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Abstract: Present study was conducted to investigate ameliorating effects of Mori Cortex radicis
on cognitive impair and neuronal defects in HFD-induced (High Fat Diet-Induced) obese mice.
To induce obesity, C57BL/6 mice were fed an HFD for 8 weeks, and then mice were fed the HFD
plus Mori Cortex radicis extract (MCR) (100 or 200 mg/kg/day) for 6 weeks. Prior to sacrifice, body
weights were measured, and Y-maze test and oral glucose tolerance test were performed. Serum
lipid metabolic biomarkers (TG, LDL, and HDL/total cholesterol ratio) and antioxidant enzymes
(glutathione, superoxide dismutase, and catalase), malondialdehyde (MDA), and acetylcholinesterase
(AChE) levels were measured in brain tissues. The expressions of proteins related to insulin signaling
(p-IRS, PI3K, p-Akt, and GLUT4) and neuronal protection (p-Tau, Bcl-2, and Bax) were examined.
MCR suppressed weight gain, improved serum lipid metabolic biomarker and glucose tolerance,
inhibited AChE levels and MDA production, and restored antioxidant enzyme levels in brain tissue.
In addition, MCR induced neuronal protective effects by inhibiting p-Tau expression and increasing
Bcl-2/Bax ratio, which was attributed to insulin-induced increases in the expressions p-IRS, PI3K,
p-Akt, and GLUT4. These indicate MCR may reduce HFD-induced insulin dysfunction and neuronal
damage and suggest MCR be considered a functional material for the prevention of T2DM-associated
neuronal disease.
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1. Introduction

Obesity is generally believed to be caused by excessive eating and environmental and genetic
factors and is considered a low-grade inflammatory disease [1]. However, obesity is a component
of metabolic disorders such as dyslipidemia, insulin resistance, hyperlipidemia, hypertension,
and type 2 diabetes (T2DM) [2]. In particular, type 2 diabetes induces insulin resistance, oxidative
stress, inflammation, and aging [3]. Insulin resistance (IR) is a symptom of dysfunctional glucose
metabolism. It is the pathological characteristic of type 2 diabetes and occurs during the first stage of
the disease [4]. In addition, IR precedes central nervous system dysfunction and neuronal diseases such
as Alzheimer’s disease [5]. Recently, T2DM and insulin resistance were reported to be closely related
to neurodegenerative diseases and cognitive disorders [6,7]. Diabetic patients have been reported
to be at 50–75% higher risk of Alzheimer’s disease, and 80% of Alzheimer’s disease patients have
been reported to have abnormal fasting glucose levels [8]. Therefore, neurodegenerative diseases have
been described as the third type of diabetes or a brain insulin resistant state [5]. Insulin is critical
for normal brain function and peripheral glucose metabolism. Insulin stimulates neurite growth
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in brain neuronal cells, releases and absorbs neurotransmitters like catecholamine, and continuously
exerts neuronal excitement by regulating ion channels and synapse plasticity. It has also been suggested
insulin dysfunction caused by obesity, diabetes, or cardiovascular disease might adversely influence
brain neuronal functions [5]. Insulin resistance is an insulin dysfunction, in which insulin receptors
do not function properly, which inactivates downstream components of the insulin pathway such
as insulin receptor substrate (IRS). Furthermore, disruption of the insulin signaling inhibits the PI3K/Akt
pathway, and over-phosphorylation of tau results in the accumulation of neurofibrillary tangles (NFTs)
that induce neuron and brain neuronal cell apoptosis, which lead to neurodegenerative diseases like
Alzheimer’s disease [5].

It has been established that a high-fat diet (HFD) increases insulin resistance and elevates oxidative
stress in the brain [3]. A previous study demonstrated long-term consumption of an HFD disrupts
insulin signaling in the hippocampus and blood glucose homeostasis and oxidative systems by inducing
the overproduction of reactive oxygen species (ROS) [6]. It has also been reported diabetic states cause
ROS over-production, damage brain neuronal cells, and result in cognitive disorders [9]. Furthermore,
insulin disorders might also induce oxidative stress and brain neuronal cell apoptosis by inducing
mitochondria malfunction [7].

Mori Cortex radicis is the root bark of Moraceae species like Morus alba L. and has been shown to have
antipyretic, anticonvulsant, antiallergic, and anti-inflammatory effects. Traditionally, Mori Cortex radicis
has been used as pharmacologic ingredient to treat diuresis and diabetes [10,11]. Several studies have
reported Mori Cortex radicis contains antioxidant compounds such as stilbene, flavonoids, alkaloids,
and Diel-Alder type adducts with anti-obesity, anti-diabetes, and anti-inflammatory effects [12–14].
We previously reported Mori Cortex radicis has radical scavenging and antioxidative effects and inhibits
neuronal cell apoptosis in neuronal cells exposed to high glucose levels [10,11]. In the present study,
we investigated whether an extract of Mori Cortex radicis affects p-IRS/PI3K/Akt insulin signaling
and has neuro-protective effects in an HFD-induced mouse model of obesity.

