
fcell-09-631534 April 7, 2021 Time: 15:43 # 1

ORIGINAL RESEARCH
published: 12 April 2021

doi: 10.3389/fcell.2021.631534

Edited by:
Vasu D. Appanna,

Laurentian University, Canada

Reviewed by:
Christopher Auger,

Sunnybrook Health Science Centre,
Canada

Xiaohui Gao,
University of California,

San Francisco, United States

*Correspondence:
Shizhu Jin

drshizhujin@hrbmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Medicine,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 20 November 2020
Accepted: 22 March 2021

Published: 12 April 2021

Citation:
Cui L, Wang P, Ning D, Shao J,

Tan G, Li D, Zhong X, Mi W, Zhang C
and Jin S (2021) Identification of a

Novel Prognostic Signature
for Gastric Cancer Based on Multiple
Level Integration and Global Network

Optimization.
Front. Cell Dev. Biol. 9:631534.
doi: 10.3389/fcell.2021.631534

Identification of a Novel Prognostic
Signature for Gastric Cancer Based
on Multiple Level Integration and
Global Network Optimization
Lin Cui1†, Ping Wang2†, Dandan Ning1, Jing Shao1, Guiyuan Tan3, Dajian Li4,
Xiaoling Zhong3, Wanqi Mi3, Chunlong Zhang3 and Shizhu Jin1*

1 Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China,
2 Department of Interventional Radiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China, 3 College
of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China, 4 Department of Gastroenterology
and Hepatology, The First Hospital Of Harbin, Harbin, China

Gastric Cancer (GC) is a common cancer worldwide with a high morbidity and mortality
rate in Asia. Many prognostic signatures from genes and non-coding RNA (ncRNA)
levels have been identified by high-throughput expression profiling for GC. To date,
there have been no reports on integrated optimization analysis based on the GC global
lncRNA-miRNA-mRNA network and the prognostic mechanism has not been studied. In
the present work, a Gastric Cancer specific lncRNA-miRNA-mRNA regulatory network
(GCsLMM) was constructed based on the ceRNA hypothesis by combining miRNA-
target interactions and data on the expression of GC. To mine for novel prognostic
signatures associated with GC, we performed topological analysis, a random walk with
restart algorithm, in the GCsLMM from three levels, miRNA-, mRNA-, and lncRNA-levels.
We further obtained candidate prognostic signatures by calculating the integrated score
and analyzed the robustness of these signatures by combination strategy. The biological
roles of key candidate signatures were also explored. Finally, we targeted the PHF10
gene and analyzed the expression patterns of PHF10 in independent datasets. The
findings of this study will improve our understanding of the competing endogenous RNA
(ceRNA) regulatory mechanisms and further facilitate the discovery of novel prognostic
biomarkers for GC clinical guidelines.

Keywords: gastric cancer, integrated analysis, competing endogenous RNAs, random walk algorithm, prognostic
signature

INTRODUCTION

Gastric Cancer (GC) is the second leading cause of cancer death globally according to the latest
WHO statistics in 2018 (Bray et al., 2018). Early GC can be removed by Endoscopic Mucosal
Resection or Endoscopic Submucosal Dissection, and the long-term prognosis is good at present
(Ko et al., 2016). However, GC is usually diagnosed at an advanced stage when it has spread to other
parts of the body, the 5-year survival rate for patients with GC remains low (Gong et al., 2019).
Therefore, how to reduce this clinical threat to human survival and identify prognostic signatures
are of great importance for the treatment of GC patients.
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There is growing evidence that non-coding RNAs (ncRNAs),
which make up the majority of human RNAs, play key roles
in regulating gene expression, though they are not translated
into proteins (Kaikkonen et al., 2011; Zhang et al., 2019).
MicroRNA (miRNA) is one type of ncRNA that contains
approximately 22 nucleotides. The expression profiling of
miRNA has attracted extensive attention because of its important
role in the proliferation, differentiation, apoptosis, and other
biological processes of cancer cells (Ling et al., 2013). Some
miRNAs may serve as an indicator of poor survival for cancer
patients (Lan et al., 2015). Long non-coding RNAs (lncRNAs)
are defined as ncRNAs over 200 nucleotides in length (Ransohoff
et al., 2018). More evidence has revealed that lncRNAs can
regulate the expression of protein-coding genes at the epigenetic,
transcriptional, and posttranscriptional levels, with prototypes
including scaffolds, signals, guides, and decoys (Chew et al.,
2018; Li et al., 2019; Liu et al., 2019). Dysregulation of lncRNA
expression has been documented in a variety of diseases,
especially in cancers (Prensner and Chinnaiyan, 2011).

