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Abstract: Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell
leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the
most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which poten-
tiates extremely high shedding rates of the virus in many cattle populations. Approximately 30%
of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion
of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle in-
dustry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in
cow longevity; indirect costs are caused by restrictions that are placed on the import of animals
and animal products from infected areas. Most European regions have implemented an efficient
eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not
feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis
of the disease are essential in order to diminish its spreading and the economic losses it causes.
This review comprises an overview of bovine leukosis, which highlights the epidemiology of the
disease, diagnostic tests that are used and effective control strategies.
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1. Introduction

Bovine leukaemia virus (BLV) is a deltaretrovirus that belongs to the Retroviridae family.
It is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2) [1,2] and
to simian T-cell leukaemia viruses (STLVs). Some of them are also thought to play a role in
proliferative or neurological disorders of human and non-human primates [3,4]. BLV is the
causative agent of enzootic bovine leucosis (EBL), also known as bovine leucosis, which is
the most common neoplastic disease of dairy and beef cattle [1,5,6].

Most BLV-infected cattle (about 70%) are asymptomatic (subclinically infected). Hence,
there is an extremely high shedding rate of BLV within cattle populations and its control is
rendered unfeasible [7]. About 30% of BLV-infected cattle develop persistent lymphocytosis
(PL) and around 1–5% may develop tumours in a form of malignant B-cell lymphosarcoma
after a long period of latency (one to eight years) [1,8,9].

The immune systems of infected cattle are impaired, even during the latent stages
of leukaemia, and this leads to the inability of the animals to maintain normal perfor-
mance [10]. Therefore, BLV infection results in negative effects on animal health and
productivity. The disease causes huge economic losses worldwide through both direct and
indirect costs: directly because milk production is reduced, the disease has an extreme
impact on reproduction, and some cows must be culled prematurely; and indirectly be-
cause imports are restricted of animals from BLV-infected areas [11–15]. For these reasons,
the World Organisation for Animal Health (OIE) has listed EBL as a disease that can cause
drastic impacts on international trade [16]. For instance, BLV infects more than 40% of the
United States cattle population [17] and annual economic losses have been estimated at
USD 525 million from milk loss alone [18,19].

Regarding the public health hazards of bovine leucosis, there is no definitive determi-
nation of how humans are infected by BLV or of its effects in infected people. BLV proviral
DNA has been found in milk and meat products, which has focused attention on the
possible transmission of the disease to humans via such foodstuffs [20]. Several reports
show that BLV may harm humans through a possible link between BLV infection and the
development of breast cancer in women, as well as other haematopoietic neoplastic dis-
eases [21–25]. Comparison of data indicates a surprising geographical correlation between
incidence of breast cancer and the consumption of bovine meat and milk. For example,
the UK, Australia, the US, and Germany each have a high prevalence of breast cancer along
with high rates of consumption of bovine meat and milk. In contrast, Japan, India, China,
and Korea have low rates of consumption of these products and low prevalence of breast
cancer [26,27]. Thus, prevention and control policies should be established to diminish
viral prevalence and transmission rates among cattle populations and to ensure the absence
of infected foodstuffs in the market [20].

BLV infection can be diagnosed either by use of serological tests (e.g., through agar
gel immunodiffusion (AGID), a radioimmunoprecipitation assay (RIA) or an enzyme-
linked immunosorbent assay (ELISA)) or by use of proviral DNA detection techniques
(e.g., single, semi-nested, nested, or real-time polymerase chain reaction (PCR) tests),
which are sensitive and specific methods [16].Vaccination would be effective to control the
disease but unfortunately, to date, there is no commercially available vaccine against BLV
to prevent EBL because all tested methods have produced only incomplete or transient
stimulation of the host immune response [11,28–30]. The most potent, alternative control
measure is currently based on the testing of animals and elimination of those that are
positive. However, this strategy is not feasible, especially in areas of high BLV prevalence.
The aim of this review is to highlight the current epidemiological situation regarding BLV
infection and to provide information about some strategies that can be used to fight the
disease worldwide, with special reference to some future prospective studies.

2. BLV Genome

BLV is a single-strand, diploid RNA virus, the complete genome of which comprises a
8714-nucleotide sequence [1,31]. It can be anatomised in the form of (long terminal repeat
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(5′-LTR))-gag-pro-pol-env-px-(long terminal repeat (3′-LTR)) [1,28,32,33]. The 5′- and 3′-LTRs
contain transcriptional promoters for the action of the Tax protein and are composed of
three main regions, namely, the U3, R, and U5 regions [34]. Additionally, it has been
reported that BLV particle synthesis is accelerated by mutations in the genes of the LTR
region and that this acceleration results in a more intense immune response in cattle [35].
The gag gene is highly conserved and consists of a 1178-nucleotide sequence that codes
for the polypeptide precursor Pr44, which is subsequently cleaved into three major non-
glycosylated proteins (p12 nucleocapsid, p24 capsid, and p15 matrix) by the action of BLV
protease [36,37]. The viral protease p14 (pro gene) is encoded by a region located between
the gag and pol genes. It is responsible for the post-translational maturation of BLV [38].
The pol gene encodes for reverse transcriptase and integrase enzymes that are responsible
for reverse transcription and integration of the BLV proviral DNA into the host genome,
which results in life-long infection [39,40].

