constructed with the intent that the sequences were long enough to fold into both

unbound and purine-bound structures. Rfam provides a consensus structure for the ligand-

bound aptamer, which we mapped onto each of the 133 sequences. Stem P1 of the ligand-

bound aptamer (Fig 5C) is fully formed only if the aptamer has bound a purine nucleotide,

and not otherwise [77]. As above, we predicted S�
1
, S�

2
, and Ŝ�

2
for each sequence in the dataset

and examined whether the predicted structure contained Stem P1, a substructure of interest in

the bound state of a purine riboswitch. (Here, the comparison of the CP and SC methods must

consider the computed MFE structure S�
1
, because it can correspond to either of the bound and

unbound structures.) To describe Fig 5A, of 133 sequences, S�
1

(predicted by both CP and SC)

contained Stem P1 for 50 sequences. Of the 50 sequences where S�
1

contained Stem P1, S�
2

(pre-

dicted by CP) contained Stem P1 for 7 sequences; and Ŝ�
2

(predicted by SC), for 21 sequences.

Of the remaining 83 = 133–50 sequences where S�
1

did not contain Stem P1, S�
2

(predicted by

CP) contained Stem P1 for 24 sequences, and Ŝ�
2

(predicted by SC) contained Stem P1 for 17

sequences.

For the 24 sequences where CP predicted Stem P1 in S�
2

but not in S�
1
, we investigated the

location of the stem seed L�. Interestingly, of the 24 sequences, L� was almost identical to Stem

P1 in 12 sequences, and in 10 of the remaining sequences, L� was distant from the aptamer

and near the terminator stem. In those cases, the CP stem seed L� contained many consecutive

base pairs overlapping the actual terminator stem (see Fig 5B). In the remaining 2 cases, L� had

no clear biological interpretation. In summary, therefore, in 22/24 purine riboswitches where

Stem P1 of the aptamer was in S�
2

but not S�
1
, the stem seed L� pointed to a regulatory substruc-

ture in the purine riboswitch.
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A case study: How adjustable parameters in CP affect prediction accuracy

The generalized CP prediction S�
2

of alternative structure has only a few adjustable parameters:

dissimilarity threshold τ (default: 5), temperature T (default: 37˚C), type-of-seed (default: stem

seed L�), and iteration number i (default: 2). The Materials and Methods section describes

the parameters in detail. Our default parameters (particularly for τ and L�) were tuned empiri-

cally by their predictions on the Barsacchi Structural dataset, but the sparsity of the data pre-

vented methodical optimization (and any formal separation of training and test datasets). The

Fig 4. ROC. curves for SC- and CP-based riboswitch classifiers. The blue and red lines correspond to SC- and CP-based classifiers. The legend

gives the ROC value, the area under the curves for the two classification methods. Calculations were done at 37˚C for all three classifiers.

https://doi.org/10.1371/journal.pone.0217625.g004
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following uses the xpt Guanine riboswitch [2, 57], 162nt long in the Barsacchi Structural data-

set, as an anecdotal example of how S�
2

varies with the parameters.

In Fig 6, ASR energy landscapes display the actual unbound structure S2 of xpt Guanine on

their left, as a standard for comparing other structures. For example, Fig 6A displays struc-

tural samples from the Boltzmann distribution, along with the predicted alternative structures

S�
2

(CP) and Ŝ�
2

(SC). Fig 6B–6D vary τ, T, the type-of-seed, or the number of iterations, show-

ing the effects of changing parameters on CP predictions of the alternative structure. Fig 6B

shows that the 61 dissimilarity thresholds τ = 0. . .60 produced only five distinct predictions

S�
2
. Fig 6C shows that the 12 temperatures T = 37,40,43,46,49,52,55,58,61,64,67,70 (from

37˚C to an approximation of the melting temperature 69.8˚C in 3˚C increments) produced

only four distinct predictions S�
2
. We also could have folded S�

2
around a seed structure

other than a stem. Fig 6D shows different predictions resulting from: (1) various seeds, e.g.,

base pairs with conditional probabilities higher than 0.5 and 0.8, and stems of various fixed

lengths; and (2) various numbers of iterations of the exclusion-conditional probability calcu-

lation (e.g., predictions S�
3
, S�

4
, and S�

5
from 3, 4, and 5 iterations using a stem seed: see the

Materials and methods subsection, Generalization by iteration number). Overall, base-pair

Hamming distance dHfS�2; S2g from S�
2

to S2 took very few different values as the individual

parameters varied (i.e., relatively few distinct predicted structures S�
2

appeared as the parame-

ters varied).