Up to now, the prognostic signatures of multiple genes and
ncRNAs have been identified for GC by using high-throughput
expression profiling. CCNB1, PLK1, and PTTG1 have been
identified as new prognostic markers and targets in the GC
treatment (Weichert et al., 2006; Dibb et al., 2015; Wang
et al., 2015; Xu et al., 2016). Through bioinformatics analysis
and in vitro experiments, FKBP10 was verified to be a novel
biomarker of prognosis and lymph node metastasis (LNM) in
GC (Liang et al., 2019). In terms of ncRNAs, a previous study
found that a 4-miRNA (miR-128, miR-27b, miR-214, and miR-
100) signature predicted the occurrence of LNM after endoscopic
submucosal dissection, suggesting that patients with higher
scores tended to have higher LNM than patients with lower scores
(Liu et al., 2017). A signature comprised of three miRNAs in
serum can predict the clinical outcome for advanced GC. As
a supplement to the TNM staging system, postoperative risk
stratification can be improved (Chen et al., 2020). A lncRNA-
based signature was identified from Gene Expression Ominus
(GEO) datasets to contribute to the prognosis and predictive
personalization of GC and served as potential GC biomarkers
(Zhu et al., 2016).

The competing endogenous RNA (ceRNA) activity is
widely recognized as an important regulatory mechanism
for functional lncRNAs. In the ceRNA hypothesis, lncRNAs
could communicate with mRNAs via serving as miRNAs
sponges to reduce the miRNA-targeting inhibition on mRNAs
(Ala, 2020). Interestingly, more studies have shown that this
regulatory map exists in GC. For instance, lncRNA CCDC144NL-
AS1 sponges miR-143-3p and acts as a ceRNA to regulate
MAP3K7 in GC (Fan et al., 2020). In addition, LncRNA
LINC00689 up-regulates ADAM9 through sponging miR-526b-
3p, promoting GC progression. Moreover, lncRNA LINC00689
promotes the progression of GC by upregulation ADAM9
through sponging miR-526b-3p (Fan et al., 2020). MiRNAs
influence biological processes by negatively regulating mRNA
expression levels, thereby mediating the pathway activities. High-
throughput assay of ncRNA or mRNA expression allows for
the simultaneous measurement of a large number of ncRNAs

or mRNAs, which is an important resource in tumor biology.
High-throughput expression datasets and the detailed clinical
information of corresponding patients can be obtained from
some databases, such as The Cancer Genome Atlas (TCGA)
(Fang and Fullwood, 2016).

In the present work, a Gastric Cancer specific lncRNA-
miRNA-mRNA regulatory network (GCsLMM) was constructed
based on the ceRNA hypothesis, by combining miRNA-target
interactions and expression data sets of GC. To mine the
novel prognostic signatures related to GC, we performed a
random walk with a restart algorithm based on the GCsLMM
from three levels (miRNA, lncRNA, and mRNA). Based on
the optimization results, we further analyzed the lncRNA-
miRNA-mRNA combination signatures and confirmed the
prognostic performance of the top combinations. Finally, we
focused on a novel gene, PHF10. The expression pattern of
PHF10 was explored and validated in online websites and
independent datasets. In conclusion, this study will improve our
understanding of the complex regulatory mechanisms in GC
prognosis, and further facilitate the discovery of novel prognostic
biomarkers for patient treatment.

