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Human mesenchymal stem cells (MSCs) are isolated from various adult and

perinatal tissues. Although mesenchymal stem cells from multiple sources

exhibit similar morphology and cell surface markers, they differ in their

properties. In this study, we determined that the expression of integrin alpha

6 (ITGA6) and ITGA6 antisense RNA (ITGA6-AS1) correlates with the

proliferation, cell size, and differentiation potential. The expression of

ITGA6 was inversely correlated with ITGA6-AS1 in MSCs. The expression of

ITGA6 was higher, but ITGA6-AS1 was lower in MSCs from cord placenta

junction, cord tissue, and Wharton’s jelly. In contrast, ITGA6 expression was

lower, while ITGA6-AS1 was higher in MSCs from the placenta. The

bioinformatic analysis showed that ITGA6 genomic DNA transcribes ITGA6-

AS1 from the reverse strand, overlapping ITGA6 exon-2. Additionally, we identify

several putative promoters (P1-P10) of ITGA6. ITGA6-P10 is CG rich and

contains CGI. EMBOSS Cpgplot software revealed a CGI length of 180 bp

that extends from nucleotide 125 to 304 of the P10 sequence. We suggest that

the post-transcriptional regulation of the ITGA6 in mesenchymal stem cells is

controlled by the ITGA6-AS1,which could be a critical factor responsible for the

heterogeneity in function and cell fate of human MSCs. These results may

provide further impetus for investigations to unravel the mechanisms of ITGA6

regulation that could help maintain or improve the properties of mesenchymal

stem cells.
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Introduction

Human mesenchymal stem cells (MSCs) display promising therapeutic properties

including propensity to differentiate into multilineage, the ability to home to the site of

damage, induce immunomodulatory and anti-inflammatory responses, and are

heterogeneous cells that provide neuroprotection (Beeravolu et al., 2016; Beeravolu
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et al., 2017; Brown et al., 2021). Although MSCs from multiple

sources exhibit similar morphology and cell surface markers,

they display heterogeneity in features depending upon the

source, method of isolation, culture media, and mechanical

cues (Kolf et al., 2007; Chen et al., 2015; Elahi et al., 2016;

Costa et al., 2021). The culture conditions, intracellular matrix

(ICM), and extracellular matrix (ECM) of MSCs can influence

genetic-epigenetic inheritance (Maurer, 2011; Sullivan et al.,

2014; Assis-Ribas et al., 2018; Matta et al., 2019). Genetic-

epigenetic can also influence the MSC’s fate; differentiation

into progenitors and terminally differentiated cells (Teven

et al., 2011; Cakouros and Gronthos, 2020; Nieto-Nicolau

et al., 2020).

The long non-coding RNA (lncRNA) plays an important role

in the post-transcriptional regulation of genes. They are the host

of microRNAs (miRNAs) produced from non-coding RNAs

forming an imperfect stem-loop secondary structure

(Ballantyne et al., 2016; He et al., 2019; Zhang et al., 2019;

Sun et al., 2021). lncRNA inactivates or destabilizes mRNA by

pairing at a specific complementarity sequence or generating a

miRNA that targets the mRNA (Zealy et al., 2018; Zhang et al.,

2019; Ma et al., 2021; Statello et al., 2021). Antisense RNAs are

lncRNAs subtype (Sun et al., 2021) that can generate diverse

transcripts, play multifunctional roles including embryonic

pluripotency, differentiation and development, are widespread

in humans and other eukaryotes (Villegas and Zaphiropoulos,

2015). lncRNAs are also reported to be functional regulators of

MSCs (Ju et al., 2019; Li et al., 2019; Xie et al., 2019).

An important group of proteins, the integrin family that

includes integrins alpha (ITGA), and beta proteins, play a critical

role in the MSCs fate. They are cell surface adhesion receptors

that support signaling across the plasma membrane in both ICM

and ECM and mediate the intracellular signals response to the

ECM (Hynes, 2002). Further, integrins activate a wide range of

signaling pathways and are considered the main factor involved

in regulating cell growth and mobility, cellular shape, survival,

and differentiation associated with ECM interaction (Akiyama,

1996; Yamada, 1997; Chen and Sheppard, 2007; Schwartz, 2010;

Becerra-Bayona et al., 2018; Peterson and Koval, 2021).

Thus, integrins are a prime link between the MSCs’ ICM

and ECM.