2. Materials and Methods

2.1. Materials

Mori Cortex radicis (MCR) was cultivated in Andong (Kyeongbuk) and dried MCR was purchased
in Kyeongdong Market (Seoul, Korea) in April 2017. Metaphosphoric acid, thiobarbituric acid,
phosphoric acid, 5,5’-dithiobis-(2-nitrobenzoic acid), and sodium phosphate were purchased from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Primary antibodies for P-IRS, IRS, PI3K, p-Akt,
Akt, Bax, Tau, GLUT4, AChE, and β-actin were purchased from Cell Signaling Technology (Danvers,
MA, USA), and p-Tau and Bcl-2 were acquired from Santa Cruz Biotechnology Inc. (Santacruz, CA,
USA). Horseradish peroxidase (HRP)-conjugated anti-rabbit and anti-mouse (secondary antibody)
were purchased from Bio-Rad Co. (Bio-Rad, Hercules, CA, USA). Enhanced chemiluminescence (ECL)
solution was obtained from Amersham Life Science Corp. (Arlington Heights, IL, USA), and other
chemicals were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).

2.2. Sample Preparation

Dried Mori Cortex radicis (30 g) was extracted twice with 300 mL of 70% ethanol for 6 h at
50 ◦C and filtered through filter paper (Toyo Kaisha Ltd., Tokyo, Japan). The filtrate so obtained
was concentrated using a vacuum evaporator (EYELA N-1000, Riakikiai Co., Ltd., Tokyo, Japan)
and freeze-dried (IlShin Co., Ltd., Yangju, Korea) for 48 h. Powdered Mori Cortex radicis extract (MCR)
was stored at −20 ◦C until required and dissolved in sterile water prior to oral administration.

2.3. Animals and Study Design

The animal study was carried out in accordance with the guidelines issued by the Institutional
Animal Care and Use Committee (IACUC) at Duksung Women’s University (approval no. 2019-010).
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Four-week-old male C57BL/6 mice were purchased from Orient Bio (Sungnam, Korea) and housed
under controlled conditions (22 ± 2 ◦C; 50 ± 5% humidity) under a 12 h light/dark cycle. Mice were
acclimated for one week and placed on an HFD (high-fat diet; 60% kcal fat) (n = 24) for 14 weeks. During
the first 8 weeks on the HFD, obesity status was observed, and then, animals were randomly divided
into three treatment groups, as follows: animals in the HFD group (n = 8) were administered HFD plus
sterilized water; animals in the MCR100 group (n = 8) were administered the HFD plus 100 mg/kg of
MCR daily, and animals in the MCR200 group (n = 8) were administered the HFD plus 200 mg/kg
MCR daily for 6 weeks. Animals in the normal diet (ND) group (n = 8) were administered ND with
sterilized water for 14 weeks. Body weights were measured weekly during the 14-week experimental.

2.4. Y-Maze Behavioral Test

The Y-maze apparatus was made of black-painted plastic material, and the length, height,
and width of each arm were 33, 15, and 10 cm, respectively. For testing, a mouse was placed
in the center of the apparatus and allowed to move freely for 8 min. Actual alternation was defined
as the number of consecutive entries into the three arms (A, B, or C) [15] on overlapping triplet sets.
Alternation behavior (%) was calculated as follows:

Alternation behavior (%) =
actual alternation

Total number of arm entries− 2
(1)

2.5. Oral Glucose Tolerance Testing (OGTT)

After 14 weeks on their respective diets, oral glucose tolerance testing was performed. Mice were
fasted for more than 12 h, and glucose (2 g/kg) was administrated by oral gavage [16]. Blood was drawn
from mouse tails 0, 15, 30, 60, and 120 min later and tested using a commercial glucometer (Accucheck,
Roche Diagnostic, Basel, Switzerland).

2.6. Serum and Brain Tissue Collection

Before sacrifice, mice were fasted for 12 h, anesthetized under CO2, blood samples were collected
by cardiac puncture, left undisturbed at room temperature for 30 min, and centrifuged (Micro12 Hanil,
Incheon, Korea) at 3000 rpm for 10 min at 4 ◦C. Supernatants were subjected to biochemical assay
using an automatic analyzer (Hitachi 7180, Tokyo, Japan). Whole brains were quickly removed after
blood sampling, and brain tissues were washed with PBS and stored at −70 ◦C until required for
protein extraction.