The env gene is encoded by the polypeptide precursor gpr72, which is cleaved into two
glycoproteins, a surface (SU) protein, gp51, and a transmembrane (TM) protein, gp30 [37].
These glycoproteins play an important role in the viral life cycle because they contain
the recognition site required for viral entry and they mediate cell fusion [41]. The env
gene shows a genetic polymorphism that may be useful in phylogenetic studies and
classifications of BLV isolates, as confirmed by several studies [42]. The nucleotide sequence
and amino acid composition of the env gene are useful genomic markers of BLV for the
study of its distribution and to reveal the presence of different genotypes that correlate
with geographic origin [32,43]. Therefore, at least 11 BLV genotypes have been detected
through sequencing and phylogenetic analysis of the partial and full-length gp51 env gene.
Genotype 1 is the most prevalent, and it and genotype 1 and 3 are common in the US, Japan,
and Korea [44]. Genotypes 1, 2, 3, 4, 5, 6, and 9 have been found in South America (genotype
9 particularly in Bolivia). Genotypes 4, 7, and 8 are common in Russia and Eastern
Europe. Genotype 10 is prevalent in China, Vietnam, Thailand, and Myanmar [33,45–49].
Genotype 4 was present at some countries from North America, South America, Africa,
and Asia [42,50]. Genotype 11 are recorded in China [51] and G6 genotype has been found
in South American countries, such as Argentina, Brazil, Peru, Paraguay, and Bolivia [48,52],
as well as Asian countries such as the Philippines, Thailand [53], and India [54]. Moreover,
genotype 1 was reported in Egypt [55]. Since every new genotype may show unique
features of interaction with the host organism and leukaemogenesis is influenced by some
genotypes, it is important to monitor the origin of new virus mutations for veterinary and
animal husbandry [56,57] (Table 1).

Table 1. BLV Genotyping based on partial BLV env sequences identified in geographical locations around the world.

Continent Countries Genotype References

Europe
France 4

[44,50,53,58–64]

Belgium 4

Moldova 7

Asia

Korea 1&3

Japan 1&2&3

Russia 4&7&8

Thailand 1&6&10

Myanmar 1&6&10

China 4&6&11

Philippines 1&6

Iran 4

Australia Australia 1

North America USA 1&3

Central America Costa Rica 1&5
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Table 1. Cont.

Continent Countries Genotype References

South America

Brazil 1&2&6

Uruguay 1

Paraguay 1&6

Bolivia 9

Argentine 1&2&4&6

Peru 2

Colombia 1&3&6

Africa

Egypt 1&4

South Africa 1&4

Zambia 1

In addition to encoding the previously mentioned essential and structural genes,
BLV provirus also encodes additional accessory and regulatory or non-structural genes
from the pX region of the genome, which is located between the env gene and the 3′-LTR.
Unlike other retroviruses, BLV has an additional tax gene that results from alternative
splicing of the pX region. This additional gene has a crucial role in BLV biology. The Tax
protein acts as a trans-activator of BLV provirus transcription and is oncogenic to host cells;
it causes their malignant transformation by disturbance of cellular growth and DNA repair
inhibition [27]. It also exerts a severe impact on both stress and immune responses [65].
Likewise, the polymorphism of the tax gene is important in the determination of the output
of BLV infection; A and H variants of tax have been found to be correlated with decreased
whole-blood counts among BLV-negative animals and, thus, could be the hallmark of the
asymptomatic leukosis of BLV infection [66].

In addition to the Tax protein, the pX region also encodes for the rex and the less
abundant R3 and G4 proteins. The Rex protein is a post-transcriptional regulator of
viral expression that is required for the synthesis of structural genes and is essential for
infectivity in vivo [39]. The R3 and G4 genes are infectious and tumourigenic BLV molecular
clones that maintain high proviral load; their deletion induces loss of the leukaemogenic
phenotype of BLV [67] (Figure 1).
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Some researchers have reported that an abundant cluster of RNA polymerase III-
transcribed microRNAs (miRNAs) is expressed even in the absence (silence) of genomic and
subgenomic transcripts from the 5′-LTR region [69]. However, recently it has been shown
that BLV constitutively expresses antisense transcripts from the 3′-LTR, which may be the
reason for the silence of the 5′-LTR region. The BLV miRNAs are not essential for infectivity
but have been shown to modify some genes that are related to other mechanisms, such as
apoptosis, immunity, cell signalling, and oncogenesis. Moreover, they can be expressed
in both cattle that show signs of EBL and asymptomatic leukosis-infected animals [70,71].
The transcriptional interference between antisense and mi-RNAs strongly suggests a
common role in BLV regulation and represents a novel pathway for recognition of the
disease [72]. The discovery of BLV antisense transcripts, together with the discovery of BLV
microRNAs, has resulted in a new understanding of BLV. The BLV provirus produces a large
number of viral microRNAs and expresses antisense transcripts in all malignancies studied.
The presence of these transcripts in both leukaemic and non-malignant clones suggests
that they play an important role in the virus’s life cycle and tumourigenic potential [72].

