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Abstract: Vegetable oils are valuable renewable resources for the production of bio-based chemicals
and intermediates, including reactive epoxides of industrial interest. Enzymes are an environmentally
friendly alternative to chemical catalysis in oxygenation reactions, epoxidation included, with the
added advantage of their potential selectivity. The unspecific peroxygenase of Collariella virescens is
only available as a recombinant enzyme (rCviUPO), which is produced in Escherichia coli for protein
engineering and analytical-scale optimization of plant lipid oxygenation. Engineering the active
site of rCviUPO (by substituting one, two, or up to six residues of its access channel by alanines)
improved the epoxidation of individual 18-C unsaturated fatty acids and hydrolyzed sunflower oil.
The double mutation at the heme channel (F88A/T158A) enhanced epoxidation of polyunsaturated
linoleic and α–linolenic acids, with the desired diepoxides representing > 80% of the products (after
99% substrate conversion). More interestingly, process optimization increased (by 100-fold) the
hydrolyzate concentration, with up to 85% epoxidation yield, after 1 h of reaction time with the above
double variant. Under these conditions, oleic acid monoepoxide and linoleic acid diepoxide are the
main products from the sunflower oil hydrolyzate.

Keywords: unspecific peroxygenase (UPO); Collariella virescens; heme access channel; protein
engineering; epoxidation; unsaturated fatty acids; sunflower oil; process optimization

1. Introduction

The oxirane ring of epoxides has been termed the “Lord of the chemical rings” [1]
because of its high reactivity in the industrial production of bio-based chemicals and
intermediates, including binder ingredients and resins. Epoxy resins comprise a group of
cross-linkable materials, which polymerize with co-reactants (curing agents) into a matrix
that can be used in a wide range of applications. Epoxy resins and curing agents usually
contain more than one reaction site per molecule, to allow multiple crosslink reactions
between them. Vegetable oils are one of the most important renewable feedstocks for a
bio-based chemical industry [2–4]. The epoxides produced from oil fatty acids are possible
ingredients for industrial resins (e.g., for board production), as long as they meet the
required reaction selectivity and crosslinking properties.

Fatty acid epoxidation is industrially performed by the Prileschajew reaction [5] via
percarboxylic acids, traditionally generated by strong acids [6], but also using formic
acid [7] or ion-exchange resin [8]. Attempts to use milder conditions include chemoenzy-
matic lipase–H2O2 reactions on oils, free fatty acids, and their methyl esters [9–14], which
maintain the drawbacks due to the use of peracids and direct enzymatic epoxidation. Some
plant peroxygenases [15], cytochrome P450 monooxygenases [16], and fungal unspecific
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peroxygenases (UPOs) [17] catalyze the direct epoxidation of (poly)unsaturated fatty acids.
The latter enzymes present advantages related to their self-sufficiency (being independent
of auxiliary proteins/modules and sources of reducing power) and secreted nature (being
more stable than intracellular enzymes with monooxygenase activity) [18,19]. UPOs were
known as aromatic peroxygenases [20], but, after first reports on their action on alkanes,
fatty acids, and alcohols [21,22], numerous examples have shown their wide versatility
on aliphatic compounds, including epoxidation reactions [23] and the name changed to
unspecific peroxygenases (EC 1.11.2.1). The mechanism of this epoxidation reaction is
illustrated in the catalytic cycle shown in Figure 1. This reaction is characterized by the
presence of a modified compound II–substrate complex (Cpd II*), absent from the general
peroxidase/peroxygenase catalytic cycle, that facilitates epoxide cyclization [19].
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Figure 1. Proposed epoxidation cycle of UPO, showing activation of the ground state enzyme by
H2O2, through hydroperoxo compound-0 (Cpd 0), to form reactive Cpd I able to epoxidize double
bonds via a transient oxoferryl–substrate radical complex (Cpd II*). Reprinted from Ref. [19], 2020,
Academic Press.