2.7. Measurement of Malondialdehyde (MDA) Contents

Lipid peroxidation was quantified by measuring malondialdehyde (MDA) levels using the TBARS
method. Briefly, whole brain tissues were homogenized with 20 mM tris-HCl buffer (pH 7.4)
and centrifuged at 12,000 × g for 15 min at 4 ◦C. Supernatants were precipitated using phosphoric
acid and incubated with thiobarbituric acid (TBA) at 95 ◦C for 1 h. Organic complexes were extracted;
n-butanol and absorbances were measured at 532 nm using a microplate reader. Lipid peroxidation
was quantified using an MDA (Sigma Co., St. Louis, MO, USA) calibration curve.

2.8. Measurement of Antioxidant Enzymes Activity

Superoxide dismutase (SOD) and glutathione (GSH) contents and catalase (CAT) activity
in brain tissues were used to antioxidant enzyme activities. Extracted brain tissues were homogenized
in PBS and spun down at 1200 g for 10 min at 4 ◦C. Assays were performed using the supernatants
obtained. SOD contents were measured using a commercial SOD kit (Sigma-Aldrich Chemical Co.,
St. Louis, MO, USA), and results were expressed as unit per mg of protein. GSH contents were
measured using a commercial GSH kit (Enzo Life Science Inc., Lausen, Switzerland) and expressed
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as nM per mg of protein. CAT activities were measured using a commercial CAT kit (Cayman Chemical,
Ann Arbor, MI, USA) and expressed as nM per min per mL.

2.9. Acetylcholinesterase (AChE) Activity

To assess AChE activities and protein expressions, whole brains were homogenized with 10 mM
Tris-HCl (pH 7.2) and centrifuged at 14,000 g for 30 min at 4 ◦C. Supernatants were subjected to
assay. AChE activity was determined by determining the rate of hydrolysis of acetylcholine iodide
in the presence of 100 mM phosphate buffer (pH 7.5) and 2 mM DTNB. Reactions were monitored at
412 nm every 30 secs for 2 min using a microplate reader. AChE activities were expressed as percentages
of those of ND group.

2.10. Western Blot Analysis

Whole brain tissues were homogenized in protein extraction solution (Intron, Seoul, Korea)
containing 1% protease inhibitor cocktail (Thermo Fisher Scientific, Rockford, IL, USA) using a
tissue blender and centrifuged at 12,000 rpm for 20 min at 4 ◦C. To equalize total protein amounts,
protein concentrations in supernatants were measured using the Bradford protein assay (BioRad
Laboratories, Hercules, CA, USA). Proteins (30 µg) separated using SDS gels and then transferred to
polyvinylidene difluoride (PVDF) membranes (Millipore, Billerica, MA, USA). After blocking with 5%
skim milk in tris buffered saline containing Tween-20 (TBST), membranes were incubated overnight
with the following primary antibodies at 4 ◦C; actin, p-IRS-1 (Tyr 612), IRS-1, PI3K, p-Akt (Ser 473), Akt,
AChE, GLUT4, Bax, Bcl-2, p-Tau (Ser 404), and Tau (all dilutions 1:1000). Membranes were then washed
with TBST 5 min and incubated with horseradish peroxide (HPR)-conjugated secondary anti-mouse or
anti-rabbit antibodies (1:3000) in the presence of 5% skim milk in TBST for 1 h at room temperature.
For chemiluminescence detection, the membranes were visualized using enhanced chemiluminescence
ECL reagent (Amersham Pharmacia, Piscataway, NJ, USA). Band densities were calculated using image
making software (ImageJ; National Institute of Health, Bethesda, MD, USA).

2.11. Statistical Analysis

Results are presented as means ± standard deviations (SD) from three independent replicates.
The significances of intergroup differences were determined by one-way analysis of variance (ANOVA)
followed by Duncan’s multiple range test using PASW statistics Ver. 18 (SPSS Inc., Chicago, IL, USA).
Statistical significance was accepted for p values < 0.05.

3. Results

3.1. Effect of MCR on Weight Gain in HFD-Induced Mice

In order to evaluate the inhibitory effect MCR on HFD induced-weight gain, mice were fed
the HFD for 8 weeks to induce obesity and then with the HFD plus MCR (100 or 200 mg/kg/day)
for 6 weeks. Changes in body weights in the ND, HFD, MCR100, and MCR200 groups are shown
in Figure 1. After 8 weeks on the HFD, mean weight increased by 52.0% (42.6 ± 2.8 g) versus the ND
group (27.5 ± 1.3 g). After the following 6 weeks of MCR administration, mean weight in the HFD,
MCR100, and MCR200 groups increased to 53.3, 46.6, and 46.4 g, respectively, which represented
increases of 77.6, 55.3, and 54.7% over that of the ND group (30.0 ± 2.2 g). Furthermore, weights were
significantly lower in the MCR100 and MCR200 groups than in the HFD group.
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Figure 1. Effect of Mori Cortex radicis extract (MCR) on body weights of HFD-induced (High Fat Diet-
Induced) mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks. 
Weights were monitored weekly. Results are presented as means ± SDs (n = 8). Statistical significance 
was accepted for p values < 0.05. Small letters indicate significantly different from other groups. 

