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Iris species, commonly known as rainbow flowers because of their attractive flowers, are extensively grown in landscape gardens. A
few species, including Belamcanda chinensis, the synonym of I. domestica and I. tectorum, are known for their medicinal
properties. However, research on the genomes and evolutionary relationships of Iris species is scarce. In the current study, the
complete chloroplast (CP) genomes of I. tectorum, I. dichotoma, I. japonica, and I. domestica were sequenced and compared
for their identification and relationship. The CP genomes of the four Iris species were circular quadripartite with similar
lengths, GC contents, and codon usages. A total of 113 specific genes were annotated, including the ycf1 pseudogene in all
species and rps19 in I. japonica alone. All the species had mononucleotide (A/T) simple sequence repeats (SSRs) and long
forward and palindromic repeats in their genomes. A comparison of the CP genomes based on mVISTA and nucleotide
diversity (Pi) identified three highly variable regions (ndhF-rpl32, rps15-ycf1, and rpl16). Phylogenetic analysis based on the
complete CP genomes concluded that I. tectorum is a sister of I. japonica, and the subgenus Pardanthopsis with several I.
domestica clustered into one branch is a sister of I. dichotoma. These findings confirm the feasibility of superbarcodes
(complete CP genomes) for Iris species authentication and could serve as a resource for further research on Iris phylogeny.

1. Introduction

Iris (L.) is a genus of flowering plants, including 300 species
of the Iridaceae family classified into six subgenera (subg.)
[1, 2]. These species, commonly called rainbow flowers, are
found in the northern hemisphere’s temperate regions and
are widely used in landscape gardens because of their beau-
tiful and colorful flowers [3]. Most Iris species can adapt to
dry environments, such as deserts, semideserts, or rocky
habitats, and a few live in mesic and wetland areas [4]. Iris
species are also used as medicinal plants. Several pharmaco-
logical studies have shown that the rhizome extracts of Iris
species have anticancer, anti-inflammatory, and α-glucosi-
dase inhibitory effects and can reduce human infarct volume
[5–7]. Few species are used to treat throat-swelling diseases
[8]. The dried rhizomes of I. tectorum and I. domestica,
referred to as “Chuan She Gan” and “She Gan,” respectively,

are used in traditional Chinese medicine, but “She Gan” is
often adulterated with the dried rhizomes of I. dichotoma
and I. japonica. Therefore, identifying these four species is
needed for clinical safety.

Iris species are characterized by fan-shaped leaves, three
colorful outer perianth segments, three inner perianth seg-
ments, three petaloid stigmas with a bifid crest, and under-
ground tuberous organs [9]. However, these species have
similar leaf shapes, flower shapes, and rhizome morphologi-
cal characteristics. Therefore, identification based on mor-
phological features alone is complicated, especially during
the nonflowering period. The development of I. domestica
and I. dichotoma hybrids has also made species identifica-
tion challenging owing to the similarities between the
hybrids and female parents [10]. Molecular phylogeny com-
bined with palynology suggested that I. tectorum is far away
from I. japonica [11], which is inconsistent with classical
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taxonomy that shows the two species with a close relation-
ship. I. tectorum is a species of section (sect.) Lophiris of
subg. Limniris sect. Lophiris contains 13 species distributed
in Eastern Asia; Dykes included this rank in sect. Evansia

[12], but this rank was later amended by Lawrence to sub-
section Evansia [13], by Rodionenko to subg. Crossiris
[14], and finally by Mathew to sect. Lophiris of subg. Lim-
niris [2]. Molecular phylogeny placed I. domestica in subg.

Table 1: Length and composition of the CP genomes of I. tectorum, I. japonica, I. dichotoma, and I. domestica.