Fig 5. Alternative structure prediction in the purine riboswitch dataset. We examined the predicted structures S�
1
,

S�
2
, and Ŝ�

2
for Stem P1, a substructure of the bound aptamer. A) The number of predicted structures containing Stem

P1. The left bar corresponds to SC (which predicts S�
1

and Ŝ�
2
); the right bar, to CP (which predicts S�

1
and S�

2
). B) The

location of the stem seed L� for the 24 sequences where CP predicted the bound aptamer in S�
2

but not S�
1
. C) The

schematic structure of a typical ligand-bound purine riboswitch.

https://doi.org/10.1371/journal.pone.0217625.g005
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Discussion

Computational identification of RNA switches and substructures solely from sequence

could elucidate biological control mechanisms in many species, and successful identifica-

tion of switches could accelerate the discovery of new sensors and control mechanisms, par-

ticularly in bacteria and other prokaryotes. For an RNA switch (or more specifically, for a

typical riboswitch), predicting an alternative biologically functional structure can be chal-

lenging. Such predictions hold the key to understanding many regulatory mechanisms,

however. Although riboswitches are a very diverse subset of RNA switches, there is not

enough experimentally verified data for optimizing a set of parameters of a universal RNA

Switch Predictor.

Fig 6. Alternative-Structure-Referenced (ASR) energy landscape of xpt Guanine riboswitch. The sequence length

was 162nt, directly from the Barsacchi dataset. In each subfigure, the open red circle on the left represents S2. In Fig

5B–5D, the solid diamond represents CP prediction under default parameters; and the empty diamonds, CP prediction

under non-default parameters. A) The solid red diamond represents the CP-predicted alternative structure S�
2
; and the

open red square, the SC-predicted alternative structure Ŝ�
2
. Blue and red dots represent samples of the MFE-containing

and alternative clusters, respectively (see Materials and methods for details on the Sampling-Clustering procedure). B)

CP-predicted alternative structures S�
2

under different dissimilarity thresholds τ = 0. . .60. If predictions were identical,

they are shown with a label indicating a range for τ. C) CP-predicted alternative structures S�
2

under different

temperatures T from 37˚C to approximate melting temperature 70˚C. The free energy of any fixed structure varies

with temperature, and the underlying RNA structure remained fixed for temperatures 37�T�49, 50�T�58, and

61�T�67. D) CP-predicted alternative structures S�
2

under different seeds and iterations. The initial number in the

label of each point gives the iteration i = 2. . .5. The seed was either a stem seed L�, a base-pair seed (the base pair with

highest conditional probability, denoted by “BP”), or all base pairs with conditional probability higher than a threshold

(either 0.5 or 0.8). For iteration number i = 2, the CP-predicted S�
2

from stem and base-pair seeds were identical: hence,

its label “2-(stem,BP)-seed”.

https://doi.org/10.1371/journal.pone.0217625.g006
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Conditional-Probability and Sampling-Clustering produced comparable

predictions in the Barsacchi dataset [54]

We used the Barsacchi dataset [54] as a benchmark mainly to have independently selected

sequence lengths for our study. In its first step, the CP prediction of alternative structure

excludes from the energy landscape those base pairs belonging to a metastable state, here, the

MFE structure. Then, it explores the remaining energy landscape for stable substructures. The

prediction has relatively few adjustable parameters, so we gave them a preliminary default tun-

ing with a structural subset of the Barsacchi dataset.

We predicted the CP alternative structure using only the Boltzmann ensemble at 37˚C. In

our hands, compared to a implementation of the current SC procedure [18, 44, 54], which

included sampling from many temperatures, CP predicted alternative structures better than

SC (Table 1). Thus, although the sparsity of relevant data required us to use the Barsacchi data-

set [54] for both training and testing, Table 1 suggests (at the very least) that Conditional-Prob-

ability (CP) predictions can be competitive with current Sampling-Clustering (SC) methods

for predicting the alternative structure. In fact, Table 1 gives very conservative performance

values for CP, because only the bound structure was available for three of the twelve ribos-

witches (see S2 Table). For these three riboswitches, the MFE prediction S�
1

corresponded to

the actual bound state S2, so the CP-predicted alternative state S�
2

was different, lowering CP

prediction performance. Nonetheless, prediction performance of CP under the default dissimi-

larity threshold was still higher than that of SC.