Among the ITGAs, ITGA6, also known as CD49f, is a

transmembrane glycoprotein adhesion receptor protein which

show higher expression in bone marrow (BM) MSCs (Nieto-

Nicolau et al., 2020). Downregulation of ITGA6 impaired the cell

proliferation and migration of BM-MSCs via the protein kinase B

(AKT) pathway and the cell cycle inhibitor proteins p53 and p21

(Nieto-Nicolau et al., 2020). Additionally, overexpression of

ITGA6 was found to be associated with an osteoporotic

vertebral fracture in elderly women (Jales Neto et al., 2020),

bone metastasis and ductal carcinoma (Martin and Jiang, 2014),

colon cancer-initiating cells (Haraguchi et al., 2013), cervical

squamous cell carcinoma (Hou et al., 2015), and in the invasion,

metastasis and poor prognosis in human gallbladder carcinoma

(Zhang et al., 2016).

Our study showed a correlation between the expression of

ITGA6 and ITGA6 antisense RNA1 (AS1), also known as

AC078883.3, is inversely proportional to the properties of

MSCs isolated from various sources. The ITGA6 genomic

DNA expresses ITGA6-AS1 from the reverse strand. Our

bioinformatic analysis identified several putative promoters

(P1-P10) of ITGA6, and ITGA6-P10 is CG-rich and contains

CGI of 180 bp that extends from nucleotide 125 to 304. Our

results and bioinformatic analysis indicate that post-

transcriptional regulation of the ITGA6 in MSCs may be

controlled by the ITGA6-AS1, which could be a critical factor

responsible for the heterogeneity in the cell function and fate of

human MSCs. These results may provide further impetus for

investigations to unravel the mechanisms of ITGA6 regulation

that could help maintain or improve the properties of MSCs.

Materials and methods

Human mesenchymal stem cell cultures

In this study, we used well-characterized MSCs isolated from

six sources, BM, chorion (CH), cord placenta junction (CPJ),

cord tissue (CT), Wharton’s jelly (WJ), and placenta (PC) as

described previously (Beeravolu et al., 2016; Beeravolu et al.,

2017). All cells were grown in a growthmedium (GM) containing

DMEM nutrient mix F12 medium (DMEM/F12; Life

Technologies, Carlsbad, CA, United States), supplemented

with 10% fetal bovine serum (FBS; VWR, Radnor, PA,

United States), and 5.6% of antibiotic solution (0.1%

gentamicin, 0.2% streptomycin, and 0.12% penicillin) (Sigma

Aldrich, St Louis, MO, United States) in a humidified 5%

CO2 atmosphere at 37 °C. All cells were grown to 70%

confluency at passage 6 (P6).

Determination of Cell size, Doubling Time, and Colony

Forming Efficiency of MSCs.

MSC size was measured by using microscopy and

ImageJ. The doubling time (DT) and colony-forming

efficiency of MSCs were determined as described previously

(Beeravolu et al., 2016; Beeravolu et al., 2017).

RNA Extraction and Analysis of ITGA6 and ITGA6-AS1

Expression.

Total RNA was extracted from 70% confluent cells using the

GeneJET RNA purification kit (ThermoFisher Scientific)

following the manufacturer’s instructions. RNA was treated

with DNase and incubated at 37 °C for 30 min in the

thermocycler (Bio-Rad, Hercules, CA, United States). cDNA

was synthesized using iScript kit (Bio-Rad), and RT-qPCR

was performed by using SsoAdvanced universal SYBR Green

Supermix Kit (Bio-Rad) on CFX96 Real-Time System (Bio-Rad).

A 10 µL reaction was used, which included 5 µL SYBR green, 3 µL
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of distilled water, 0.5 µL of forward primer, 0.5 µL of reverse

primer, and 1 µL of 1:10 diluted cDNA. Each reaction was

exposed to the following conditions: 98 °C for 10 min,

followed by 30 s of 98°C, 20 s of 60°C, and 30 s of 72 C for

44 cycles in 96-well optical reaction plates (Bio-Rad). Human

gene GAPDH was used to normalize fold gene expression.

Primer sets for ITGA6, ITGA6-AS1, and GAPDH are listed in

Supplementary Table S1. The 2−ΔΔCq method was used to analyze

relative gene expression (fold change) data obtained by real-time

quantitative PCR (Schmittgen and Livak, 2008).