3. BLV Prevalence

BLV was first described in 1871 in Lithuania (on the south-eastern shore of the Baltic
Sea) [73]. It is now known to be distributed worldwide at different prevalence rates [74].
The US has a very high BLV prevalence rate that has been stated as 40% [17]. In Japan,
EBL was listed as a notifiable disease in 1998. In 2000, it was reported in 159 cattle on
157 farms, and by 2007, in 838 cattle on 677 farms [75]. In 2015, 78% of 315 dairy herds
in Canada showed BLV antibodies [76]. In Argentina, 84% of dairy herds have been re-
ported to carry the antibodies [58], in Turkey, 2.28% [77], and in Mexico, between 11% and
66% [78]. In China, a meta-analysis study was conducted to measure the prevalence of BLV
during the period between 1983 and 2019. It recorded a 10% pooled BLV prevalence rate
(4701 seropositive animals of 34,954 animals) [79]. BLV has also been recorded in some Mid-
dle Eastern countries [74]. In Egypt, BLV has been recorded serologically in Egyptian dairy
cattle at 15.83% [80] and at 20.8%, 9%, and 0% in cattle, buffaloes, and camels, respectively.

In contrast, several European regions started to control the virus early in the 1960s;
as a result, England, France, Germany, Spain, Belgium, Denmark, Sweden, Switzerland,
Poland, and many others are officially free of BLV [81,82]. Other countries, such as Italy
and Portugal, report extensive BLV-negative localities, and the infection is restricted to
small areas. In Australia, the virus has been eliminated from dairy herds, but beef cattle
remain infected at very low prevalence rates [7,83,84]. More than 21 countries claim to
have eradicated BLV, primarily through culling or the segregation of all cattle that have
been shown to be positive through ELISA tests [83,84] (Table 2 and Figure 2).

Table 2. Prevalence of the bovine leucosis disease worldwide, adopted from [58].

Status Continent Countries Year References

BLV free countries Europe

Andorra 1994 [85]

Cyprus 1995 [85]

Czech Republic 2010 [85]

Finland 2008 [85]

Ireland 1999 [85]

Norway 2002 [85]

Spain 1994 [85]

UK 1996 [85]

The Netherlands 2009 [86]

Sweden 2007 [85]

Denmark 1990 [85]

Estonia 2013 [85]
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Table 2. Cont.

Status Continent Countries Year References

Switzerland 2005 [85]

Slovenia 2006 [85]

Oceania
Australia 2013 [12]

New Zealand 2008 [87]

Tunisia 2005 [85]

Asia
Kyrgyzstan 2008 [85]

Kazakhstan 2007 [85]

BLV existing countries with
unknown prevalence

Europe

Croatia

Present

[86,88]

Ukraine [89]

Italy [85]

Portugal [85]

Belarus [86,89]

Greece [85]

Bulgaria [85]

Latvia [85]

South America Uruguay [90]

BLV existing countries with
variable prevalence

North America

USA
(Dairy 83.9%, Beef 39%) 2007 [91]

Mexico
(Dairy 36.1%, Beef 4%) 1983 [92]

Canada
(78% at herd level) 1998–2003 [5]

South America

Chile (southern regions)
(27.9% individual level) 2009 [48]

Brazil
17.1%
60.8%

1980–1989
1992–1995 [93,94]

Argentina (Buenos Aires)
(77.4% at an individual, 90.9% at

herd level)
(Multiple regions)

(32.85% at individual, 84% at herd
level)

2007
1998–1999

[48]
[95]

Peru (Multiple regions)
(31% at the individual level, 42.3%

individual level)

1983
2008

[96]
[48]

Bolivia (Multiple regions)
30.7% individual level 2008 [48]

Venezuela
33.3% individual level 1978 [97]

Paragua (Asuncion)
54.7% individual level 2008 [48]

Colombia
62% individual level 2020 [98]

Asia

China
(Dairy 49.1%, Beef 1.6%) 2013–2014 [99]

Taiwan
(81.8% at animal level and 99.1% at

herd level)
2019 [100]

Cambodia
Draught cattle 5.3% 2000 [101]
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Table 2. Cont.

Status Continent Countries Year References

Japan
(Nationwide)

Dairy 49.1% Beef 1.6%
79.1% of the dairy herd

73.3% at individual

2009–2011
2007

2012–2014

[102]
[103]
[104]

Mongolia (Dairy 3.9%) 2014 [105]

Iran (nationwide)
(22.1% to 25.4%) 2012–2014 [5]

Philippines (4.8% to 9.7%) 2010–2012 [106]

Myanmar
(9.1% at individual) 2016 [48]

Thailand
(58.7% at individual) 2013–2014 [53]

Pakistan (20% of dairy) 2019 [107]

Middle East

Saudi Arabia
(20.2% of dairy) 1990 [108]

Turkey
(48.3% dairy) [109]

Israel
(5% at individual) [110]

Iraq (7% of dairy) 2015 [111]

Egypt (17.7% of dairy) 2020 [112]
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4. BLV Susceptibility

Generally, retroviruses have a wide host range that includes cattle, buffaloes, sheep,
and goats [113,114]. Three species are natural hosts of BLV infection:, Bos taurus (domestic
cattle), Bos indicus (zebu), and Bubalus bubalis (water buffalo) [15]. The disease is not
confirmed in some susceptible species (e.g., capybara, rhesus monkeys, chimpanzees,
and antelopes), and has not been detected in other wildlife species, such as deer and
llama, under natural conditions [115,116]. Experimentally, sheep, goats, pigs, chickens, rats,
and rabbits have been infected [117], but the disease has a shorter period of latency, takes
over the animal more quickly and is passed on more frequently than in cattle. Rats are one
of the suitable models for in vivo studies of BLV infection [118].