3.2. Effect of MCR on Glucose Tolerance in HFD-Induced Mice 

In order to evaluate the effect of MCR on HFD-induced glucose intolerance, OGTT was 
performed after the 14-week experimental period. Longitudinal changes in blood glucose levels are 
shown in Figure 2. After administering glucose, blood glucose levels in the HFD group rapidly 
increased to 419.0 ± 32.2 mg/dL at 15 min, which was significantly greater than that observed in the 
ND, MCR100, and MCR200 groups (277.3 ± 40.3, 290.8 ± 29.1, and 313.6 ± 20.1 mg/dL, respectively). 
Continuously, the blood glucose level of the HFD group was higher than that in the three other 
groups at 30 and 60 min. At 120 min, blood glucose levels in the HFD group remained high at 216.5 
± 36.5 mg/dL. In contrast to the HFD group, ND, MCR100, and MCR200 groups’ blood glucose levels 
were lower at 122.1 ± 10.2, 185.4 ± 22.5, and 183.0 ± 15.3 mg/dL, respectively (p < 0.05). 
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mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks. After 14 
weeks of diet, mice were then fasted for 12h, and blood glucose levels were measured during 120 min. 
Results are presented as means ± SDs (n = 8). Statistical significance was accepted for p values < 0.05. 
Small letters indicate significantly different from other groups. 

Figure 1. Effect of Mori Cortex radicis extract (MCR) on body weights of HFD-induced (High Fat
Diet-Induced) mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for
14 weeks. Weights were monitored weekly. Results are presented as means ± SDs (n = 8). Statistical
significance was accepted for p values < 0.05. Small letters indicate significantly different from
other groups.

3.2. Effect of MCR on Glucose Tolerance in HFD-Induced Mice

In order to evaluate the effect of MCR on HFD-induced glucose intolerance, OGTT was performed
after the 14-week experimental period. Longitudinal changes in blood glucose levels are shown
in Figure 2. After administering glucose, blood glucose levels in the HFD group rapidly increased to
419.0 ± 32.2 mg/dL at 15 min, which was significantly greater than that observed in the ND, MCR100,
and MCR200 groups (277.3 ± 40.3, 290.8 ± 29.1, and 313.6 ± 20.1 mg/dL, respectively). Continuously,
the blood glucose level of the HFD group was higher than that in the three other groups at 30 and 60 min.
At 120 min, blood glucose levels in the HFD group remained high at 216.5 ± 36.5 mg/dL. In contrast to
the HFD group, ND, MCR100, and MCR200 groups’ blood glucose levels were lower at 122.1 ± 10.2,
185.4 ± 22.5, and 183.0 ± 15.3 mg/dL, respectively (p < 0.05).
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Figure 2. Effect of Mori Cortex radicis extract (MCR) on oral glucose tolerance (OGTT) in HFD-induced
mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks.
After 14 weeks of diet, mice were then fasted for 12 h, and blood glucose levels were measured during
120 min. Results are presented as means ± SDs (n = 8). Statistical significance was accepted for
p values < 0.05. Small letters indicate significantly different from other groups.
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3.3. Effect of MCR on Spatial Learning and Memory in HFD-Induced Mice

The Y-maze test is a behavioral test based on the tendency of mice to explore novel rather than
familiar objects [9]. The alternation behavior of the HFD group (50.4%) was significantly less than
those of ND, MCR100, and MCR 200 groups (67.2%, 65.0%, and 67.1%, respectively) (Figure 3A,B).
The HFD group consecutively entered different arms 15.0 times, which was significantly lower than
ND group (28.5 times), and MCR100 and MCR 200 groups entered arms more frequently than the HFD
group (22.1 and 22.5 times, respectively) (p < 0.05).
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Figure 3. Effect of Mori Cortex radicis extract (MCR) on spontaneous alternation behavior in HFD-induced
mice. (A) Spontaneous alternation and (B) number of arm entries. Mice were fed ND or HFD with or
without MCR (100 or 200 mg/kg b.w.) for 14 weeks. At 14 weeks, Y-maze behavioral test was then
performed. Results are presented as means ± SDs (n = 8). Statistical significance was accepted for
p values < 0.05. Small letters indicate significantly different from other groups.