Bioinformatic analysis and genomic
databases

The URLs of genomics databases and bioinformatics tools

used in this study are shown in Supplementary Table S2. The

genomic features of ITGA6 and ITGA6-AS1 loci are searched

using online public genomics databases NCBI-Gene, UCSC

Genome Browser, Ensembl Genome Browser, EMBL-EBI, and

Eukaryotic promoter database. EMBOSS Matcher was used to

identify local similarities in two input sequences. EMBOSS

Needle was used for optimal global sequence alignment and

EMBOSS Cpgplot to locate and plot CpG islands (CGI) in

nucleotide sequence(s). The miRBase search tool to discover

mature microRNA (miR) sequences from long non-coding RNA

ITGA6 antisense RNA 1 (ITGA6-AS1), NCBI Reference

Sequence: NR_1,57,573.1. Identification of the miR

recognition elements (MREs) in the ITGA6 mRNA,

NM001079818.3, was performed by RNA22 v2 miR target

detection tool to find miR that binds to the target ITGA6

mRNA MRE. The UCSC genome browser “get DNA” and

“Blat” tools were used to retrieve and analyze sequences in the

forward or reverse strands and recover the identified sequences

from earlier versions to the updated GRCh38/hg38 version.

Statistical analysis

The statistical tests, t-test, and one-way ANOVA were

performed using Excel Data Analysis Toolpack and GraphPad

Prism 7.01 (GraphPad Software, Inc., La Jolla, CA, United States)

for various parameters. A significant difference was assessed at

p < 0.05.

Results

Properties of mesenchymal stem cells
from various sources

MSCs isolated from various sources expressed specific cell

surface markers including CD29, CD44, CD73, CD90,

CD105 as determined by flow cytometry (Brown et al.,

2019). All MSCs (P6) were cultured to 70% confluency and

analyzed for various properties (Figure 1A). A cell size

comparison showed that MSCs from BM, PC, CH, CT, WJ,

and CPJ had sizes of 4.5, 4, 2.5, 2, 2, and 1.5 μm, respectively.

BM MSCs had the largest, and CPJ had the smallest cell size.

The growth rate determined based on the DT correlated with

the size of MSCs. The BM cells had the highest, and CPJ had the

lowest DT. We also analyzed the clonogenicity of MSCs from

various sources. The results showed that MSCs had CFE of 13,

16, 40, 59, 80, and 92% from CH, PC, BM, CT, WJ, and CPJ,

respectively. CPJ MSCs had the highest, and CH had the lowest

CFE. We have previously shown that MSCs from BM and PC

favored differentiation toward the osteogenic lineage more but

less toward adipogenic lineage (Beeravolu et al., 2017). MSCs

from CPJ and WJ showed increased differentiation towards

chondrogenic lineage. CT MSC had a similar propensity to

differentiate between chondrogenic and osteogenic lineages.

CPJ, WJ and CT had a lower differentiation potential toward

the adipogenic lineage. CH MSCs displayed increased

adipogenic differentiation but decreased chondrogenic

differentiation potential (González et al., 2015). CPJ and WJ

displayed increased differentiation towards the chondrogenic

lineage. CH MSCs had the lowest clonogenicity potential. BM

and PC MSCs with the greater tendency to differentiate into

osteogenic lineage were larger in cell size and doubling time.

CPJ cells had the smallest cell size, doubling time, and largest

CFE compared to the MSCs from other sources. Our published

results showed that ITGA6 expression varied significantly

among the MSCs from BM, CH, PC, CT, WJ, and CPJ

(Brown et al., 2019). ITGA6 expression was highest in CPJ

and lowest in both BM and PC. Our results showed a clear

correlation between the ITGA6 expression and the properties

of MSCs.

Bioinformatic analysis of integrins alpha 6
gene

A search of the public databases showed eight genes of the

human integrin alpha gene family hosting 18 members. In

addition, several lncRNA, including three antisense and

multiple alternative promoters (Supplementary Table S3).