Recent studies on structure–function relationships in fatty-acid oxygenation by UPOs
have revealed that the different peroxygenation patterns (enzyme regioselectivity) are
ruled by the structure of the heme channel [24–26]. A good accessibility of the double
bond of unsaturated fatty acids to the oxo group of the heme compound I (Cpd I formed
after UPO activation by peroxide) is the key of the oxygenation reactions. In this way,
different UPOs are able to produce different sets of oxygenated products (epoxy, hydroxy,
and hydroxy–epoxy derivatives included) [17,21,27].

The UPO from the ascomycete Collariella virescens (syn. Chaetomium virescens; CviUPO)
has been heterologously expressed in Escherichia coli and the recombinant enzyme (rCviUPO),
isolated without any purification tag [28]. The obtained amounts are suitable for structure–
function and (analytical scale) reaction optimization, making it a good starting point for
future UPO studies. Moreover, rCviUPO shows good conversion of unsaturated fatty acids
and, in contrast to other UPOs, generates epoxides as main products [25].

rCviUPO was already engineered by site-directed mutagenesis [25] in an initial at-
tempt to mimic the heme environment of the UPO of related Chaetomium globosum, which
efficiently epoxidizes unsaturated fatty acids [17]. Then, it was found that conversion of
polyunsaturated omega 6 fatty acids (i.e., those with a double bond at the sixth position
from the omega end) by the F88L variant of rCviUPO promoted diepoxidation [29]. This
was explained by a wider heme access channel, facilitating epoxidation of two double bonds.
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Increased epoxidation selectivity was also reported for the I153T variant of the Marasmius
rotula enzyme [26], the first UPO heterologously expressed in E. coli (rMroUPO) [30]. How-
ever, rMroUPO has the disadvantage, compared to rCviUPO, of its much lower expression
in E. coli as a soluble enzyme.

In the present work, we aimed to improve the conversion yield and selectivity of
plant lipid epoxidation by rCviUPO via two different strategies: (i) enzyme engineering
to achieve two epoxy groups per molecule, and (ii) analytical scale optimization of the
reaction parameters to epoxidize hydrolyzed vegetable oil.

2. Materials and Methods
2.1. Production of Native Enzyme and Site-Directed Variants

The CviUPO sequence [31] was optimized for E. coli expression (using the software
Optimizer) [32], synthesized, cloned, and produced as previously described [28]. The non-
mutated recombinant (hereinafter native) enzyme was purified by two chromatographic
steps in an Äkta (GE Healthcare, Chicago, IL, USA) fast liquid chromatography system.
The first step was cation exchange chromatography with a HiTrap SPFF column (GE,
Healthcare, Chicago, IL, USA) in 10 mM Tris (pH 7.4). The proteins, eluted as a single peak
(recorded at 420 nm) with a gradient of the same buffer supplemented with 1 M NaCl,
were concentrated in an Amicon 3K device (Sigma-Aldrich, Saint Louis, MO, USA). The
second step (to ensure protein purity) was size-exclusion chromatography with a Superdex
75 column (10/300 GL; GE Healthcare, Chicago, IL, USA) in 10 mM Tris (pH 7.4) with
0.15 M NaCl.

A molecular model of the CviUPO structure was obtained at the Swiss-Model server
(http://swissmodel.expasy.org, accessed on 1 March 2022) [33] with the structure of the
first-reported [34] and crystallized [35] UPO of Agrocybe aegerita (AaeUPO) as a template
(PDB entry 2YP1). This model was used for the design of four mutated variants with
progressively enlarged heme access channels. The F88A and T158A single mutations were
introduced in the CviUPO gene cloned in pET23a using the Expand Long Template PCR
kit from Roche (Basel, Switzerland) and the following oligonucleotides as primers (direct
sequences with the mutated codons underlined): F88A: 5′-ACT TAC ACC GTT CAG CAG
CGT ATC GCG AGT TAC GGT GAA ACG-3′, T158A: 5′-AAC CGC CAT AAC CTG GCG
GAA CAT GAT GCA TCT C-3′. For double mutation, the vector containing the CviUPO
gene with the first mutation was used as a template. The PCR products were digested with
DpnI and transformed into E. coli DH5α for propagation. The gene of the 6Ala sextuple
variant—including the L64A, I61A, F88A, T157A, T158A, and T165A mutations—was
synthesized by ATG-biosynthetics GmbH (Merzhausen, Germany). All the variants were
produced in E. coli as active cytosolic enzymes, and purified as described above for the
native rCviUPO.