MATERIALS AND METHODS

Expression Data Sources
The training datasets, including the expression datasets and the
patients’ clinical information, were downloaded from the TCGA
database1. The mRNA/lncRNA expression was generated by
HTseq-FPKM and miRNA expression was generated by miRNA-
seq-BCGSC-miRNA Profiling analysis. The expression values
(FPKM) of RNA from each sample were obtained, and the
average expression values were used as the final values for the
repeated samples. In addition, samples with survival time less
than 30 days were excluded because these patients may have died
of other causes. Finally, the datasets used in this study included
the expression profiles of RNAs (including mRNAs, lncRNAs,
and miRNAs), as well as patients’ clinical information.

To test the predictive power of the PHF10 signature, we
obtained another GC mRNA expression dataset (access no:
GSE38749, platform: GPL570) from the GEO database2. This
dataset included 15 GC samples and corresponding clinical
information was also obtained.

Protein-Protein and miRNA-Target
Interactions
The protein-protein interaction (PPI) network was obtained from
a previous study (Cheng F. et al., 2019) that used 12 common
databases, including BioGRID, DFCI_NET_2016, HI-II-network,
HPRD, InnateDB, INstruct, IntAct, KinomeNetworkX, MINT,
PhosphositePlus, PINA, and SignaLink2.0. To make further
analysis more robust, the PPI interactions found in at least two
databases were considered to be ultimate PPI networks, with a
total of 12,512 protein nodes and 83,065 interactions.

1https://cancergenome.nih.gov/
2https://www.ncbi.nlm.nih.gov/geo/
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Data of miRNA-mRNA interactions were downloaded from
four of the most commonly used databases, including the
miRTarBase, miR2 Diseases, miRecords, and TarBase. From these
databases, we obtained 6,459 miRNA-mRNA interactions with
358 miRNAs and 3,452 target mRNAs from low-throughput
trials. Data of miRNA-lncRNA interactions were downloaded
from the TarBase database. Finally, we integrated PPI relation and
miRNA-target (including miRNA-mRNA and miRNA-lncRNA)
as candidate complex networks.

Screening GC Specific Survival-Related
RNA Relations
Based on the clinical information of the GC samples from
TCGA, we first utilized the median survival time as a cutoff to
define prognostic groups with good and poor outcomes. Within
these two groups, we then calculated the Pearson correlation
between all RNA relations (gene-gene, miRNA-mRNA, and
miRNA-lncRNA) from the complex network mentioned above,
respectively. If the RNA pairs displayed positive or negative
correlations in the group with good prognosis, displayed the
opposite directions (negative or positive) or no significant results
in another group. Then, this kind of RNA pair was considered as
GS survival-related relations. All these RNA pairs from the global
network were further selected as GCsLMM.

Network-Based Random Walk Algorithm
Based on the GCsLMM network, we further performed a global
risk impact analysis to optimize prognostic signatures by using
the random walk with restart algorithm (Kohler et al., 2008). We
performed random walk analysis to optimize the corresponding
prognostic signatures from miRNA-, mRNA-, and lncRNA-levels,
respectively. Take the miRNA-level as an example, we first
identified prognostic miRNAs using the univariate cox method.
Then, we annotated prognostic miRNAs into the GCsLMM
network and regarded these miRNA nodes as seeds.

The random walk algorithm was finally used to evaluate the
global risk impact of prognostic miRNAs on all components
within the network as follows:

Pt+1
= (1− r) WPt

+ rP0

where W was the column-normalized adjacency matrix of the
GCsLMM network, which consisted of 0 and 1. Pt was a vector, in
which a node in the global network held the probability of finding
itself in this process up to step t. The initial probability vector
P0, was constructed in such a way, where equal probabilities were
assigned to all seed miRNAs and the sum of their probabilities
was equal to 1. Additionally, the restart of the walker at each
step was the probability, r.r = 0.7). When the difference between
Pt and Pt+1 fell below 10−6, the probabilities reached a steady
state. Finally, each component in the network was given a score
according to the values in the steady-state probability vector,
P∞ from the miRNA-level random walk. A similar procedure
was also performed at mRNA and lncRNA levels with prognostic
mRNA and lncRNAs as seed nodes.