Estimates of bovine leucosis inheritability among Holstein and Jersey cattle popula-
tions is about 0.08% [119], which indicates that genetic susceptibility plays a role in the
prevalence of BLV in some breeds of cattle [120]. BLV is more frequently spread among
dairy than among beef cattle [121]. The intra-herd seroprevalence rates in dairy and beef
cattle are reported to be 40.9% and 28.7%, respectively [102,122]. In China, 49.1% of dairy
and 1.6% of beef cattle have been found to be BLV-positive [99]. Furthermore, the age
of cattle plays a pivotal role in the seroprevalence of BLV, which increases with age until
cattle older than two years show seroprevalence rates that are almost twice those found
in younger animals [123]. This is because the risk of infection increases as animals spend
more time at risk of contact with it [123]. However, EBL has been detected in younger
animals; in a two-month-old calf [124], in two calves of around three months of age [125]
and in a 13-month-old Holstein heifer [123]. Therefore, more consideration should be given
to the possibility of BLV infection regardless of age.

5. Transmission

BLV has a harsh transmission dynamic, as the virus exists in circulating peripheral
blood lymphocytes of infected animals and the disease can be transmitted by both hori-
zontal and vertical means [126–128]. The critical sources of BLV infection are fresh blood,
semen, saliva, milk, and nasal discharges of BLV-seropositive cattle that have PL and that
harbour proviral DNA (which enables cell-to-cell transmission) [1,39,127,129,130].

Horizontal or mechanical transmission plays a major role in BLV infection via several
potential routes that include all practices performed beyond blood transmission control,
such as iatrogenic infection during vaccination, blood extraction, castration, injection of
medication, dehorning, tattooing, and rectal palpation [131–133]. Another significant risk
for horizontal BLV dissemination is posed by biting flies, such as the stable fly, which can
carry the virus from the infected blood of a host animal to a susceptible other during a
blood meal and pose a potential risk of infection [40,134]. The crucial role of biting flies
in the epidemiology and prevalence of BLV has been identified by two epidemiological
studies that were performed in the US and Japan [81]. It was reported that no new cases
of EBL were observed in Japanese beef cattle herds after herdsmen implemented rigorous
fly control [135–137]. This study showed that passage was via a blood-borne pathogen,
such as HTLV-1 or HTLV-2 [1].

A small proportion of BLV infections may occur vertically via the maternal-foetal
transmission route from the dam to its foetus or through the ingestion of colostrum and
milk that contains provirus or free virus particles. Such transmission has been positively
correlated to the proviral loads that have been measured in the dam [138]. Milk cells from
BLV-infected cows could cause infection ex vivo, which suggested a potential risk from milk
for vertical spread of BLV via cell-to-cell transmission [127]. However, a high antibody
titre in the milk and colostrum of BLV-positive dams could protect against BLV infection
in vitro [139]. The in utero or transplacental transmission also shares a route of vertical
BLV transfer from the dam to her offspring [140]. Therefore, the BLV proviral load and
antibody titre in the milk play a direct role in the infection and protection of calves against
the disease.
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Artificial insemination (AI) and natural service might also be incriminated in the
vertical spread of BLV. Although the risk of in vitro infection with semen from BLV-infected
bulls is negligible, the use of infected bulls in natural service has been positively associated
with BLV prevalence [141]. Moreover, during natural copulation, the smegma of infected
bulls may aid in the transmission of BLV to uninfected cows. So, bulls that are used for
natural mating or AI must be screened to ensure that they are BLV-free before the breeding
season to aid in the limitation of virus spread [142].

6. BLV Pathogenesis

BLV can infect different immune cells that show the highest preferential affinity to
B-lymphocytes. It presents in the circulating peripheral blood B lymphocytes of BLV-
infected cattle and less often in T-cells [143,144]. It disrupts both B- and T-cell homeostasis
and alters their proliferative and apoptotic responses as it interferes with gene expression
and the actions of signalling cascades at different times post-infection [10]. Cows that
develop PL undergo a massive proliferation of B-lymphocytes that express both Ig and
CD5+ antigens on their surface via blockage of their apoptosis rather than triggering of
their proliferation [145]. The BLV structural genes pol and env are essential for in vivo
infectivity and their deletion eliminates infectivity. Moreover, the polymorphism of the env
gene leads to a change in viral pathogenicity [146].

Inactivation of tumour suppressor gene p53 by mutation appears to be one of the criti-
cal events that is associated with tumour formation by BLV in cattle but not in sheep [147].
Additionally, sheep show a low level of apoptosis when compared with cattle, because
sheep are not natural hosts of BLV; protection against apoptosis at the early asymptomatic
stages of the disease seems to result in slower development of leukaemia and reduced
pathogenicity [39].

During infection by BLV, a transmembrane glycoprotein of gp51 destabilises the host
cell membrane with a fusion peptide, after which the structural proteins enhance viral
fusion and infectivity of host cells [148]. Further, it has been noted that mutation of a
single envelope N-linked glycosylation site (N 230 E) of the env gene by conversion of the
asparagine codon (N) into glutamic acid (E) enhances the pathogenicity of BLV through
enhancement of viral replication, fusogenicity, and protein stability in experimentally
infected sheep [41].