3.4. Effect of MCR on Serum Parameters in HFD-Induced Mice

Lipid serum parameters are summarized in Table 1. Triglycerides (TG) contents were higher
in HFD than in ND group (51.7 ± 16.8 versus 30.0 ± 7.8 mg/dL), but MCR 200 group was significantly
lower than HFD group, (36.0 ± 10.9 mg/dL, no difference was found with ND group). Total cholesterol
(TCHO) contents were higher in HFD, MCR100, and MCR 200 groups than in ND group (183.5 ± 27.4,
203.4 ± 16.9, and 199.8 ± 24.9 mg/dL versus 90.9 ± 5.7 mg/dL), but no significant difference was found
between HFD, MCR100, and MCR 200 groups. Low density lipoprotein (LDL) contents in HFD,
MCR100, and MCR 200 groups (15.7 ± 6.7, 13.2 ± 2.5, and 13.6 ± 1.7 mg/dL, respectively) were markedly
higher than in ND group (3.5 ± 0.6 mg/dL), but differences between the HFD and MCR100 and MCR
200 groups were not significant. HTR (%) (defined as a percentage of high-density lipoprotein (HDL)
to TCHO) was lower in the HFD group (34.4 ± 3.9%) than ND group (58.8 ± 1.7%). In comparison
with the HFD, however, MCR100 and MCR 200 groups significantly increased HTR (36.9 ± 2.0
and 37.4 ± 1.4%, respectively).

Table 1. Effect of Mori Cortex radicis extract (MCR) on serum biomarkers in HFD-induced (High Fat
Diet-Induced) mice.

Biomarker
Group

ND HFD MCR 100 MCR 200

TG (mg/dL) 30.0 ± 7.8 b 51.7 ± 16.8 a 39.7 ± 10.2 a,b 36.0 ± 10.9 b

TCHO (mg/dL) 90.9 ± 5.7 b 183.5 ± 27.4 a 203.4 ± 16.9 a 199.8 ± 24.9 a

LDL (mg/dL) 3.5 ± 0.6 b 15.7 ± 6.7 a 13.3 ± 2.5 a 13.6 ± 1.7 a

HTR (%) 58.8 ± 1.7 a 34.4 ± 3.9 c 36.9 ± 2.0 b,c 37.4 ± 1.4 b

Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks, and serum samples
were then collected. Results are presented as means ± SDs (n = 8). Statistical significance was accepted for
p values < 0.05. Small letters indicate significantly different from other groups. Triglyceride (TG), total cholesterol
(TCHO), low density lipoprotein (LDL), and HDL/TCHO × 100 (HTR).
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3.5. Effect of MCR on the Antioxidative Systems of HFD-Induced Mice

Brain tissue is vulnerable to oxidative stress as it is rich in unsaturated fatty acids. When damaged
by ROS, unsaturated fatty acids are oxidized, and malondialdehyde (MDA) is produced [6]. At the end
of the 14-week experimental period, MDA content in the HFD was 0.86 ± 0.1 nM/mg of protein, which
was higher than ND group (0.53 ± 0.5 nM/mg of protein). MDA contents of MCR100 and MCR200
groups (0.75 ± 0.1 and 0.73 ± 0.0 nM/mg of protein) were reduced (Figure 4A).
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Figure 4. Antioxidant effect of Mori Cortex radicis extract (MCR) on HFD-induced cognitive dysfunction
mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks.
(A) malondialdehyde (MDA), (B) superoxide dismutase (SOD), (C) glutathione (GSH) contents,
and (D) catalase (CAT) activity in mouse brain. Results are presented as means ± SDs (n = 8). Statistical
significance was accepted for p values < 0.05. Small letters indicate significantly different from
other groups.

In order to investigate the anti-oxidative effect of MCR on HFD-induced mouse brain tissues,
we evaluated SOD and GSH contents and CAT activity. The results are summarized in Figure 4B–D,
respectively. SOD content in the HFD was lower than ND group (13.7 ± 1.2 vs. 18.1 ± 3.2 U/mg of
protein). However, it was shown that SOD content of MCR200 group was significantly higher than
in the HFD group (23.3 ± 2.9 U/mg of protein). GSH content in the HFD was lower than in the ND
group (6.2 ± 0.2 vs. 6.9 ± 0.2 nM/mg of protein). However, MCR100 and MCR 200 groups (7.6 ± 0.2,
8.6 ± 0.3 nM/mg of protein, respectively) were significantly higher than in the HFD group. CAT activity
in the HFD group was lower than in the ND group (29.7 ± 1.2 vs. 33.4 ± 1.2 nM/min/mL). However,
CAT activities in the MCR100 and MCR200 groups (34.6 ± 3.4 and 36.3 ± 1.9 nM/min/mL, respectively)
were significantly higher than in the HFD group (p < 0.05).
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3.6. Effect of MCR on AChE Activity and Protein Expression in HFD-Induced Mice