Types/species I. tectorum I. japonica I. dichotoma I. domestica

Accession number MW201731 OK448493 OK448492 OK448491

Total length (bp) 153,253 152,443 153,658 153,736

SSC (bp) 18,562 18,490 18,150 18,168

LSC (bp) 82,833 83,237 83,116 83,140

IRs (bp) 51,858 50,716 52,392 52,428

CDS (bp) 78,957 78,507 79,050 79,059

Total GC (%) 37.89 37.85 37.87 37.85

GC of SSC (%) 31.42 31.40 31.49 31.46

GC of LSC (%) 36.16 36.13 36.00 35.97

GC of IRa (%) 42.97 43.03 43.04 43.05

GC of IRb (%) 42.97 43.03 43.04 43.05

GC of CDS (%) 38.15 38.08 38.03 38.02

AT at the 1st position (%) 54.42 54.48 54.43 54.44

AT at the 2nd position (%) 61.77 61.81 61.75 61.77

AT at the 3rd position (%) 69.36 69.46 69.73 69.72
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Figure 1: Chloroplast genome map of Iris tectorum. Arrows represent the transcription direction of genes. The dark (GC) and light (AT)
gray areas are nucleotide contents.
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Pardanthopsis [15–17] with high support rates. Goldblatt
and Mabberley confirmed that Belamcanda chinensis is a
synonym of Iris domestica based on molecular, karyotype,
and type specimen analyses [18]. Furthermore, karyotype
analysis of Iris species revealed that their chromosomal
genetics are abundant because of their complex origin [10,
19–23]. A few taxa of Iris species were identified using
DNA barcodes [24–27]. Wilson [28–30] made considerable
progress on molecular identification and phylogeny in Iris
species. However, taxonomy of the Iris species still remains
complicated [10, 11, 31, 32].

Angiosperms have a circular tetramerous chloroplast
(CP) genome, consisting of a pair of inverted repeats (IRs),
a small single copy (SSC) region, and a large single copy
(LSC) region [33, 34]. The CP genomes serve as promising

tools in identifying species and analyzing phylogeny owing
to their small and simple structure, conserved sequences,
and moderate nucleotide substitution rate [35–37]. Few
researchers analyzed the molecular phylogenies of Iris based
on CP or nuclear DNA fragments; however, studies based on
complete CP genomes are limited. Approximately 20 com-
plete CP genomes about Iris species were documented in
NCBI. However, the data need to be enriched to provide
detailed information on the phylogeny [26, 38–45].

The current study sequenced the complete CP genomes
of I. tectorum, I. dichotoma, I. japonica, and I. domestica.
The study’s major objectives were to (1) characterize the
complete CP genome structure and functional genes, (2)
analyze the codon usage, (3) identify the SSRs and long
repeats, and (4) compare the whole CP genomes of Iris

Table 2: Genes in the CP genomes of I. tectorum, I. japonica, I. dichotoma, and I. domestica.

Functional group Genes Number of genes

Photosystem I psaA, psaB, psaC, psaI, psaJ 5

Photosystem II
psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL,

psbM, psbN, psbT, psbZ
15

Cytochrome b/f complex petA, petB ∗, petD ∗, petG, petL, petN 6

ATP synthase atpA, atpB, atpE, atpF ∗, atpH, atpI 6

NADH dehydrogenase ndhA ∗, ndhB ∗ (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 12

RubisCO large subunit rbcL 1

RNA polymerase rpoA, rpoB, rpoC1 ∗, rpoC2 4

Ribosomal proteins (SSU)
rps2, rps3, rps4, rps7 (×2), rps8, rps11, rps12 ∗∗ (×2), rps14, rps15, rps16 ∗,

rps18, rps19Ψ (×2) 15

Ribosomal proteins (LSU) rpl2 ∗ (×2), rpl14, rpl16 ∗, rpl20, rpl22, rpl23 (×2), rpl32, rpl33, rpl36 11

Other genes accD, clpP ∗∗, matK, ccsA, cemA, infA 6

Proteins of unknown function ycf1Ψ, ycf2 (×2), ycf3 ∗∗, ycf4 6

Transfer RNAs 38 tRNAs (8 in the IRs (×2), 6 contain one intron) 38

Ribosomal RNAs rrn4.5 (×2), rrn5 (×2), rrn16 (×2), rrn23 (×2) 8

×2 indicates two gene copies. ∗ and ∗∗ indicate genes that contain 1 and 2 introns, respectively. Ψ indicates a pseudogene.
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Figure 2: Codon usage of 20 amino acids and stop codons of the CDS in the CP genomes of Iris species. The four histograms from left to
right in each amino acid represent I. tectorum, I. japonica, I. dichotoma, and I. domestica.
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species to screen highly variable regions. The genomes were
further used to uncover the phylogeny relationship among
Iris species. The findings will lay a foundation for classifying
the species and elucidating the phylogeny in Iridaceae.