After virus entry, there is no detectable viraemia, but there is a strong and persistent
humoural immune response to structural proteins, especially against the env gp51 and
the major core protein p24 [149]. Synthesis of BLV proviral DNA molecules is achieved by
viral reverse transcriptase. Then, with the help of viral integrase, the provirus is inserted
at random sites into the host genome in the nucleus of the infected cells [150]. The BLV
provirus remains integrated into cellular genomes for life, even in the absence of detectable
BLV antibodies, and viral transcription is blocked during the latent period of the disease
which is called the silent state [106]. It has been recorded that, when an infected cell with
an integrated BLV provirus is transmitted into a new host, the BLV provirus is expressed
into viral particles that infect other B lymphocytes [151].

The BLV epitopes have an important influence on the viral life cycle. BLV has three
conformational and neutralising epitopes named F, G, and H, which are always found
among all BLV strains. This suggests that their presence is essential for viral pathogene-
sis. Antibodies that are synthesised against epitope H can prevent cell fusion in culture,
while those against epitopes F and G only can reduce the syncytial ability of the virus [152].
Regarding the occurrence of B-cell lymphosarcoma, BLV encodes some miRNAs that are
essential for the induction of B-cell tumours and they regulate efficient viral replication
in vivo [71]. In this area, the pathogenesis of BLV infection is not fully clear and requires
further investigation.
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7. Clinical Outcomes

Generally, bovine leucosis takes two forms: the first is a fatal EBL form that is charac-
terised by lymphomas; the second is sporadic bovine leucosis (SBL), which is not transmis-
sible and mainly affects young calves [153]. Furthermore, EBL can be separated into three
forms as follows: first, the asymptomatic form, which shows the most frequent occurrence
(70%) and infected animals appear to be serologically positive without lymphocytosis or
any clinical signs; second, the form that causes animals to be serologically positive and
positive for PL (30%). This form causes a non-malignant polyclonal expansion of CD5+ B
cells, the majority of which harbour the BLV provirus with high viral load; and the final
form exhibits as malignant lymphosarcoma (less than 5%). It originates from mono or
polyclonal accumulation of CD5+ IgM+ B cells after a long period of latency that may
extend to one to eight years, so it is detected at a higher rate in cattle of more than four to
five years old rather than in younger animals [58,154–156]. Thus, persistent B-lymphocyte
proliferation is the hallmark of BLV-induced leucosis and is referred to as leukaemia in the
bloodstream, lymphoma in the lymph node and lymphosarcoma in various organs [147].

The clinical picture of the disease may include the following manifestations: lack of
appetite, indigestion, reduced milk yield, chronic bloat, displaced abomasum, diarrhoea,
constipation, enlargement of superficial lymph nodes, lameness, paralysis, weight loss,
weakness or general debilitation, and sometimes neurological manifestations [106,157].

A field study on BLV-infected cattle in Egypt reported various symptoms, such as lymph
node enlargement (6.25%), protrusion of conjunctival membrane (1.67%), lameness (0.42%),
emaciation (1.25%), and respiratory manifestations as rales and dry cough (0.83%) [80].
Cattle with lymphosarcoma almost invariably die, either suddenly or weeks or months after
the onset of clinical signs, which differ according to the particular organ(s) involved [158].
The BLV malignancies disrupt the uterus, mesenteric, retro-bulbar, the right auricle of the
heart, abomasum, spleen, lung, kidney, urinary tract, spine, and pre-scapular, and sub-iliac lymph
nodes [151]. These disruptions result in urinary, respiratory, and digestive disturbances
besides other signs according to the organ involved [58].

Recently, it has been speculated that BLV infection decreases the energy production
efficiency of cows as it alters the activities of their ruminal and intestinal microbiota, which
rely partially on the multiplication ability of BLV strains [159]. Additionally, BLV causes
dysfunction of monocytes and neutrophils, which subsequently leads to immunosuppres-
sion. Both these effects may explain the elevated susceptibility of the animals to other
infections, their reduced milk production and reproductive inefficiency [160,161].

Immunologically, the mechanisms by which BLV immunity is compromised are not
clear but several scenarios have been suggested, including (1) disruption of cytokine
production and correct immune cell signalling, (2) proliferative and apoptotic disturbance
of immune cells, and (3) possible damage caused by activated and infected cells. Therefore,
future research on BLV immunology and on how BLV influences response to vaccines
and other pathogens is urgently required to calculate the exact economic impact of BLV
infection on the cattle industry [10].

8. Zoonotic Potential of BLV

The presence of BLV or BLV-infected cells in the milk of most naturally affected
cows suggests that humans are frequently exposed to BLV orally [162]. The first indi-
cation of BLV’s potential impact on public health came from a study conducted in the
1970s, just a few years after the virus was discovered, in which two out of every six
chimpanzees fed unpasteurised milk from naturally infected BLV cows developed fatal
erythroleukemia [163]. Extensive epidemiological investigations conducted in the United
States, Denmark, and Sweden failed to show a link between human leukaemia and bovine
leukaemia [164]. Anti-BLV antibodies were not detected in persons with varying levels
of BLV exposure in seroepidemiological studies. The lack of BLV-specific sequences in
157 cases of childhood acute lymphoblastic leukaemia or non-lymphoma Hodgkin’s and
136 controls in the United States [165], as well as 517 cases of human leukaemia and 162 lung
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cancer patients in Korea [166], provided additional evidence against BLV’s involvement in
human disease.