These genes code for exons ranging from 26 to 32,

producing 1 to 17 transcripts. These transcripts were

generated by promoters ranging from 1–10. ITGA6 has the

most putative promoters. Each of the genes also expressed 0 to

3 lncRNA. One of the lncRNA of ITGA2, ITGA6, and ITGA9

was antisense RNA, ITGA2-AS1, ITGA6-AS1, and ITGA9-AS1,

and they are likely to be involved in regulating the respective

genes. The identity of 10 promoters of ITGA6 is shown in

Supplementary Table S4. One of ITGA6 promoters overlaps

ITGA6-AS1 and ITGA6 exon2 sequences (Figure 1B). The
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ITGA6 (NCBI Gene ID: 3,655) occupies a region of 79,124 bps

on the forward strand of the short arm of chromosome two

mapped to cytogenetic location 2q31.1 at GRCh38/

hg38 genomic coordinates: chr2:

172,427,336–172,506,459 and generate six mRNA types/

variants. The global alignment of two ITGA6 mRNA

variants, ITGA6 mRNA variant one versus the other five

mRNA variants, showed alignment similarities in the range

of 91.1%–99.2% (Supplementary Table S5). ITGA6 mRNA

variant one was selected for further bioinformatics analysis

in the current study. Thus, we investigated the potential

association of ITGA6-AS1 with ITGA6 expression,

considering the critical roles of ITGA6 in the determination

of MSCs types.

Potential involvement of integrins alpha 6-
antisense 1 in the regulation of integrins
alpha 6

Since some of the studies have shown that ITGA6 is regulated

by ITGA6-AS1 (Song et al., 2021), we investigated the sequence

ITGA6-AS1 transcript pairing with ITGA6 transcript variant 1.

The ITGA6-AS1 was coded by the opposite strand of DNA

coding for the ITGA6 exon-2 (Figure 1B). Local alignment

analysis by EMBOSS Matcher of ITGA6-AS1

NR_157,573.1 transcript of 442 bp and ITGA6 transcript type

1 (NM_001079818.3) of 5,686 bp showed partial

complementarity with 64.9% similarity along 57 bp

(Figure 1C). The identified partial complementarity mapped at

FIGURE 1
(A) Characteristics including cell size, doubling time, CFE, and differentiation potential of human MSCs from six sources, BM. PC, CH, CT, WJ,
and CPJ. The ITGA6 is mapped at chr2:172,427,336–172,506,459 forward strand. (B) ITGA6 genomic DNA hosts three lncRNA loci and ten promoters
(P1 to P10) and the lncRNA are coded by the reverse strand (Data from NCBI-Gene and Ensembl databases). (C) The ITGA6-AS1 partial
complementarity with 3′UTR of ITGA6 mRNA type 1/variant 1 (v1). (D) ITGA6-AS1 showed 65.4% alignment to 26 bp of ITGA6 exon 2 (E2). (E)
Predicted miR sequence hsa-miR-AS1.1, for details, see Supplementary Table S6.
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positions 5,447 to 5,500 in the 3′untranslated region (UTR) of

ITGA6 mRNA type 1/variant 1 (v1). Furthermore, the ITGA6-

AS1 showed 65.4% alignment to 26 bp of ITGA6 exon 2 (E2)

(Figure 1D).

Knowing the lncRNA loci are sources of microRNA (Sun

et al., 2021), we explored the presence of microRNA in lncRNA

ITGA6-AS1 transcript by using miRbase, human (Homo sapiens)

option tool. Four miRNA sequences identified were referred to by

us as human (hsa)-miR-AS1.1, hsa-miR-AS1.2, hsa-miR-AS1.3,

and hsa-miR-AS1.4 that showed similarities to hsa-miR-

6772–5p, hsa-miR-7109–3p, hsa-miR-6797–5p, and hsa-miR-

1911–5p respectively (Figure 1E, and Supplementary Table

S6). The in-silico analysis by RNA22 v2 tool for microRNA

recognition elements (MRE) in the target transcript showed that

miR hsa-miR-AS1.2 could not target ITGA6 MRE and thus

cannot interfere with ITGA6 transcription. The other three

identified miR sequences target ITGA6 MRE of ITGA6

transcript at ITGA6 3′-UTR and ITGA6 exon 1

(Supplementary Table S7). The low p-values, 6.18E-2–1.21E-1,

represent a greater chance of the ITGA6 transcript containing a

valid ITGA6 MRE.