2. Materials and Methods

2.1. Sample Collection. Leaves (fresh) from I. tectorum, I.
dichotoma, and I. domestica were collected from the Institute
of Medicinal Plant Development (IMPLAD), Beijing (40°2′
5″N, 116°16′14″E), and those of I. japonica were from the

Chengdu University of Traditional Chinese Medicine,
Chengdu (30°24′36″N, 103°28′48″E). The leaves were stored
in a −80°C freezer, and Professor Yulin Lin identified the
species. Voucher specimens were deposited in the herbarium
of IMPLAD, the Chinese Academy of Medical Sciences, and
the Peking Union Medical College.

2.2. DNA Extraction and Sequencing. Total DNA was
extracted from the leaf samples by using the DNeasy Plant
Mini Kit (Qiagen Co., Hilden, Germany). DNA quality was
detected by agarose gel (1%) electrophoresis. The libraries
(insert size average, 350 bp) were generated from total
DNA and sequenced on an Illumina NovaSeq 6000 system.

2.3. CP Genome Assembly and Annotation. Filtered reads
(low quality) from raw data were generated by Fastp version
0.23.2 [46], and clean data were assembled to generate the
CP genome in GetOrganelle version 1.7.5.1 [47]. The genes
were annotated using GeSeq version 2.03 [48], followed by
manual correction. The genome circular map was drawn
by OrganellarGenomeDRAW version 1.3.1 [49]. The whole
CP genome sequences of I. japonica (OK448493), I. tec-
torum (MW201731), I. dichotoma (OK448492), and I.
domestica (B. chinensis; OK448491) were submitted to
NCBI.

2.4. Genome Structure and Codon Usage Analyses. Further-
more, MEGA X [50] was used to examine the GC content
of the genome. CodonW version 1.4.2 was used to calculate
the codon usage using the relative synonymous codon usage
(RSCU) value as follows: there is no preference in codon
usage (RSCU = 1), the codon usage frequency is less than
expected (RSCU > 1), and the codon usage frequency is
more than expected (RSCU < 1) [51, 52].

2.5. SSR and Long Repeat Sequence Analyses. The SSRs were
examined by using the Microsatellite Identification tool ver-
sion 2.1 [53, 54], with the parameters mentioned by Cui

Table 3: SSRs in the CP genomes of four Iris species.

SSR types Repeat units
Number Proportion (%)

① ② ③ ④ ① ② ③ ④

Mono A/T 38 22 34 32 100.0 100.0 97.1 97.0

C/G — — 1 1 — — 2.9 3.0

Di AT/AT 9 8 11 10 81.8 80.0 84.6 83.3

AG/CT 2 2 2 2 18.2 20.0 15.4 16.7

Tri AAG/CTT 2 2 2 2 50.0 50.0 66.7 66.7

AAT/ATT 2 2 1 1 50.0 50.0 33.3 33.3

Tetra AAAT/ATTT 2 3 3 3 66.7 75.0 75.0 75.0

AATG/ATTC 1 1 1 1 33.3 25.0 25.0 25.0

Penta AACTT/AAGTT 1 1 1 1 33.3 100.0 50.0 33.3

AAAAT/ATTTT 1 — — 1 33.3 — — 33.3

AAAAC/GTTTT 1 — — — 33.3 — — —

AATAT/ATATT — — — 1 — — — 33.3

ACTAT/AGTAT — — 1 — — — 50.0 —

Hexa AACAAG/CTTGTT — 1 1 1 — 100.0 100.0 100.0

①: I. tectorum; ②: I. japonica; ③: I. dichotoma; ④ I. domestica; —: the absence of a particular type.
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et al. [55]. In addition, the forward (F), palindromic (P),
reverse (R), and complement (C) types of long repeat
sequences with different sizes in the CP genomes were
searched by using REPuter version 3.0 [56] with 30 bp as
the minimum repeat size and 3 as the hamming distance.

2.6. Comparative Genome Analysis. The CP genomes from I.
tectorum, I. dichotoma, I. japonica, and I. domestica were
aligned using the mVISTA program [57]. The sequences of
the shared genes in the four Iris species and the complete
CP genomes were further aligned using MAFFT version 7
[58]. Nucleotide diversity (Pi) was calculated using DnaSP
version 6 [59] to identify the divergence hotspot regions
among the four species.

2.7. Phylogenetic Analysis. Twenty-two CP genomes of Iris
species were downloaded from NCBI to conduct a phyloge-
netic tree abided by the maximum likelihood (ML) method
in IQ-TREE version 2 with 1000 bootstrap replicates. Sisyr-
inchium angustifolium (NC_056184) was used as the out-
group (Table S5). The optimum model of nucleotide

substitution, TVM+F+R3, determined by ModelFinder [60]
in IQ-TREE [61] was used for the ML analysis.