Acetylcholinesterase (AChE) is an enzyme that hydrolyzes acetylcholine. When AChE is activated,
cholinergic reactions are inhibited, which leads to memory defects [17]. To evaluate AChE regulation
by MCR in the brain tissues of HFD-induced mice, we measured AChE activity and protein expression
(Figure 5). AChE activity was 17.7% higher in HFD group than in ND group, but both MCR100
and MCR200 groups significantly decreased by 20.7% and 21.2% compared to HFD group. Similarly,
AChE protein expression was decreased by 12.6% and 36.2% in MCR100 and MCR200 groups,
respectively compared to HFD group (p < 0.05).Nutrients 2020, 12, x FOR PEER REVIEW 8 of 14 
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Figure 5. The effect of Mori Cortex radicis extract (MCR) on HFD-induced acetylcholinesterase (AChE)
activity. (A) AChE activity and (B) its protein expression. Mice were fed ND or HFD with or without
MCR (100 or 200 mg/kg b.w.) for 14 weeks. AChE activity and protein in brain tissues were measured
using an ELISA kit by western blotting, respectively. Results are presented as means ± SDs (n = 8).
Statistical significance was accepted for p values < 0.05. Small letters indicate significantly different
from other groups.

3.7. Effect of MCR on Insulin Receptor Signaling in HFD-Induced Mice

The brain consumes two-thirds of body glucose, and thus, the maintenance of optimum glucose
levels is important for cognition [5]. In order to investigate the effect of MCR on downstream
in the insulin signaling pathway in HFD-induced mice, we evaluated the basal proteins expression
levels related to the insulin receptor signaling pathway. p-IRS-1 expression was 27.4% lower in HFD
group than in ND group, but its expressions were 39.9% and 60.0% higher, respectively, in MCR100
and MCR200 groups than in HFD group (p < 0.05) (Figure 6B). The protein expressions of PI3K, p-AKT,
and GLUT4, which are downstream proteins in the insulin signaling pathway, were also evaluated.
PI3K expression was 18.1% lower in HFD group than in ND group (100.0%), but 38.7% and 58.8%
higher, respectively, in MCR100 and MCR 200 groups than in HFD group. p-AKT expression was 25.3%
lower in HFD group than in ND group, but in MCR100 and MCR200 groups were 25.8% and 27.8%
higher than in HFD group (Figure 6D). GLUT4 expression was 17.8% lower in HFD group than in ND
group, but in MCR100 and MCR200 groups were 29.2% and 28.7% higher than in HFD group (p < 0.05)
(Figure 6E).
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Bcl-2 expression in HFD group was 35.6% lower than in ND group, but both MCR100 and 
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Figure 6. The effect of Mori Cortex radicis extract (MCR) on insulin receptor signaling in HFD-induced
mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks.
Protein levels in mouse brain tissues were determined by western blotting. (A) Representative western
blots of p-IRS, PI3K, p-Akt, Akt, and GLUT4 in HFD mouse brains. Mice were fed ND or HFD with or
without MCR (100 or 200 mg/kg. b.w.) for 14 weeks. Cerebral expression levels of (B) p-IRS, (C) PI3K,
(D) p-Akt, and (E) GLUT4. Results are presented as means ± SDs (n = 8). Statistical significance
was accepted for p values < 0.05. Small letters indicate significantly different from other groups.

3.8. Effect of MCR on Neuronal Damage in HFD-Induced Mice

It has been established that disruption of insulin signaling is a major etiology of neuronal diseases
such as Alzheimer’s and Parkinson’s diseases and that brain neuronal diseases, diabetes mellitus,
and obesity are closely connected, and neurodegeneration is triggered by insulin signaling [5,18].

In the present study, we investigated the effects of MCR on p-Tau expression and Bax and Bcl-2
(pro- and anti-apoptotic proteins, respectively). p-Tau expression was 85.2% higher in HFD group than
in ND group, but 14.72 and 22.6% lower, respectively, in MCR100 and MCR200 groups than in HFD
group (p < 0.05) (Figure 7B).
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Figure 7. Protective effect of Mori Cortex radicis extract (MCR) on neuronal damage in HFD-induced
mice. Mice were fed ND or HFD with or without MCR (100 or 200 mg/kg b.w.) for 14 weeks.
Protein expression levels in brain tissues were measured by western blotting. (A) Representative
western blots of p-Tau, Tau, Bcl-2, and Bax. Cerebral protein expression levels of (B) p-Tau, (C) Bcl-2,
and (D) Bax. (E) Bcl-2/Bax ratios. Results are presented as means ± SDs (n = 8). Statistical significance
was accepted for p values < 0.05. Small letters indicate significantly different from other groups.

Bcl-2 expression in HFD group was 35.6% lower than in ND group, but both MCR100 and MCR200
groups showed 21.9% and 37.8% higher compared to HFD group (p < 0.05). Bax expression was 35.6%
higher in HFD group than in ND group but MCR100 and MCR200 groups were 35.3% and 57.0% lower
than in HFD group, respectively (p < 0.05) (Figure 7C,D). Consequently, Bcl-2/Bax ratio was 45.5%
lower in HFD group than in ND group but 74.4% and 173.3% higher in MCR100 and MCR200 groups
than in HFD group (p < 0.05) (Figure 7E).