Genomic context of integrins alpha 6 exon
2 promoter

Ensembl database showed ten ITGA6 alternative putative

promoters from P1 to P10 (Supplementary Table S4). Two of

10 ITGA6 promoters, P1 and P10, were mapped at ITGA6 exon-1

and exon-2, respectively, and eight promoters, P2 to P9 mapped

in the ITGA6 intron-1 (Figure 1B). The divergent location of

ITGA6 exon two and ITGA6-AS1, overlapping promoter

ITGA6 exon-2 (P10) sequences, suggests P10 may possess

bidirectional activity. Consistent with this observation, the

bioinformatics analysis demonstrated P10 has the features and

properties of a bidirectional promoter (Yang and Elnitski, 2008;

Seila et al., 2009; Orekhova and Rubtsov, 2013; Al-Obaide et al.,

2021). In addition to the divergent configuration of ITGA6-AS1

and P10, the 402-nucleotide sequence of P10 lacked a TATA box

motif and enriched in binding sites for several transcription

factors GABPA, MYC, E2F4, NRF1, YY1 found in bidirectional

promoters (Figure 2A). Additionally, bioinformatics analysis

demonstrated that the ITGA6-P10 is CG rich and contains

CGI. EMBOSS Cpgplot software revealed a CGI length of

180 bp in the P10 sequence that extends from nucleotide

125 to 304 along P10 sequence (Figure 2B).

Quantification of expression of integrin
alpha 6 and integrin alpha 6-antisense 1
expression in mesenchymal stem cells

To validate the bioinformatic findings and significance that

might be influencing the properties of MSCs, we analyzed the

expression of both ITGA6 and ITGA6-AS1 by RT-qPCR. The

results depicted in Figures 3A1–A6 show no significant

difference between the expression of ITGA6-E1 and ITGA6-E2

in the same tested MSCs. However, there was a statistically

significant difference in the expressions of ITGA6-E1 in the

samples of MSCs from various sources (Figure 3B). A similar

FIGURE 2
The predicted features of P10, bidirectional promoter. (A) P10 sequence shows transcription factors binding sites. (B) Identification of CpG
Island in the P10 sequence. The following options were searched: Window size, 100; minimum sequence length, 150; minimumObs/Exp CpG, >0.6;
%C + %G, >50.00%.
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trend in the expression of ITGA6-E2 was observed among

various MSCs (Figure 3C). The relative normalized expression

values for ITGA6-E1 and ITGA6-E2 showed that CPJ-MSCs had

a 2 to 5-fold increase in expression levels over other MSCs.

We then compare the expression of ITGA6 and ITGAS6-

AS1 in the MSCs from all six sources. The results reported in

Figure 4 show that the expression of ITGA6 was inversely

proportional to the ITGA6-AS1. The primer set directed

against ITGA6-E1 indicated significantly higher expression of

ITGA6 but lower expression of ITGA6-AS1 in MSCs from CPJ,

WJ, and CT (Figures 4A1–A3). In contrast, the difference in the

expression of ITGA6 and ITGA6-AS1 was insignificance in the

MSCs from BM and CH (Figures 4A4–A5). On the other hand,

the expression of ITGA6-AS1 was significantly higher than

ITGA6 in PC MSCs (Figure 4A6). A similar trend was noted

when the primer set against ITGA6-E2 was used (Figures

4B1–B6). The expression of ITGA6-AS1 was significantly

higher in MSCs from BM, CH, and PC when compared to

CPJ CT and WJ. The highest expression of the antisense RNA

was observed in PCMSCs (Figure 4C). There was a clear pattern

in the expression of ITGA6 and ITGA6-AS1 in the MSC

samples, as summarized in Figure 4D. When ITGA6-AS1

was high, expression of ITGA6 was low, suggesting its

potential role in the regulation of ITGA6 in MSCs. Based on

the bioinformatics analysis, we proposed that P10 is involved in

the expression of ITGA6-AS1 that overlaps ITGA6 exon two

sequence. However, further studies are warranted to define the

function of P10 unambiguously.

Discussion

ITGA6 is one of the many cell surface markers commonly

found in over 30 types of stem cells (Krebsbach and Villa-Diaz,

2017). While ITGA6’s role in a broad range of stem cell

populations has been linked to maintaining the self-renewal of

pluripotent stem cells and breast and glioblastoma cancer stem

cells, its function in themultipotent MSCs is not well understood.

Our study of the six human MSCs provided evidence of a

potential correlation between the ITGA6 and its antisense RNA,

ITGA6-AS1, and MSCs characteristics for the first time. Elevated

expression of ITGA6 in BM MSCs from different donors was

correlated with high clonogenicity, migration, differentiation,

low doubling time, and proliferation (Nieto-Nicolau et al.,

2020; (Lee et al., 2009; Yu et al., 2012; Nystedt et al., 2013).