Enrichment Analysis
Gene Ontology (GO) and KEGG enrichment analyses were
performed using the R clusterProfiler package. In this study, we
performed two kinds of enrichment analyses: (i) enrichment
analysis for protective and risk mRNAs from univariate cox
analysis using the overlapping method, and (ii) enrichment
analysis for all the ranking mRNAs obtained from co-expression
analysis with candidate top signatures (miR-22, PHF10, and
LINC00592) using the Gene Set Enrichment Analysis (GSEA)
method. In all enrichment analyses, the adjusted P-values < 0.05
were considered as significant results.

RESULTS

The Workflow of This Study
Based on the high-throughput expression datasets of GC from
TCGA and miRNA-target interaction resources, we constructed
a GC specific network named GCsLMM and calculated the
integrated score (Integrated Random Walk, IRW) for each
candidate signature in three steps. The detailed workflow was
displayed in Figure 1.

Step 1, we respectively obtained the gene-gene, miRNA-
mRNA, and miRNA-lncRNA interactions from public databases
to form a global network (see section “Materials and Methods”).
Furthermore, we screened the survival-related RNA regulations
to construct a GC survival specific network, GCsLMM (see
section “Materials and Methods”).

Step 2, based on the expression matrix and clinical
information of GC, we respectively identified GC prognostic
related mRNAs, miRNAs, and lncRNAs by using the
univariate cox method.

Step 3, we used a network-based random walk algorithm
to evaluate the prognostic effects from three levels (see section
“Materials and Methods”). Finally, we calculated the IRW score,
which was the mean score from three level random walk analyses
for each molecule from GCsLMM. The molecules with higher
IRW scores were regarded as candidate prognostic signatures.

Calculating IRW Score for Screening
Candidate Prognostic Signatures
We first used the univariate cox method to calculate the
associations between RNA expression and GC patient prognosis
with P-value < 0.05. Considering the HR values from cox results,
we further defined the prognostic factors as protective factors
with HR < 1 and risk factors with HR > 1 (see Figure 2A).
In total, we identified 1,405 prognostic mRNAs (903 risk, 502
protective), 1,151 prognostic lncRNAs (1,090 risk, 61 protective),
and 28 prognostic miRNAs (22 risk, six protective). To dissect
the functional roles of the prognostic factors at mRNA level, we
respectively performed the GO and KEGG enrichment analyses
for protective mRNAs and risk mRNAs (see Figure 2B and
Supplementary Figure 1). A non-significant result was obtained
from protective mRNAs. For the risk genes, we identified many
cancer related pathways, such as “PI3K-Akt signaling pathway,”
“MAPK signaling pathway,” “TGF-beta signaling pathway,” and
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FIGURE 1 | The workflow of calculating IRW score.

“ECM receptor interaction,” which were closely associated with
the biological mechanism of GC. At the miRNA level, many of
the prognostic miRNAs we identified performed important roles
involved in GC, such as miR-29a, miR-125a, and miR-34b.

After three-level random walk analyses, we calculated the
IRW score for each molecule within the GCsLMM. Most of
the candidate signatures with a higher score displayed close
associations with GC or other tumors (see Figure 2C). The
signature with the highest IRW score was miR-22, and the up-
regulation of miR-22-3p has been confirmed as related to GC cell
proliferation inhibition and apoptosis process (Gan et al., 2019).
For the gene results, the top five genes (ranked from 17-20 and
25) were also associated with tumor formation and prognosis,
including TP73 (Zhang et al., 2018) and MYC (Calcagno et al.,
2008). Other evidence has revealed that LINC00592 (top one
lncRNA, ranked 75) was included in lncRNA biomarkers which
were associated with disease free survival in the patients of GC
(Cheng C. et al., 2019).