Enzyme purity was confirmed under denaturing conditions by 12% polyacrylamide
gel electrophoresis (PAGE) in the presence of 0.1% sodium dodecyl sulfate (SDS) and 1%
mercaptoethanol [36]. Proper folding and binding of the cofactor were verified by analyzing
the UV–visible spectrum of the resting state of the enzymes in 10 mM Tris (pH 7.4) using a
Cary 60 spectrophotometer (Agilent, Santa Clara, CA, USA). Additionally, formation of
the characteristic complex between reduced heme-thiolate enzymes (ferrous form) and
carbon monoxide (CO) was assessed in 0.2 M phosphate (pH 8) after addition of Na2S2O4
and CO flushing. UPO concentrations were calculated using the rCviUPO molar extinction
coefficient of E420 = 114.2 mM−1·cm−1 [28].

2.2. Enzyme Kinetics

Optimal pH values for oxidation of several UPO substrates—namely veratryl and
benzyl alcohols (10 mM) and naphthalene (1 mM) from Merck (Darmstadt, Germany)
and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS; 2 mM) from Boehringer
Mannheim (Mannheim, Germany)—by the native rCviUPO and its variants were analyzed

http://swissmodel.expasy.org
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in the range of pH 2–10 using 0.2 M Britton–Robinson buffer, at 24 ◦C, in the presence of
1 mM H2O2.

Kinetic curves for the above enzyme-reducing substrates were obtained (with spec-
trophotometric assays) from the initial (10–30 s) increase of product absorbance, using a
Thermo Spectronic UV–visible spectrophotometer (Waltham, MA, USA) at the optimal pH
for each enzyme and substrate. Oxidation of veratryl alcohol (0.09–50 mM, in 0.1 M acetate,
pH 3 or 5) was followed at 310 nm (E310 = 9300 M−1·cm−1), benzyl alcohol (0.3–50 mM,
in 0.1 M Tris, pH 6) at 280 nm (E280 = 1400 M−1·cm−1), naphthalene (0.03–2 mM, in 0.1 M
tartrate, pH 6, with 5% ethanol) at 303 nm (E303 = 2030 M−1·cm−1), and ABTS (0.04–5 mM
in 0.1 M acetate, pH 4) at 436 nm (E436 = 29,300 M−1·cm−1). Reactions (1 mL) were trig-
gered by the addition of 1 mM or 24 mM H2O2. Kinetic curves for H2O2 were obtained
with different peroxide concentrations (0.5–30 mM, in 0.1 M acetate, pH 4) in the presence
of 2.5 mM ABTS whose (one-electron) oxidation was monitored at 436 nm (as explained
above) for activity estimation (note that two moles of ABTS are oxidized by each mole of
peroxide), and the H2O2 Km values were obtained.

Kinetic curves for oleic acid oxidation (estimated chromatographically) were obtained
by varying the concentration from 12.5 µM to 1.6 mM substrate, in 50 mM phosphate (pH 7)
containing 20% acetone (v/v). Reactions (1 mL) were triggered by the addition of 24 mM
H2O2 and stopped after 1 min by vigorous shaking with 100 µL of 0.1 M sodium azide. The
oxygenated products were extracted, analyzed by gas chromatography–mass spectrometry
(GC-MS) as described below, and their total abundance was used for the calculation of
kinetic constants. All reactions were carried out in triplicate.