3. Results and Discussion

3.1. CP Genomes of Four Iris Species. Generally, sequences
are chosen for molecular taxonomy, and fast (slow) molecu-
lar changes correspond to recent (old) evolution time [62].
The structure and components of the genome contribute to
the nucleotide substitution rate [63, 64]. The whole CP
genome is appropriate to relate species identification and
relationship because of its moderate molecular changes
[65]. The current study sequenced and analyzed the CP
genomes of the four Iris species for their authentication
and relationship. Illumina NovaSeq 6000 system sequencing
generated 8.5, 5.3, 8.4, and 8.9Gb of raw data for I. tectorum,
I. japonica, I. dichotoma, and I. domestica, respectively. The
overall lengths of the complete CP genomes were 152,443–
153,736 bp as shown in Table 1. The genomes exhibited a
quadripartite structure, including an SSC region (18,150–
18,562 bp), an LSC region (82,833–83,237 bp), and a pair of
IRs (50,716–52,428 bp; Table 1, Figure 1, and Figures S1–
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S3). The CP genomes of I. tectorum, I. japonica, I.
dichotoma, and I. domestica had GC contents of 37.89%,
37.85%, 37.87%, and 37.85%, respectively (Table 1,
Table S1) and were distributed unevenly across the four
parts. The GC content illustrated in dark gray in Figure 1
was the highest in the IR region (42.97%–43.05%). This
finding is probably due to the rRNA genes (rrn4.5, rrn5,
rrn16, and rrn23) with less duplicated AT nucleotides [66,
67]. The LSC (35.97%–36.16%) and SSC (31.40%–31.49%)
regions followed IR in terms of GC content; therefore, IR
is highly conserved. Moreover, the protein-coding regions
(CDS) had lengths of 78,507–79,059 bp and GC contents of
38.02%–38.15% (Table 1). The AT content at the third
codon position (69.36%–69.73%) was higher than that at
the second (61.75%–61.81%) and first positions (54.42%–
54.48%, Table 1). These characteristics of CP genomes are
different from those of nuclear and mitochondrial
genomes. Moreover, these CP genome characteristics are
consistent with earlier reports on I. tectorum [42], I.
dichotoma [26], and I. domestica [26, 45]. Thus, the
sequencing conducted in the current study has enriched
the CP genome data of Iris species and could serve as an
essential source for species identification and phylogeny.

A total of 113 specific genes were annotated in each CP
genome, including 79 CDS genes, 30 tRNA genes, and 4

rRNA genes (Table 2). The pseudogene ycf1 was found in
all these species, whereas the pseudogene rps19 was found
only in I. japonica. In these species, 19 genes (18 in I. japon-
ica), including 7 (6 in I. japonica) CDS genes, 8 tRNA genes,
and 4 rRNA genes, were repeated twice in IRs. Moreover, 15
genes, including 9 CDS and 6 tRNA genes, contained 1
intron, whereas 3 genes contained 2 introns (Table 2). The
CDS lengths of I. tectorum, I. japonica, I. dichotoma, and I.
domestica were 78,957, 78,507, 79,050, and 79,059 bp,
respectively, and accounted for 51.52%, 51.50%, 51.45%,
and 51.43% of the genome, respectively. In I. tectorum, the
rRNAs were 9,050 bp long (5.91%), and the tRNAs were
2,878 bp long (1.88%). The lengths and proportions of
rRNAs and tRNAs in I. japonica, I. dichotoma, and I. domes-
tica are shown in Table S2. In addition, the noncoding
regions, including introns, intergenic spacers (IGSs), and
pseudogenes, constituted 40.69%, 40.67%, 40.79%, and
40.81% of the CP genomes of I. tectorum, I. japonica, I.
dichotoma, and I. domestica, respectively (Tables 1 and 2
and Table S2). These observations revealed the similarities
in genomic features among these four species, indicating a
close relationship.