4. Discussion

It is well known that long-term consumption of a high-fat diet can cause hypertension,
obesity, and type 2 diabetes and also induces metabolic disorders that cause oxidative stress
and damage brain tissue [3]. Metabolic diseases also exhibit insulin dysfunction, and insulin resistance
in brain tissues might lead to neurodegenerative brain diseases like Alzheimer’s disease [4,5].

MCR has been reported to have anti-diabetic, hypoglycemic, and anti-depressant effects [10,19].
Previously, we reported the antioxidant and neuroprotective effects of MCR on PC12 neuronal cells
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cultured in glucose rich media [11]. In the present study, we evaluated the effects of MCR on memory,
oxidative stress, and neuronal damage in HFD-induced group.

In this study, we used whole brain to investigate enzymes and protein expression in each
group. According to the study of Liang et al. [20], insulin signaling- and stress-related proteins
were expressed with similar patterns in both hippocampus and prefrontal cortex under high-fat diet
conditions. In addition, Chawla et al. [21] reported that diet in high fat could impair neuronal factors
in hippocampus and prefrontal cortex because both regions are responsible for learning and memory
by interacting with each other.

We observed that MCR administered at 100 or 200 mg/kg significantly inhibited HFD-induced
weight gain and HFD-induced disruptions of lipid metabolic markers (TG, LDL, and HDL levels).
Overconsumption of dietary fat increases adipose mass and promotes adipose dysfunction, and these
changes elevate free fatty acids and cause liver damage, which could impair metabolic systems
and elevate LDL levels [1]. Our results suggest that MCR improves dyslipidemia caused by HFD
consumption and inhibits weight gain.

It has been reported obesity is closely related to type 2 diabetes mellitus (T2DM). High calorie diets
increase carbohydrate accumulation and induce high glucose conditions, and the insulin resistance
detected at the onset of T2DM indicates tissues have problems utilizing insulin [22]. Insulin maintains
glucose homeostasis by reducing post-prandial blood glucose concentrations, and in a background
of obesity and type 2 diabetes, insulin fails to control blood glucose levels [6,7]. In the present study,
OGTT testing showed blood glucose levels were markedly higher in the HFD group than in the ND
group, indicating glucose intolerance. On the other hand, animals in the MCR100 and MCR200 groups
exhibited lower blood glucose spikes and lower blood glucose levels than those in the HFD group.
Similarly, Park et al. [23] found that Mori Cortex radicis extract administered for 4 weeks effectively
suppressed blood glucose in an STZ-induced mouse model of diabetes.

Epidemiological studies have shown T2DM is associated with peripheral insulin resistance
and central insulin signaling defects. Peripheral insulin resistance could induce insulin signaling
disorders in the central nervous system and cause neuronal death and reduce synapse plasticity
in the hippocampus [24]. Furthermore, these cerebral neurotransmitter dysfunctions adversely influence
learning and memory [5,25]. As Figure 3 shows, MCR improved cognition and memory of HFD fed
mice by increasing alternating behavior. In a study by Lee et al. [19], MCR administration ameliorated
abnormal behavior and immobility and recovered neurotransmitter disfunction in brain disease
induced rats.

Cognition and memory are related to the cholinergic neuronal system. Acetylcholine is produced
by combining Acetyl-CoA and choline and plays critical roles in the regulation of cognition and behavior.
Cohen et al. [26] demonstrated that AChE (an enzyme responsible for breaking down acetylcholine)
levels are increased in insulin signaling disorders, and it has also been reported that increased AChE
activity is related to acetylcholine activity and the induction of cholinergic cognitive disorder [26].
As shown in Figure 5, the administration of MCR effectively suppressed the expression of AChE,
which suggests MCR might enhance cognitive and memory functions by suppressing HFD-induced
cholinergic dysfunction.

Cell membranes are largely composed of phospholipids, and the brain contains relatively
large amounts of lipids, which are vulnerable to oxidative stress. When brain cells are attacked
by free radicals, unsaturated fatty acid, phospholipids, and lipoproteins are oxidized to lipid
peroxides and malondialdehyde (MDA) [27,28], and it has been reported obesity elevates oxidative
stress and impairs the antioxidative system. Furthermore, disruption of this system in neuronal
tissues increases ROS levels and vulnerability to ROS. Dietary antioxidants augment antioxidative
systems [28,29], and in an animal study, the administration of Dendropanax, which is rich in phenolic
compounds, to HFD group enhanced antioxidant enzyme levels and inhibited MDA production.
Kim et al. [9] demonstrated that long-term HFD consumption can trigger oxidative stress in brain cortex
and hippocampus that disrupts the antioxidative system and causes MDA accumulation, neuron