The Survival Predictive Power of
lncRNA-miRNA-mRNA Combinations
We then explored the prognostic power of combinations of
lncRNAs, miRNAs, and mRNAs with high IRW scores, and
explored the robustness of these signatures. Based on the IRW
score, we first constructed 26,208 combinations that contained
one lncRNA, one gene, and one miRNA, using the top 100

molecules (18 lncRNAs, 26 genes, and 56 miRNAs). Then, we
divided the total training expression matrix into two independent
data sets, inner training set, and inner testing set. The inner
training set was used to calculate the univariate coefficient for
each component within the combination, and the inner testing
set was used to calculate the prognostic performance (p-value)
of the combination signature (see Figure 3A). As a result, a
total of 6,006 combinations displayed significant results with
P-value < 0.05 (see Figure 3B). Furthermore, we undertook a
statistical analysis of how many times each molecule was included
in the significant combinations. As shown in Figure 3C, miR-
377 and miR-409 were the most robust prognostic miRNAs,
and miR-22 with the highest IRW score also ranked fourth.
At the gene level, ZAP70 and PHF10 were the most robust
signatures. ENSG00000232959 and ENSG00000234869 were
the most robust prognostic lncRNAs. From these robust
prognostic signatures, the combination (ENSG00000234869-
PHF10-miR-377) displayed significant predictive power with
P-value = 2.67E-05.

To further test the performance of robust signatures, we
took the ENSG00000234869-PHF10-miR-377 signature as an
example and performed perturbation analysis as follows. For this
combination signature, we respectively exchanged the lncRNA,
miRNA, or gene molecule and kept the other two molecules
unchanged. Corresponding molecules were exchanged as N
molecules with the lowest IRW score (N = 100 for gene, N = 100
for lncRNA, and N = 20 for miRNA). Then, based on new
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FIGURE 2 | (A) The univariate cox results for prognostic genes, lncRNAs, and miRNAs. (B) The KEGG enrichment analysis results for risk genes from univariate cox
results. The corresponding enrichment results for protective genes were none. (C) The candidate signature results with decreasing IRW score. **symbol indicated
the GC related markers, and *symbol indicated tumor related markers.

combination signatures with random analysis, we developed a
new score model for patient risk evaluation. Finally, the inner
testing set was also used to calculate the significance of random
combinations. As shown in Figure 3D, the random combinations
displayed worse predictive performance than previous robust
signatures, which confirmed that our signatures are more robust
with a high IRW score than random results.

The Functional and Network Analysis for
miR-22, PHF10, and LINC00592
Next, we took three candidate prognostic signatures (miR-22,
PHF10, and LINC00592) with the highest IRW score from each
level to explore their biological mechanisms. Based on the TCGA
expression datasets, we calculated the expression correlations
between each of the candidate signatures and total mRNAs.

All mRNAs were ranked in descending order after correlation
analysis and GSEA enrichment analysis was performed (see
section “Materials and Methods”). As shown in Figure 4A,
miR-22 was negatively enriched in the “cGMP-PKG signaling
pathway,” “Oxytocin signaling pathway,” and “Ribosome.” The
PHF10 was positively enriched in the “Cell cycle” and “Oxytocin
signaling pathway.” The lncRNA LINC00592 was positively
enriched in “Focal adhesion,” and negatively enriched in
“Glyoxylate and dicarboxylate metabolism” functions.

Most of the direct neighbors of these three signatures were
related to GC prognosis. As shown in Figure 4B, 29 of the
miR-22’s 401 direct neighbors were prognostic related factors,
and seven indirect neighbors which connected the miR-22 by
another node were also prognostic related. For LINC00592,
there were two direct neighbors, of which one was prognostic,
and 36 of the 315 indirect neighbors were prognostic. Notably,
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FIGURE 3 | (A) The framework for constructing all lncRNA-gene-miRNA combinations and calculating the risk score based on each combination. (B) Distribution of
prognostic related combinations within all combinations. A K-M plot, for example, ENSG00000234869 + PHF10 + hsa-mir-377. (C) The robust signatures for
miRNA, gene, and lncRNA within all prognostic related combinations. (D) Random results when changing each molecule from the example combination in label (B)
by molecules with low IRW scores.