Conditional-Probability vs Sampling-Clustering produced comparable

predictions in the purine riboswitch dataset

To avoid cherry-picking in our Purine Riboswitch dataset, a purine riboswitch family of 133

Rfam sequences, we fixed all sequence lengths at 200nt. Fig 5A again suggests that CP predic-

tions are also competitive with SC predictions in the Purine Riboswitch dataset. In fact, CP

confined predictions of the Stem P1 in the bound aptamer substructure more to the alternative

structure than SC (cf., 7/50 under CP to 21/50 under SC). This relatively exclusive prediction

is probably desirable in the alternative structure predictor, because the ligand-bound aptamer

is exclusive to only one of the two functional structures of a purine riboswitch. Overall, how-

ever, the CP default parameter predictions made at a single temperature of 37˚C again had

comparable performance to an SC prediction at multiple temperatures.

Conditional-Probability was more than 1000 times faster than Sampling-

Clustering

The computed free energy of the bound structure of a riboswitch does not include ligand bind-

ing energies, and consequently it may be arbitrarily high. Regardless, CP prediction always has

a polynomial time-complexity. Denote sequence length by n and the dissimilarity threshold by

τ. CP prediction has five steps (each step is followed by its time-complexity): MFE prediction

(O(n4)); excluded set determination (τ2O(n)); conditional probability calculation (O(n3)); seed

selection (O(n2)); and prediction of the alternative structure by constrained energy minimiza-

tion (O(n4)). Thus, the total computational time tcp(n,τ) = τ2O(n)+O(n4). In contrast, SC pre-

diction can be sensitive to the computed free energy of the bound structure, because folding

probabilities exponentially decrease with energy. The time-complexity of exhaustive sampling

is exponential in both the sequence length n and the maximum energy explored. The complex-

ity becomes more manageable under statistical sampling, but then it depends on the number

of samples (s) as well as n. A typical SC procedure such as ours consists of three steps: MFE
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prediction (O(n4)); sampling (sO(n2)); and clustering (s2O(n)). Thus, the total computational

time tsc(n,s) = O(n4)+sO(n2)+s2O(n). Thus, the time complexities of the two procedures have a

term O(n4). The SC prediction requires more sampling as the sequence lengthens, burdening

computer memory and increasing the computation times accordingly. CP predictions, on the

other hand, require more memory as τ increases. We generally expect CP predictions to be

much faster than SC even for RNA sequences of moderate length (e.g., n equaling a few

hundred).

Typically, riboswitch lengths are moderate, so the sample sizes s necessary for effective pre-

diction remain feasible. To compare the speed of CP and SC predictions, Table 1 shows that

despite its far superior speed, even when tsc excludes the time for clustering the samples, CP

can still outperform SC in predictive accuracy (e.g., for LysC Lysine, tcp(n = 243,τ = 5) equals

about 1 second; tsc(n = 243,s = 1200), more than 18 minutes). The time for CP alternative

structure prediction does increase as τ increases from its default value τ = 5, but it still remains

far faster than SC prediction (e.g., tcp(n = 243,τ = 122) equals only 6 seconds). To summarize,

in our hands CP predictions were about 1000 times faster than SC predictions, with at least

comparable prediction accuracy.

The effect of the dissimilarity threshold τ on CP predictions

CP generates a seed around which we fold an alternative structure. Loosely, when generating

the CP seed, the dissimilarity threshold τ effectively excludes the formation of base pairs “close

to” the MFE structure. It therefore enforces topological differences between alternative and

MFE structures (see S1 File, which relates τ to the Relaxed Base Pair score ρt(S1,S2) between

structures [73]). The threshold τ = 0 excludes all base pairs in the MFE structure, and as τ
increases, the exclusion procedure progressively excludes more and more base pairs. Empiri-

cally, our default τ = 5 had a better performance than simply excluding MFE base pairs with

τ = 0 (see Table 1). The CP prediction accuracy was relatively robust near the default τ = 5, i.e.,

τ close to τ = 5 predicted similar alternative structures (e.g., 0�τ�5 for xpt Guanine in Fig 6B).

In fact, for the few sequences in our Barsacchi Structural dataset, predictions often did not

change much for small values of τ. On the other hand, some high values of τ (56�τ�59)

improved the prediction accuracy for xpt Guanine dramatically (see Fig 6B). Unfortunately,

attempts to tune τ through intricate dependencies on (e.g.) sequences or conditional probabili-

ties did not change prediction accuracies much. Large τ values sometimes improved predic-

tions dramatically for individual riboswitches, but unfortunately no general and systematic

theme of improvement became apparent.