Despite the fact that research in the past have revealed a link between BLV and breast
cancer, the evidence remains inconclusive. By sensitive enzyme-linked immunosorbent
test or PCR, no anti-BLV antibodies or BLV sequences were detected in Chinese healthy or
breast cancer patients [167].

Recent studies using more sensitive whole genome sequencing, have found no indica-
tion of a link between BLV and human breast cancer. None of the 32 billion sequencing
reads collected from 51 breast tumours matched BLV strains [168].

9. Diagnosis

To improve recognition of BLV infection and to control its spread, efficient diagnostic
techniques should be established for routine and easy application in order to pick out the
infected animals. This is why different serological tests are widely used to screen animals
for BLV, as shown in Table 3. Although serological tests can provide rapid screening,
they are less sensitive than others mentioned earlier and they cannot be adapted for tissue
or semen testing [169]. Furthermore, they provide no information regarding the BLV
proviral load and the degree of BLV-induced disease progression [170]. They also cannot
be used to detect low and transient levels of BLV infection, for which a PCR test can be
used (Tables 3 and 4).

Table 3. Serological techniques used for diagnosis of BLV prevalence according to the rewarded samples and test sensitivity,
reproduced from [58].

Rewarded Samples Test Advantages Disadvantages References

Serum sample

1. ELISA
(Antibodies p24, gp51)

Sensitive, specific, large
scale screening and rapid

False negatives (cattle in
the early infection phase)
False-positive (maternally

derived antibodies)
Cannot evaluate disease
states of infected cattle.

[157,170–173]

2. RIA
(Antibodies p24)

Sensitive Able to detect
BLV during the early

period of infection

Cannot be used for mass
screening [174,175]

3. AGIDT
(Antibodies p24, gp51)

Specific, simple, rapid,
screening and Less

expensive

Less sensitive
Inconclusive

Fail to evaluate disease
states

[9,171–173]

Milk and Bulk milk sample ELISA [157,170–173]

Virus particle PHA
(BLV glycoprotein)

• Sensitive, Specific,
Less expensive, and
Rapid

• Affected by pH and
temperature

• Hemagglutination
activity reduced by
trypsin and
neuraminidase

[176]

Table 4. Molecular techniques used for diagnosis of BLV prevalence according to the rewarded samples and test sensitivity
(All detect proviral DNA), adopted from [58].

Rewarded Samples Test Advantages Disadvantages References

(Blood, PBMC, Tumour sample,
Buffy coat, Milk, somatic cells,

Semen, Saliva and Nasal
secretions).

Realtime PCR

• Direct, fast, sensitive, and
Low risk of contamination.

• Differentiate EBL from SBL.
• Detect BLV during the early

phase of infection or in the
presence of colostrum
antibodies.

• Can detect BLV proviral load.

• Needs complicated
sample preparation

• Requires specific
primers and probes

• Expensive and
Require equipment
(real-time PCR
machine)

[170,177–179]
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Table 4. Cont.

Rewarded Samples Test Advantages Disadvantages References

Conventional PCR
(Single,

Semi-Nested, and
Nested PCR)

• Direct, fast, sensitive and can
detect recent infections,
before the development of
antibodies to BLV.

• Can be used BLV detection
during the early phase of
infection or in the presence
of colostrum antibodies.

• False-negative in
case of low proviral
load and the
presence of PCR
inhibitory
substances in
samples

• Ease of
cross-contamination

• Requires specific
primers Requires
equipment (PCR
machine)

• Needs sequencing
for confirmation

[157,171,173,180,
181]

Blood only Direct blood-based
PCR

• Not expensive
• Applied on the blood

directly without DNA
extraction nor purification

• Low risk of contamination

• False-negative in
case of low proviral
load

• less sensitivity
[11,182,183]

Blood only Direct filter PCR

• Novel, rapid, easy, reliable,
and cost-effective diagnostic
test

• No need for DNA extraction
• Offers simple collection,

transportation, and storage
procedures for clinical blood
specimens

• False-negative in
case of low proviral
load

• less sensitivity
[184]

Among serological tests, ELISA and AGID are the reference techniques that are
recommended by the OIE for diagnosis of BLV infection through the detection of antibodies
that are directed to BLV gp51 and p24 proteins. Although AGID is the gold standard,
ELISAs have been frequently used due to their higher sensitivity [39,78,185,186]. Moreover,
in one study, the AGID test failed to detect the infection in up to 30% of animals that were
found by other methods to be positive for BLV [187] and failed to detect BLV-infected
animals at a large scale from pooled serum or milk samples, whereas some commercially
available ELISAs have been found effective in such cases [188,189] with varying degrees of
sensitivity (between 97% and 100%) and specificity (between 78% and 100%) [186,190].

Compared with serological assays, the development of highly sensitive and more
specific molecular techniques, especially those based on different kinds of PCR, has rev-
olutionised the diagnosis of BLV and other viral diseases [191]. So, the detection of BLV
proviral DNA is a useful tool to discover whether an animal is BLV-infected or not [192].

PCR tests can detect directly the presence of proviral DNA in BLV-infected cattle that
have low, transient, or absent antibody titres. After performance of the PCR, sequencing
and phylogenetic analysis enable the study of the distribution of BLV genotypes worldwide.
Additionally, a PCR test can be used to differentiate lymphomas that are induced by BLV
from those associated with SBL [193]. However, it may fail to detect some cases that are
seropositive on ELISA due to the presence of extremely small amounts of provirus genetic
material in the lymphocytes of infected animals [194], infection confined to lymphoid
tissues rather than circulating lymphocytes [195], or the presence of taq DNA polymerase
inhibitors in DNA samples [192].