miR-22 and LINC00592 were significant prognostic factors with
univariate P-value = 0.0079 and 0.0002, however, PHF10 is not
a significant prognosis factor. We therefore further displayed
the interaction network of PHF10 (see Figure 4C). In this
network, the miR-409 which has a regulatory role on PHF10
was a risk factor. Wei et al. (2010) found that PHF10 inhibited
the expression of caspase-3 and damaged the programmed cell
death pathway in human GC. By targeting PHF10 in GC,
microRNA-409-3p was also verified to suppress cell proliferation
and apoptosis (Li et al., 2012). Furthermore, the predictive power
of PHF10 was tested in another independent data set, GSE38749.
As shown in Figure 4D, patients with a higher expression of
PHF10 exhibited a lower survival rate than patients with lower
expression, showing its risk roles.

The Expression Pattern of PHF10 in GC
Formation and Clinical Events
To explore the expression pattern of the final PHF10 signature,
we went through comparative expression analysis of PHF10
between different cancer and normal tissues using an online
web-server, such as ONCOMINE and UALCAN. ONCOMINE
compares the difference in expression level between the cancer
tissue and normal tissue depending on the numbers of significant

unique analyses, which represents the differences in PHF10
mRNA expression. These results were obtained based on
parameters as p-value < 1.0E-4, gene ranking in the top 10%,
and fold-change > 2. In this analysis, we found the upregulation
of PHF10 expression in three different cancer types, including
colorectal cancer, GC, and leukemia, and downregulation of
PHF10 in breast cancer (Figure 5A). We then used the
UALCAN database to analyze the expression levels of the PHF10
signature in 24 types of cancers and normal tissues. PHF10
was upregulated and downregulated in 12 different cancers,
respectively (Figure 5B).

To understand the PHF10 expression relationship among
GC and STAD subtypes, we examined each of the subtype
datasets using the ONCOMINE and UALCAN databases. In a
detail, we analyzed PHF10 expression in GC as compared to
tissue for gastric mixed adenocarcinoma and gastric intestinal
type adenocarcinoma. We found a significant upregulation of
PHF10 in each GC compared to different control conditions
(Figures 6A–C). Furthermore, we examined the expression levels
of the PHF10 gene on the basis of various clinicopathological
characteristics of GC patients, including Normal (n = 34) and
different stages: stage 1 (n = 34), stage 2 (n = 123), stage 3
(n = 169), and stage 4 (n = 41), gender: Males (n = 268) and
Females (n = 147), age: 21–40 years (n = 4), 41- 60 years (n = 128),
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FIGURE 4 | (A) The top five Gene Ontology (GO) terms for three candidate signatures, hsa-mir-22, PHF10, and LINC00592 using the GSEA method. (B) The
prognostic statistic information of direct or indirect interaction of three candidate signatures, hsa-mir-22, PHF10, and LINC00592 within the global network. (C) The
PHF10 core network. Red node indicates risk signatures, and blue node indicates protective signatures. (D) The K-M plot of PHF10 expression in GSE38749 and
median expression level of PHF10 was the cut-off to define two groups, and the log-rank test was used to calculate the P-value.

61–80 years (n = 253) and 81–100 years (n = 25). For individual
cancer stages, we observed the highest expression level of PHF10
in patients with stage 3 (Figure 6D). Additionally, female patients
(Figure 6E) and 61–80-year-old age group (Figure 6F) patients
were found to express a higher level of PHF10.

DISCUSSION

This study constructed a GC-specific global network to identify
and analyze prognostic signatures using mRNA and ncRNA
expression datasets from the TCGA database. During the
integrated analysis, we performed three levels of random walk
algorithm, which respectively regarded prognostic mRNAs,
miRNAs, and lncRNAs as the seed nodes. The final IRW score

was calculated for each candidate’s prognostic signature. We
also explored the performance of combination signatures, which
ranked in the top 100 according to IRW score. Finally, we
focused on three key prognostic signatures (miR-22, PHF10, and
LINC00592), and explored the expression pattern of PHF10 in
GC formation and clinical characterizations. To sum up, we
comprehensively analyzed the degree of mRNA effect, lncRNA,
and miRNA based on the global network to identify the
prognostic signatures of GC.