The effect of the seed on CP predictions

The seed is another adjustable CP parameter. After excluding base pairs close to the MFE

structure from the energy landscape (see above), a seed is merely a substructure that occurs

frequently in the remaining structures. Empirically, the longest bulge-containing consensus

stem L� made a good default seed for alternative structure prediction. We tested other seeds

(e.g., seeds consisting of a single base pair), but the corresponding alternative structure predic-

tions were generally less accurate (see the anecdotal case study in Fig 6D). Seeds with too

many base pairs often produce poor predictions, because MFE and alternative structures often

share many of the aptamer substructures.

Riboswitches tend to have longer stem seeds than non-riboswitches

A riboswitch classifier can use normalized seed length, because riboswitches tend to yield lon-

ger stem seeds than RNAs with a single structure. With our data and under the CP method,
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the normalized seed length of a riboswitch is 4.00bp; of a non-riboswitch, 3.50bp (see the

Results section). Thus, a riboswitch of length 100nt has a stem seed of expected length 8bp

(4.00×log10 = 8); a non-riboswitch of the same length; 7bp. The use of seed length in classifica-

tion takes advantage of the notion that base pairs may have evolved to stabilize an alternative

structure in riboswitches [45] while this evolutionary pressure does not exist in non-switching

RNAs. In many purine riboswitches, the stem seed pointed to critical control substructures

exclusive to the bound structure (Fig 5B). Although we did not explore other riboswitch fami-

lies, it is interesting to speculate that if a folding pathway does not contain the MFE structure,

a CP seed may often point to important regulatory substructures. Although different regula-

tory mechanisms of different RNA switches may influence the type-of-seed, for the purine

riboswitches at least, biologically functional substructures often included our stem seed.

The effect of other parameters on CP predictions

The CP temperature parameter T may be particularly useful for predictions in riboswitches

with thermosensory functions. Because RNA thermosensors lay beyond our purview, however,

the present article relied on the default temperature 37˚C for CP prediction of alternative

structures (note that predictions from sampling always sampled at several temperatures, how-

ever). The use of other temperatures in CP prediction did not change prediction accuracy dra-

matically. We also considered iterating our three-step CP prediction process: (1) exclude base

pairs (2) determine a stem seed; and (3) find the lowest free-energy structure containing the

stem seed (see the Materials and methods section for details). The threshold parameter τ
seemed to offer a more gentle and graduated exclusion of base pairs than iteration, however.

Iteration may prove useful for riboswitches with more than two metastable structures, but

here, it only improved CP alternative structure prediction very occasionally (see Fig 6D, where

the iterated predicted structure S�
4

is closer to the actual alternative structure S2 than the default

prediction S�
2
).

Conclusion

In this article, we use exact conditional base-pair probabilities to predict the alternative struc-

ture of RNA switches. Our approach selects base pairs associated with high conditional proba-

bilities, after it excludes substructures in the primary metastable structure (here, the MFE

structure). Conditioning on exclusion improves the chance that an exact (McCaskill) probabil-

ity calculation finds base pairs in an alternative structure. Within the limitations imposed on

our ROC tests by available data, Conditional-Probability (CP) computations had classification

accuracy comparable to Sampling-Clustering (SC) computations. In contrast, however, the

results for computational speed were not at all tentative: CP was more than 1000 times faster

than SC, its speed making it a much more promising as a predictor of alternative structures in

computationally demanding settings like genomic RNA.

CP predictions have very few adjustable parameters. Specifically, our dissimilarity threshold

parameter τ varies the severity with which metastable substructures are excluded from predic-

tions. Although available data is insufficient to optimize τ methodically, our default choice τ =

5 was effective enough to render CP at least comparable to SC. Moreover, our tests suggest that

varying τ offers a novel and computationally efficient method of traversing the energy land-

scapes to find metastable structures. We also showed that another important CP parameter,

the seed, could detect functional substructures in riboswitches with regulatory functions as

well as being able to classify riboswitches with similar performance to the more computation-

ally costly sampling and clustering of the RNA energy landscape.
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Availability

Our CondAlt source code for predicting alternative structures is publicly available for down-

load at https://go.usa.gov/xRu79. The data used in the first dataset (Barsacchi) is available in S2

File and also publicly available in [54]. The data used in the second dataset (Purine aptamers)

were taken from Rfam. Please refer to Material and Methods for further details.
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