3.2. Codon Usage. The CP genomes from I. tectorum, I.
japonica, I. dichotoma, and I. domestica comprised 26,319,

Figure 6: Alignment of the complete CP genomes of nine Iris species with the reference I. tectorum (MW201731) using the mVISTA
program. White plots show various regions among species. The genomic regions are color coded. The vertical scale represents the
percent identity ranging from 50% to 100%.
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26,169, 26,350, and 26,353 amino acid codons, respectively.
The analysis of 64 codons encoding 20 amino acids
(Figure 2 and Table S3) revealed that six codon types
encoded leucine (Leu), serine (Ser), and arginine (Arg);
these amino acids had maximum codons. However, one
codon type encoded methionine (Met) and tryptophan
(Try), and these amino acids had the least number of
codons. Leucine was the most frequently coded amino acid
(I. tectorum, 2696, 10.24%; I. japonica, 2661, 10.17%; I.
dichotoma, 2692, 10.22%; and I. domestica, 2692, 10.22%),
whereas cysteine (Cys) was the least coded (I. tectorum,
305, 1.16%; I. japonica, 303, 1.16%; I. dichotoma, 304,
1.15%; and I. domestica, 305, 1.16%).

Furthermore, the RSCU value was measured to deter-
mine nonuniform synonymous codon usage [51]. Most
codons demonstrated preferences except for AUG (Met)
and UGG (Try), which had RSCU values of 1. RSCU analy-
sis revealed the presence of A or U at the third position of
the preferred synonymous codons in the four Iris species.
Other than the UGA stop codon, the CUA of leucine, and
the AUA of isoleucine (Ile), the codons with A or U at the
third position had RSCU values greater than 1, indicating

the preferential usage of A or U. The RSCU values of the
UUA of leucine were 1.84, 1.83, 1.86, and 1.86, in the CP
genomes of I. tectorum, I. japonica, I. dichotoma, and I.
domestica, respectively. Similarly, the RSCU values of the
AGA of arginine (Arg) were 1.88, 1.83, 1.83, and 1.83, and
those of the GCU of alanine (Ala) were 1.79, 1.81, 1.81,
and 1.81 in I. tectorum, I. japonica, I. dichotoma, and I.
domestica, respectively (Table S3). Thus, the preferential
codon usage patterns were similar among these four
species, which was probably due to the codon usage bias
toward A/T. These similarities in codon choice also reveal
the related relationship in the four species. The observed
codon pattern is consistent with the CP genomes of
Amomum [68], Panax [69], Dipterygium and Cleome [70],
and various other species [71–73].

3.3. SSR and Long Repeat Sequences. CP SSRs have been used
as molecular markers in species authentication, population
genetics, and phylogeny analysis owing to their high substi-
tution rates [74–76]. A total of 59, 42, 58, and 56 SSRs were
detected in the CP genomes of I. tectorum, I. japonica, I.
dichotoma, and I. domestica, respectively (Table 3 and
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Figure 7: Nucleotide diversity of the gene (a) and intergenic spacer regions (b) on the whole CP genomes of four Iris species (Pi > 0,
length > 100 bp).
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Table S4), including 38, 22, 35, and 33 mononucleotide
SSRs; 11, 10, 13, and 12 dinucleotide SSRs; 4, 4, 3, and 3
trinucleotide SSRs; 3, 4, 4, and 4 tetranucleotide SSRs; 3, 1,
2, and 3 pentanucleotide SSRs; and 0, 1, 1, and 1
hexanucleotide SSRs, respectively (Table S4 and Figure 3).
The mononucleotide repeats of I. tectorum and I. japonica
had no C/G type. All four species had one AACTT/
AAGTT pentanucleotide repeat. Additionally, an AAAAT/
ATTTT pentanucleotide repeat was present in I. tectorum
and I. domestica, whereas none was seen in I. japonica
and I. dichotoma. Moreover, I. tectorum, I. dichotoma,
and I. domestica had one specific pentanucleotide
(AAAAC/GTTTT, ACTAT/AGTAT, and AATAT/ATATT,
respectively). The hexanucleotide repeat (AACAAG/CTTG
TT) was found in all species except I. tectorum (Table 3).
The analysis uncovered that A/T mononucleotide repeats
were mostly SSRs and account for 100.0% in I. tectorum
and I. japonica, 97.1% in I. dichotoma, and 97.0% in I.
domestica. Moreover, A or T base was the most frequent in
the SSRs, which is similar to the base preference observed
in the CP genomes of Symplocos [77], Achnatherum [78],
and other species [79, 80]. These previous studies were all
researched between close taxa. Therefore, the SSRs
identified in this study might address the relationship
among closely related Iris species.