There are different types of PCR that are useful for different purposes. Each of the
conventional single, semi-nested, and nested PCR tests is a useful and sensitive tool that
can be used to detect BLV proviral DNA early in blood, organs, or tumour samples, but the
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semi-nested and nested tests provide much higher levels of sensitivity than single PCR,
as is summarised in Table 3.

Performance of a single PCR followed by sequencing and phylogenetic analysis of the
BLV env, gag, or pol genes, with the interpretation of genotypic clusters of the constructed
dendrograms, is the most efficient approach for BLV gene identification and reveals the
BLV genetic variations that are found worldwide [89,196]. A nested PCR is a specific and
reliable method that has various uses: to detect BLV in young calves that have been fed
with colostrum from seropositive cows; to differentiate between sporadic and infectious
lymphomas (enzootic) in tumour tissues gathered from suspected cases in slaughterhouses,
in recent infections before the development of antibodies; as a check when ELISA results
are doubtful or show weak positive reactions; and for surveillance of bulls in progeny tests
before they are used in AI centres [86].

Another rapid and simple type of PCR is the direct, blood-based PCR system (PCR-
DB), which was developed to amplify the amount BLV provirus directly from whole
blood without DNA extraction and purification. This method is of lower sensitivity than
nested PCR but indicates higher specificity and reproducibility, and is cost-effective as
it is neither labour-intensive nor time-consuming [11]. Further, a direct filter PCR test
has been established recently as a novel, fast, smooth, reliable, and practical diagnostic
test that directly detects the BLV proviral DNA in clinical blood samples without DNA
extraction while offering simple collection, transportation and storage procedures for
clinical blood specimens [184].

Since the proviral load of BLV plays a significant role in both disease progress and
prognosis, the need for some molecular techniques to quantify the viral copies in an
infected animal became imperative in both diagnosis and eradication strategies of bovine
leucosis [182]. A quantitative, real-time PCR for BLV that is based on the SYBR family of
dyes is a confirmatory method that shows high sensitivity in the detection of BLV proviral
load in infected cattle with low, transient, or undetectable antibody levels during the early
stage of infection. Its use is recommended to elucidate the BLV disease status of animals
that show uncertain ELISA results in tests of their serum [136,197–200].

A quantitative PCR named the BLV coordination of common motifs qPCR (BLVCoCoMo-
qPCR) is another highly specific and sensitive diagnostic technique that can be used to
detect BLV in specimens that showed negative results in nested PCR tests. It detects various
integrated BLV strains within the host genome in clinical cases from a broad geographical
origin [170]. This technique can also be used to measure the BLV proviral load of both
known and novel BLV variants. Hence, it can be used subsequently to demonstrate the
correlation between BLV proviral load and disease progression [201,202].

Luminescence syncytium induction assay (LuSIA) is an easy, highly sensitive and
rapid method for identification and quantification of BLV infection. Therefore, it may be
effective for high-throughput screening of several samples or for prolonged follow-up
surveys. It may also be useful in the detection of BLV-specific antibodies, validation of
BLV vaccine candidates, and detection of chemical compounds that are used to treat BLV-
infected animals. Thus, LuSIA may be highly beneficial for diagnosis and in the quest
to suppress the horizontal spread of BLV [203]. A new, more sensitive, and quantitative
protocol for LuSIA to measure BLV infectivity has been established by use of CC81-BLU3G,
CC81-GREMG, and CC81-GREMG-CAT1 cells. It is adaptable to several assays including:
BLV neutralisation by plasma or serum; screening of anti-viral drugs; and BLV contamina-
tion contradiction assay of bovine vaccines. It also can be used to detect both cell-to-cell
and cell-free infection of BLV sensitively and at an early time point [204,205].

BLV isolation in cell culture is also an efficient way to detect BLV infection and to
study both its viral biology and life cycle. BLV infects a wide range of cell lines derived
from various mammalian species and organs; however, the production of viral progeny
has been shown to be restricted to some cell lines only [206]. In vitro cultivation of infected
polymorph nuclear cells (PBMCs) on foetal bovine lung cells (FBL) or Madin–Darby
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bovine kidney (MDBK) cells leads to viral infection and replication with the production of
cytopathic effects (CPE) in a form formation of cell syncytia [207,208].

In addition to the previously mentioned approaches for BLV diagnosis, changes in animals’
haemato-biochemical and oxidative status may serve as an indicator of BLV infection. Infection
with BLV is associated with a selective reduction in glutathione peroxidase activity without
any change in levels of the common plasma oxidative stress markers (i.e., hydroperoxides,
conjugated dienes, and malondialdehyde) [209]. The leukaemic lymphocytic cellular in-
filtration in hepatic and renal tissues promotes disorders of liver and kidney function
and impairment of nephron filtration ability because of nephron damage that appears in
the early stage of leukosis [210,211]. Therefore, the infection is associated with increased
activity of the liver enzymes alanine transaminase, alkaline phosphatase, and aspartate
transaminase, and of creatinine and superoxide dismutase. On the other hand, the calcium
level is significantly decreased and non-significant alterations have been recorded in levels
of malondialdehyde and nitric oxide [212]. BLV infection also significantly affects the
haematological parameters of infected animals; BLV-seropositive cattle show significant in-
creases in counts of lymphocytes, leukocytes, monocytes, and neutrophils when compared
with seronegative animals. This finding may support the hypothesis that BLV can affect
host immune response [213].