A number of GC prognostic signatures have been identified
to date, based on high-throughput expression data at the single
gene-level, miRNA-level, or lncRNA-level. For example, a 7-gene
signature associated with the G2/M checkpoint was identified
as a prognostic biomarker of GC patients (Lv et al., 2020). Bao
et al. (2019) established a 3-gene signature of diffuse type GC
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FIGURE 5 | PHF10 mRNA expression in different cancer types, (A) mRNA upregulation (Red), and downregulation (Blue) of PHF10 in different cancer types retrieved
from the ONCOMINE database. The data were selected based on P-value: 1E-4, fold change: 2, and top 10% gene rank. PHF10 is upregulated in Gastric Cancer
which is indicated in Red color. (B) Expression of PHF10 across various cancer TCGA Cancer data with tumor (red) and normal samples (Blue) depict as boxplots
using UALCAN web that include the values between upper and lower quartile inside the box and dashed lines indicate the upper and lower limit of average
expression.

FIGURE 6 | Expression of PHF10 between samples with different subtypes and normal samples from three studies using ONCOMINE database (A–C). Expression
of PHF10 in TCGA STAD based on clinicopathological parameters visualized by the UALCAN web server. The analysis was done to predict the expression of STAD
and their relative tissue based on, (D) stages, (E) gender, and (F) age.

for explaining the molecular mechanism of poor prognosis. In
another study, a 5-gene signature was established that can be an
independent prognostic factor in GC patients (Song et al., 2019).

A stromal-immune score-based gene signature was also well-
established as a tool for stratification of GC prognosis (Wang H.
et al., 2019). Besides gene-based signatures, a number of ncRNA
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FIGURE 7 | Mechanism of promoting proliferation and inhibiting apoptosis of gastric cancer cells by PHF10.

signatures have also been identified. A 6-lncRNA signature was
identified by microarray re-annotation of the dataset containing
370 GC samples with clinical information. It was reported
that four lncRNAs contributed to GC development, and one
lncRNA might be associated with the prognosis of GC (Ma et al.,
2020). Another study indicated that lncRNA MNX1-AS1 was a
prognostic indicator for GC patients (Ma et al., 2019).

Compared with a single level, the optimization analysis
of multiple levels based on a global network displayed more
advantages. For GC research, some ceRNA networks were
constructed for exploring tumor biological mechanisms. For
example, Arun et al. (2018) profiled 19 cancer-associated
lncRNAs in thirty gastric adenocarcinomas using qRT-PCR, and
further identified risk genes or miRNAs which were correlated
with these lncRNAs. Finally, they constructed an integrated
lncRNA-miRNA-mRNA interaction network to understand the
complex gene regulatory mechanism (Arun et al., 2018). In
another study, Zhang et al. adopted the WGCNA method to
identify GC related networks. A ceRNA network that included
86 dysregulated relationships was also constructed for simple
display (Zheng et al., 2020). In many other tumor types, a similar
integrated analysis was also performed. For example, Wang Y.
et al., 2019 constructed a ceRNA network to reveal the core
ceRNAs in endometrial cancer. Fan et al. (2018) constructed a
breast cancer ceRNA network and developed a risk score model
based on lncRNAs using multivariate cox regression. A similar
framework was also performed on colorectal cancer, and LASSO
analysis was utilized to calculate the coefficients for the risk model
(Xiong et al., 2017). Compared with these studies mentioned
above, our study performed three-level topology analysis based
on global ceRNA network respectively using miRNA-, lncRNA-

and gene-level seed nodes, which displayed more advantages than
simple ceRNA analysis.