Long repeat sequences (F, P, R, and C types) are ≥30 bp
long sequences and are generally located in the IGS and
intron; these repeat sequences are responsible for CP
genome rearrangement and genetic diversity in populations
and used as sources to uncover phylogeny relationships

[81, 82]. The current study analyzed the number of long
repeats within Iris species (Figure 4). A total of 38, 34, 43,
and 67 long repeats were identified in I. tectorum, I. japon-
ica, I. dichotoma, and I. domestica, respectively. Most of
the long repeats were F and P types, accounting for 97.37%
in I. tectorum, 100.00% in I. japonica, 88.37% in I. dichot-
oma, and 77.61% in I. domestica. The 30–39 bp long F and
P types were the majority in the Iris species: >50% for I. tec-
torum, I. japonica, and I. domestica and 44% for I. dichot-
oma. Moreover, the repeats with ≥70 bp were all F and P
types. None of the species had a C repeat, and I. japonica
had no R repeat. In addition, I. tectorum, I. dichotoma, and
I. domestica had 1, 5, and 15 R types, respectively. The distri-
bution of repeats in the Iris species was similar to that of
Camellia [83], Saraca [84], and various other species
[85–87]. These repeats, one of the CP genome’s various ori-
gins, are used in elucidating the phylogeny relationships of
Iris species.

3.4. Inverted Repeat Expansion and Contraction. The com-
parison of boundaries in the CP genomes from I. tectorum,
I. japonica, I. dichotoma, and I. domestica revealed highly
conserved LSC/IR/SSC conjunctional regions in the four
species; however, variations were detected in the rps19,
ndhF, and ycf1 genes (Figure 5). The rps19 gene was located
45, 34, and 45 bp away from the LSC/IRb boundary in I. tec-
torum, I. dichotoma, and I. domestica, respectively. In I.
japonica, the rps19 gene extended into the IRb region
(72 bp), creating the rps19 pseudogene in the IRa region.
The ndhF gene crossed the SSC/IRb boundary in all species.
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Figure 8: ML tree constructed based on the complete CP genomes of 26 Iris species and S. angustifolium (outgroup). Bootstrap support
value is shown at each node.
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Moreover, the ycf1 gene was located in the SSC/IRa bound-
ary, resulting in a pseudogene 895 bp long in I. tectorum,
892 bp in I. japonica, and 893 bp in I. domestica and I.
dichotoma in the IRb region. These observations suggest that
the incomplete duplications at the boundaries probably
knocked down the coding potential of the rps19 gene in I.
japonica and the ycf1 gene in all four Iris species; these
expansions in IR boundaries are consistent with those in
Passiflora [88], Lagerstroemia [89], and various other species
[90, 91]. Divergence variations due to IR expansion among
interspecies will help distinguish closely related Iris species.

3.5. Identification of Highly Variable Regions. The complete
CP genomes of the four Iris species were compared by using
the mVISTA [57] program with those available sequences of
I. tectorum (MT103435), I. dichotoma (NC_056172), I.
domestica (MW039136), I. domestica (NC_050833), and I.
domestica (MK593156) downloaded from GenBank. The
annotated genome sequence of I. tectorum (MW201731)
was used as the reference (Figure 6). I. domestica had the
biggest genome (153,736 bp), and I. japonica had the smal-
lest genome (152,443 bp). The reference I. tectorum genome
(153,253 bp) was the third in size. The coding regions had
less divergence than the noncoding sequence regions owing
to the variable regions [92–94]. The IR regions were more
conserved, whereas the LSC and SSC regions were more
divergent.

Furthermore, the average Pi values [95, 96] were calcu-
lated separately for the shared genes and IGS to compare
the DNA polymorphisms and identify the highly variable
regions (Figure 7). The average Pi value of the gene regions
was 0.00733 (Figure 7(a)), and that of the IGSs was
0.01629 (Figure 7(b)). LSC and SSC were higher than the
IR regions in Pi values, similar to other plants, such as Han-
droanthus [97], Speirantha [98], and Combretaceae [99].
Consistent with earlier reports on other species, 13 muta-
tional hotspots and highly divergent loci were examined in
the SSC and LSC regions (Pi > 0:03 for IGS and Pi > 0:015
for gene regions), which is helpful for species authentication.
The most remarkable divergent loci were trnG-UCC-trnR-
UCU (Pi = 0:10078) and rpl16 (Pi = 0:0178) in the IGS and
gene regions, respectively. Finally, the combination of the
mVISTA plots (divergent regions indicated in white) and
the Pi values screened two IGSs, ndhF-rpl32 (Figure 7(b),
11) and rps15-ycf1 (Figure 7(b), 13), and the rpl16 gene
(Figure 7(a), 4). These regions with large white plots and
high Pi values will serve as potential DNA barcodes for Iris
species authentication.