However, our studies showed low ITGA6 expression, poor

clonogenicity, and higher doubling time in BM MSCs. On the

other hand, we found significantly higher clonogenicity and

ITGA6 expression and low doubling time in MSCs derived

from human umbilical cord tissues (CT, CPJ, and WJ).

RNA generated from lncRNA has been shown to be a

widespread phenomenon in regulating genes in eukaryotes and

humans (Villegas and Zaphiropoulos, 2015). The plausible

explanation for the ITGA6-AS1 regulatory role originates from

the transcript’s sequence features. Antisense RNAs are lncRNAs

subtypes that can alter the stability and translation of cytoplasmic

mRNAs (Statello et al., 2021; Sun et al., 2021). Also, lncRNAs are

host for microRNA (miRNA). The miRNA can be produced from

FIGURE 3
The expression of ITGA6 in theMSCs. (A1–A6) The t-test showed no statistically significant difference in expressions of ITGA6-E1 and ITGA6-E2
in the same MSC, p > 0.05. (B–C) A one-way ANOVA revealed a statistically significant difference in the expressions of ITGA6-E1 and ITGA6-E2,
respectively in the six MSCs, p < 0.05.
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non-coding RNA transcripts (Ballantyne et al., 2016; He et al., 2019;

Zhang et al., 2019). The three identifiedmiR sequences from ITGA6-

AS1 transcript in this study can potentially target MREs in the

ITGA6 transcript at ITGA6 3′-UTR, and ITGA6 exon 1. Previous

studies reported miRNAs could target 5′ and 3′ UTRs as well as
exons (Broughton and Pasquinelli, 2016; Plotnikova et al., 2019).

The UTRs at the 3′ end of mRNA transcripts play a crucial role in

gene expression and contain important sequences that influence the

fate of mRNA (Matoulkova et al., 2012; Mayr, 2019). The regulatory

mechanism of miRNAs functions through inactivating the target

mRNA by the silencing complex (RISC) (Tafrihi and

Hasheminasab, 2019; Al-Obaide et al., 2021). Further, in this

study, we showed putative partial binding of ITGA6-AS1 to the

complementary region of the ITGA6 at exon two and 3′UTR, such
partial binding may have a consequential post-transcriptional

influence on the ITGA6 mRNA and cause mRNA stabilization

or destabilization (He et al., 2019). Although the reported data in this

study suggest ITGA6-AS1 is involved in the ITGA6 regulation, more

detailed studies are required to explore the ITGA6-AS1 role in

ITGA6 expression in MSCs.

Additional research could be conducted to explore the inverse

correlation in the expression of ITGA6 and ITGA6-AS1. The NCBI-

Nucleotide and Ensembl databases showed ITGA6 has several

different splice variants; quantifying these variants may indicate

transcription preference of ITGA6 transcript type correlated with

ITGA6-AS1. Overexpression or inhibition analysis of ITGA6-AS1

FIGURE 4
The expression of ITGA6-E1 and ITGA6-AS1 in MSCs. (A1–A6) Expression of ITGA6-E1 and ITGA6-AS1 in the same CPJ, WJ, CT, BM, CH and PC,
respectively. (B1–B6) Expressions of ITGA6-E2 and ITGA6-AS1 in the same CPJ, WJ, CT, BM, CH and PC, respectively. (C) A one-way ANOVA
revealed a statistically significant difference in ITGA6-AS1 expressions in the tested MSCs, p < 0.05. (D) Sketch showing correlation of ITGA6-AS1 and
ITGA6 expressions in MSCs.
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should be performed to assess its effect on ITGA6 expression. It is also

of interest to investigate the interaction between ITGA6-AS1 and

lncRNA–ITGA6 mRNA transcripts by RNA-RNA pulldown assay.

Further work is warranted to show the potential roles of ITGA6

bidirectional promoter (P10) usage in the expression of ITGA6-AS1

and ITGA6 in the MSCs. Our results also detected intrinsic elements

in the putative ITGA6 that generate microRNAs from the ITGA6-

AS1, which could impart epigenetic regulation of ITGA6. A clear

understanding of ITGA6-AS1 regulation of the gene could provide

novel ways to improve the therapeutic potential of MSCs.
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