Curve-fit and data analysis for kinetic constant estimation were carried out using
Sigma Plot 11.0. Michaelis–Menten constant (Km) and turnover number (catalytic con-
stant, kcat), and their standard errors were obtained by non-linear fitting the kobs values
to Equation (1) (Michaelis–Menten model) except for (i) ABTS oxidation by rCviUPO and
T158A using 1 mM H2O2; (ii) ABTS oxidation by F88A (using either 1 mM or 24 mM H2O2);
(iii) benzyl alcohol oxidation by F88A and F88A/T158A using 1 mM H2O2;
(iv) oleic acid oxidation by the F88A, F88A/T158A, and 6Ala variants; (v) H2O2 reduction
(in presence of 2.5 mM ABTS) by rCviUPO and T158A variant, where enzyme inhibition
was observed, being therefore adjusted to Equation (2) (with the ki inhibition constant being
the concentration producing half maximum inhibition); and (vi) benzyl alcohol oxidation
by rCviUPO and T158A using 1 mM H2O2 that was adjusted to Equation (3) (Hill model
with nH providing a measurement of the cooperativity of the substrate binding to the
enzyme, and K0.5 being the substrate concentration for half saturation).

f =
kcat S

Km + S
(1)

f =
kcat

1 + Km
S + S

ki

(2)

f =
y0 + kcatSnH

K0.5nH + SnH
(3)

2.3. Epoxidation of Individual Fatty Acids and Oil Hydrolyzate

For evaluating the UPO epoxidation ability, the following 18-C unsaturated fatty
acids (from Sigma-Aldrich, Saint Louis, MO, USA) were used as substrates: oleic (cis-9-
octadecenoic, C18:1), linoleic (cis,cis-9,12-octadecadienoic, C18:2), and α-linolenic (cis,cis,cis-
9,12,15-octadecatrienoic, C18:3) acids. Reactions running for 30 min were performed using
0.1 mM substrate, 0.25 or 0.4 µM enzyme (C18:1/C18:3 or C18:2 reactions, respectively),
and 1.25 mM H2O2 in 50 mM phosphate (pH 7), at 30 ◦C in the presence of 20% acetone (for
better substrate solubilization). For more complete characterization, epoxyoleic acid was
prepared in larger scale (50 mL) reactions and purified by silica gel (60–200 µm) column
chromatography using hexane–EtOAc (10:1→ 5:1) as the mobile phase.
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Oil hydrolyzate was assayed for epoxide production as a more economical and sus-
tainable substrate than pure fatty acids. Sunflower oil (supplied by Cargill in the frame of
the project SusBind, https://susbind.eu, accessed on 1 March 2022) was saponified and the
hydrolyzed fatty acids extracted at acidic pH as previously described [37]. Initial reactions
were performed for 30 min using 0.1 mM hydrolyzate, 0.25 µM enzyme, and 1 mM H2O2
in 50 mM phosphate buffer (pH 7) containing 20% acetone (conditions similar to those
used with individual fatty acids). In further reactions, up to 10 mM oil hydrolyzate was
used, and the effect of several variables was studied including: pH 5.5/7.0, 20/30% acetone
cosolvent, 0.25/0.50 µM enzyme (resulting in 100–400 substrate/enzyme (S/E) molar ratio),
1–100 mM H2O2 (resulting in 1.0–6.8 equivalents per fatty-acid double bond) added with a
syringe pump, and 30/60 min reaction time. Given the results obtained with individual
fatty acids, the F88A/T158A variant was selected for hydrolyzate reactions, compared with
native rCviUPO. Epoxidation yields were calculated taking into account the epoxidation
degree, the number of unsaturations, and the reaction conversion for each substrate. In all
cases, control experiments were carried out under the same conditions (H2O2 included),
but in the absence of enzyme.