3.6. Phylogenetic Analysis. CP genomes have been used to
determine evolutionary relationships [100–104]. In the pres-
ent study, a ML tree was constructed using 27 whole CP
genome sequences to determine the evolutionary relation-
ships of I. tectorum, I. japonica, I. dichotoma, and I. domes-
tica with S. angustifolium as the outgroup (Figure 8). The
phylogenetic analysis revealed the relationships between I.
tectorum and I. japonica and between I. domestica and I.
dichotoma. Subg. Limniris was divided into two clades: I
(sect. Limniris) and IV (sect. Lophiris). Here, sect. Limniris

showed a sister relationship with three clades, comprising
subg. Pardanthopsis (clade II), subg. Iris (clade III), and sect.
Lophiris (clade IV), including I. tectorum and I. japonica.
These three monophyletic clades (clades I, II, and IV) were
highly supported (bootstrap 100%). Moreover, subg. Par-
danthopsis was a sister to subg. Iris, including I. gatesii of
sect. Oncocyclus (bootstrap value of 100%); I. domestica
and I. dichotoma in clade II were closely related sister spe-
cies. Additionally, I. domestica (OK448491, B. chinensis)
was clustered with the other three I. domestica sequences.
This finding was consistent with the findings of Goldblatt
and Mabberley [18], Mavrodiev et al. [105], and Wilson
[28] who indicated that B. chinensis is a synonym of I.
domestica. In addition, two I. dichotoma sequences (previous
and present) were clustered into a branch, similar to the two
sequences of I. tectorum. These results mutually corrobo-
rated the accuracy of the sequences. Notably, the four species
were separated into distinct groups. Thus, for the first time,
the present study deduced the relationship among the four
Iris species based on complete CP genomes following the
ML method. These results are consistent with the molecular
phylogeny by Wilson [28], Guo and Wilson [11], Kang et al.
[26], and Xiao et al. [106] based on different plastid frag-
ments. Thus, the phylogenetic analysis uncovers that the
CP genomes could be used to verify the subdivisions of Iris
species, especially at the subgenus and section ranks.

The ML tree based on common protein-coding sequences
(Figure S4) was similar to that based on the complete CP
genomes (Figure 8), except for two branches, i.e., branch of
I. pseudacorus, I. setosa, I. laevigata, and I. ensata species and
branch of I. domestica and I. dichotoma species. In detain, I.
ensata, in both trees, was the most primitive taxon among
four species, but the I. pseudacorus, I. setosa, and I. laevigata
demonstrated different relationships in these two trees.
Meanwhile, I. domestica could be distinguished from I.
dichotoma in the tree based on the complete chloroplast
genomes, but the tree based on common protein-coding
sequences could not differentiate I. domestica from I.
dichotoma. The complete chloroplast genome has been
commonly used as superbarcoding for species identification
in researches, such as Dipterygium and Cleome [70] and
Zantedeschia [91]. In the present study, the result of species
authentication based on complete CP genomes among four
medicinal Iris species also proved the efficacy of
superbarcoding. The usage of complete CP genomes was
more efficient than the usage of common protein-coding
sequences for Iris species identification, probably derived
from more variant regions contained in intergenic regions of
the complete chloroplast genome [98, 104].

4. Conclusions

The present research sequenced and analyzed the complete
CP genomes of four Iris species, namely, I. tectorum, I.
dichotoma, I. japonica, and I. domestica. CP genome sizes,
GC contents, codon usages, SSRs, and long repeats were
examined, and the genome conservation and differences
among the four Iris species were compared. Furthermore,
comparing these species’ genomes with other Iridaceae
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species revealed a few variable regions; however, the use of
these markers in DNA barcoding needs to be tested. The
study also generated an ML phylogenetic tree that depicted
the evolutionary relationship of Iris species and confirmed
that B. chinensis is a synonym of I. domestica; however, the
whole CP genomes of the 13 taxa of sect. Lophiris need to
be included in one robust phylogenetic analysis. The study’s
findings confirm that CP genomes are a worthy genetic
resource for identifying Iridaceae species and analyzing their
phylogeny.
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