Nutrients 2020, 12, 1851 12 of 15

apoptosis and consequent cognition and memory damage. In the present study, MDA levels were
up-regulated and antioxidant enzymes (e.g., SOD, GSH, and CAT) levels were down-regulated
in the brain tissues of HFD group, and MCR administration reversed these changes. It has been
previously reported MCR contains the prenylflavonoids, such as cyclomulberrin, morusin, sanggenonI,
and kuwanonU [30] and that the prenyl group attached to the flavonoid backbone increases bioactivity
by interacting with biological membranes and target proteins [31]. Much evidence supports the ROS
scavenging effects of prenylflavonoids, and many plants containing prenylflavonoids are of medicinal
interest (e.g., Herba epimedii, hop, and licorice) and exhibit antioxidant effects [32–34]. In addition,
our previous study demonstrated that MCR inhibited oxidative stress and the apoptosis of neuronal
PC12 cells [10,11]. Thus, we suggest the antioxidative activity of MCR may be due to the various
prenylflavonoids it contains.

Chronic excessive fat and calorie consumption also increase intracellular free fatty acid levels,
change cellular signaling, and induce systematic lipid disorders leading to neuronal dysfunction [1].
Obesity, which is defined as low grade inflammation in visceral adipose tissue, is a risk factor of metabolic
syndrome and type 2 diabetes. Systemic metabolic disorders disrupt insulin functions and inhibit
activation of insulin receptors in hippocampus [1,6]. Insulin receptors take part in phosphorylation of
insulin receptor substrates, such as IRS-1 and IRS-2. These are expressed and mediate insulin action
in most tissues. [35]. In fact, the amount of insulin in hippocampus, hypothalamus, and cerebral cortex
is 10–100 times that in plasma. Insulin also promotes neuronal cell growth and increases synapse
plasticity [36]. Thus, insulin function in the central nervous system is related to homeostasis and proper
brain function [5]. The activation of insulin receptors in hippocampus increases cognition. When
insulin receptors in cell surfaces are phosphorylated, tyrosine residues of insulin receptor substrate
(IRS) family proteins are also phosphorylated and continuously activate phosphoinositide 3-kinase
(PI3K) and Akt [12]. Activation of Akt is followed by movement of glucose to hippocampus from
plasma by glucose transporters [5]. In the present study, p-IRS, PI3K, p-Akt, and GLUT4 levels
were down-regulated in HFD group, which indicates deficient insulin signaling, and MCR treatment
reversed this effect of the HFD.

PI3K/Akt also regulate Tau (microtubule binding protein), a key player in the pathogenesis of
Alzheimer’s disease [2]. Reduced PI3K and p-Akt activate GSK3β inducing Tau over-phosphorylation.
Normally, Tau regulates microtubule dynamics for cell viability and normalize axonal transport, but when
Tau is over-phosphorylated, it becomes hydrophilic, and as a result, microtubules disassemble and form
neurofibrillary tangles (NFTS), which cause synapse impairment and neurodegeneration [5,18,30].
In the present study, p-Tau levels were elevated in HFD group, which concurs with a report by
Bhat et al. [37] that a high fat and cholesterol diet increased p-Tau expression in mouse hippocampus.
On the other hand, in the present study, MCR supplementation reduced p-tau expression.

High fat consumption inhibits the functions of insulin and insulin receptors and causes
insulin signaling deficits, which result in the overproduction of ROS and apoptosis due to
mitochondrial dysfunction [9]. The PI3K/Akt pathway is downstream of the insulin transport pathway
and simultaneously regulates cell survival and death. Inhibition of Akt increases pro-apoptotic
protein expression but suppresses anti-apoptotic protein expression. Bax is a pro-apoptotic
protein and dimerizes with Bcl-2 an anti-apoptotic protein [11]. In the present study, Bax levels
were up-regulated and Bcl-2 levels down-regulated in HFD group, and MCR treatment effectively
normalized these HFD-induced changes and, consequently, increased Bcl-2/Bax ratios. In a previous
study, we examined the anti-apoptotic effect of MCR in high-glucose-treated PC12 neuronal cells [11],
which agrees with the findings of the present in vivo study.

5. Conclusions

We investigated whether MCR protects brain function through insulin signaling in an HFD
mouse model of obesity. MCR administration was found to normalize HFD-induced disruptions of
lipid and glucose metabolism and to improve cognition and memory. In addition, MCR upregulated
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the cholinergic system and normalized antioxidative imbalance and insulin resistance. Furthermore,
our results show the neuronal protective effects of MCR are due to the suppression of p-Tau production
and elevation of Bcl-2/Bax ratio as regulated by insulin signaling. Therefore, we suggest MCR could be
used to suppress obesity-induced metabolic cognitive diseases.
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