To test the biological functions of prognostic seed nodes, we
performed functional enrichment analysis based on protective
and risk genes (see Figure 2B). Many of the GO terms identified
were associated with the formation or progression of GC. Studies
have shown that the PI3k/Akt/mTOR pathway is activated in
30%60% of GC. Numerous clinical trials have been conducted by
using single or dual Akt/mTOR inhibitors for targeted therapy
(Matsuoka and Yashiro, 2014; Tapia et al., 2014). The previous
study demonstrated that the ERK/MAPK pathways were involved
in a variety of human tumor types, including GC (Guo et al.,
2020). In GC patients, high levels of TGF-β1 in serum and cancer
tissues were associated with poor prognosis (Fu et al., 2009). Chen
et al. (2019) found that gene silencing inhibited the migration and
invasion of GC cells by regulating the activation of the TGF-β
signaling pathway. At the miRNA level, most prognostic miRNAs
were also involved in the GC biological mechanism. A previous
study showed that members of the miRNA-29 family can inhibit
cell proliferation, and invasion of GC cells by silencing different
key targets (Kwon et al., 2019). The dysregulation of miR-125a
and miR-125b can affect prognosis and further regulated gastric
cell proliferation and apoptosis (Yang et al., 2013, 2019). Deng
et al. revealed that miRNA-34a served as a cancer suppressor gene
(Zhang et al., 2009). Diffuse manifestations of low miR-200b were
related to EMT in patients with GC. All these studies confirm
the close association between random walk seed nodes and GC
biological events.

After multiple-level random walk analyses, we further
calculated the IRW score for each candidate signature and the
signature with a higher score was regarded as GC prognostic
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signature. MiR-22 was ranked top one in all candidates, and
the regulatory roles of miR-22-3p were confirmed by the
proliferation and apoptosis of GC cells (Li et al., 2020). MiR-
125a (ranked second) restrained cell migration and invasion by
targeting STAT3 in GC Cells (Yang et al., 2019). DOS revealed that
the downregulation mechanism of miR-125a-5p expression in
gastric diseases is a potential marker for the early diagnosis of GC
(Dos Santos et al., 2020). In addition, miR-126 (ranked third) has
been identified as an indicator of poor prognosis and recurrence
in GC, especially in patients with histologically negative lymph
nodes (Feng et al., 2018). In vitro, miR-29a (ranked fourth) could
inhibit the growth and invasion of GC cells (Chen et al., 2014).
The SNP of miR-184 (ranked fifth) binding-site in TNFAIP2 was
related to risk of GC (Xu et al., 2013).

Based on the IRW score and robustness analysis, we focused
on a novel gene signature, PHF10 (plant homeodomain finger
protein 10), which belongs to the zinc finger protein family.
A previous study (Wei et al., 2010) validated the protein
expression levels of PHF10 in GC cell lines, which were
significantly higher than those in a normal gastric epithelial cell
line. The apoptosis of GC cell line was significantly increased after
PHF10 was knocked down, which was consistent with the roles
of PHF10 in GC tissues detected in the Oncomine database (see
Figures 5, 6A–C). In another study (Li et al., 2012), the regulatory
relationship between miR-409-3p and PHF10 was confirmed.
This study performed a series of experiments to show that miR-
409-3p was involved in the gastric cell growth, apoptosis, and
tumorigenesis processes. According to our findings, miR-409
was the only miRNA targeting PHF10 and the second robust
signature in combination analysis (see Figure 3C). Furthermore,
another regulatory circRNA on the miR-409/PHF10 axis was
identified and the complex correlated relationship between them
was explored, further showing the biological reliability of the
PHF10 signature in GC (Wang et al., 2020; see Figure 7).

We performed systematically integrated analyses using high-
throughput mRNA, lncRNA, and miRNA expression profilings

from TCGA, and further identified several candidate prognostic
signatures based on a multiple-level global network optimization
analysis. Future studies will explain the intrinsic biological
significance of these signatures further. The findings of the
present study are potentially useful for understanding GC
prognostic events and identifying robust risk signatures for
guiding clinical treatment.
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