10. Strategies for the Control of BLV Infection

Programmes to eradicate BLV infection are considered a worldwide challenge. They have
never been considered economically feasible, especially when the disease prevalence is
high [14,214]. Several attempts have been made to control BLV infection and to decrease
the disease frequency in the herds, especially for multiparous cows with ≥5 parities that
live on large farms with more than 200 cows, since these are considered to be among the
main risk factors [112].

Four main strategies can be followed to prevent BLV infection: test and cull, genetic
selection, good management practice, and vaccination. Several European regions where
BLV prevalence is low successfully implement a policy to test all animals and cull those
that are found to be positive alongside ongoing surveillance for the evidence of disease [18].
Regions with high prevalence rates should reduce these rates to a point at which test and
cull is economically feasible [18]. This strategy involves periodic screening through use of
ELISA, PCR-DB, and real-time PCR followed by segregation of all positive cases and of
animals that exhibit high proviral load (more than three BLV copies/100 cells) at intervals
of several months or a few years [11,88,182]. Additionally, the culling of older cows with
high whole blood and lymphocyte counts helps to control BLV infection and is considered
the cheapest screening method as it avoids the need for further testing [215,216].

Eradication of BLV infection could also be achieved through genetic selection of
animals that carry resistance genes in their major histocompatibility complex class II
molecules, because cattle with the BoLA class II DRB3 * 0902 allele have been found
to be BLV-resistant or to show significantly low levels of BLV proviral load. However,
such a strategy could have critical drawbacks regarding the susceptibility of the genetically
selected animals to other fatal diseases in the future [2,217].

Disease prevalence can also be reduced by application of safety procedures, such as
introduction of an appropriate quarantine period when cattle arrive on a farm and serolog-
ical testing against BLV antibodies alongside use of a closed trading system that avoids
the introduction of animals from infected localities. Focus on the between-farm move-
ment of animals is crucial [218]. Traditional management practices are recommended for
the control of BLV transmission, including: the single use of hypodermic needles and
reproductive examination sleeves; use of AI instead of natural breeding; control of biting
arthropods; feeding calves only heat-treated colostrum or colostrum replacements; and
the cleaning and disinfection of blood-contaminated equipment that is reused during
surgical operations, such as application of ear tags, tattooing, and dehorning through use
of chloroform, ether, and UV. Application of all these practices might eventually reduce



Viruses 2021, 13, 2167 15 of 24

the prevalence of BLV-infected cattle to a sufficiently low level to introduce a test and
cull policy [39,219]. Moreover, vertical disease spread can be avoided by the freezing and
thawing of the colostrum and milk (at −25 ◦C for one night followed by thawing) before
feeding calves. This system could be used by veterinarians and farmers in the development
of an effective BLV control programme [220].

As with other viral diseases, a vaccination programme is urgently required to con-
trol BLV infection, and a vaccine against bovine leucosis is in great demand. However,
individual differences in sensitivity to the disease make it difficult to assess the efficiency
of a candidate vaccine [221]. Several epitopes have been obtained from gp51, gp30, and Tax,
and this work has demonstrated that these proteins are heavily involved in development
of cellular immunity. The gp51p16-C and CD8+CTL epitopes from gp30 and Tax pro-
teins are particularly beneficial to provide a potent target for BLV monoclonal antibody
production. They may greatly facilitate the development of therapeutic and prophylactic
strategies for BLV [222,223]. Efficient, safe BLV vaccine has been produced through use of
recombinant vaccines that are vectored by lumpy skin disease virus (LSDV) against both
BLV and LSDV. Expression of the BLV env and gag antigens from the recombinant vaccine
was confirmed [224].

Despite trials of vaccines against BLV, there is no effective therapy or commercial
vaccine yet available for the control of EBL, mainly because trials show only an incomplete
or transient stimulation of the host immune response [11,225].

11. Conclusions

Bovine leucosis is an important disease that affects the economy of localities in which it
is endemic through its withering effect on the animal, either directly or indirectly. The most
successful means for its eradication is the testing and culling of infected animals with the
implementation of a closed trading system that prevents the introduction of new animals
from infected areas. Such a system is followed by most European countries. Control of
EBL at the national level usually involves one or more of the following four approaches:
test and segregation or test and slaughter; genetic selection; management interventions;
and development of a novel efficient vaccine.

12. Future Prospective Studies

Based on the previously reported data, the need for an innovative BLV vaccine has
become critical. Therefore, research should be directed toward the development of a novel
marker BLV vaccine that omits single or multiple genes related to viral immunosuppression
or virulence. Introduction of such a vaccine would reduce BLV prevalence rates worldwide
to controllable levels. Then, a test and cull strategy should be implemented. Both together
may offer a way to eradicate the disease at the global level. Furthermore, BLV proteomic
analysis should be considered, as knowledge of the protein composition of BLV would
increase understanding of important characteristics, such as how the virus interacts with
host cells. Such understanding would subsequently lead to valuable knowledge for the
elucidation of viral biologies, such as replication, tropism, virulence, and immunogenicity.
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