2.4. GC-MS Analyses

Products (and unreacted substrates) from the above reactions were liquid–liquid
extracted with methyl tert-butyl ether (Sigma-Aldrich, Saint Louis, MO, USA), which
was evaporated under a N2 stream. N,O-Bis(trimethylsilyl)trifluoroacetamide (Supelco,
Bellefonte, PA, USA) was used to prepare trimethylsilyl derivatives. The GC-MS analyses
were performed with an Agilent (Santa Clara, CA, USA) GC-MS QP2020 Ultra equipment
using a fused-silica DB-5HT 30 m capillary column from J&W Scientific (Folsom, CA, USA).
The oven was heated from 120 ◦C (1 min) to 300 ◦C (15 min) at 5 ◦C min−1. The injector and
transfer line were kept at 300 ◦C. Compounds were identified by mass fragmentography
and comparison of their mass spectra with those of authentic standards. Quantifications
were obtained from total-ion peak areas (after deconvolution when partial overlapping
was observed) and molar response factors of the same or similar compounds.

2.5. Chiral Analyses

Chiral analyses of epoxides of oleic acid were performed after derivatization into
methyl esters (using trimethylsylyldiazomethane from Sigma-Aldrich, Saint Louis, MO,
USA) with a Shimadzu (Kyoto, Japan) i-Prominence 2030C high-performance liquid chro-
matography (HPLC) equipment using an OB-H (250 × 4.6 cm, 5 µm particle) column from
Daicel (Osaka, Japan). Compounds were eluted with hexane–iPrOH-AcOH (99.65:0.3:0.05),
at a flow rate of 0.8 mL·min−1 and monitored at 202 nm. Enantiomer assignment was done
following the reported literature [38].

3. Results and Discussion
3.1. Design and Catalytic Characterization of rCviUPO Variants

Previous results with rCviUPO variants [25] led us to study the further broadening
of its heme channel. For simplicity, the residues surrounding heme access were mutated
into alanines; two simple (F88A and T158A), one double (F88A/T158A), and one sextuple
(I61A/L64A/F88A/T157A/T158A/T165A) variants were designed (Figure 2). The variants
were expressed as soluble active enzymes, and purified by a combination of cation exchange
and size-exclusion chromatography [28]. In all cases, electrophoretic homogeneity was
attained, as revealed by SDS-PAGE (Figure S1). Moreover, correct incorporation of the
heme-thiolate group was confirmed by spectrophotometric analysis of the enzyme resting
state, with the reduced enzyme complex with CO (Figure S2 main panels and insets,
respectively) exhibiting characteristic maxima around 420 and 440 nm, respectively.

https://susbind.eu
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surfaces; the already-introduced alanines (yellow labels in C–F) show brown surfaces.

First, the optimal pH for oxidation of four peroxidase/peroxygenase substrates was
determined for the native rCviUPO and variants (Figure S3). Kinetic curves and constants
were first obtained with 1 mM H2O2 as the enzyme-oxidizing substrate (Figure S4A–D and
Table S1, respectively). Catalytic constants for H2O2 were determined using 2.5 mM ABTS
as co-substrate. It was observed that the native rCviUPO and its T158A variant are inhibited
by high H2O2 concentrations (Figure S4E), with inhibition constants (ki) of 5.6 mM and
1.8 mM, respectively (Table 1). The rCviUPO variants showed decreased catalytic efficiency
for the enzyme-oxidizing substrate, due to 6- to 15-fold lower affinity for H2O2 than the
native rCviUPO, with all the Km values > 1 mM (native rCviUPO included). Therefore, the
kcat values for the different enzyme-reducing substrates would be often undervalued under
the above conditions.

Table 1. Kinetic constants for H2O2 reaction with native rCviUPO and variants.

Km (µM) kcat/Km (s−1·mM−1) ki (µM)

Native 1600 ± 468 374 ± 129 5580 ± 1800
F88A 16,300 ± 2900 29 ± 6 -

T158A 23,800 ± 13,700 127 ± 99 1790 ± 1000
F88A/T158A 9370 ± 880 55 ± 6 -

6Ala 14,800 ± 1600 0.7 ± 0.1 -
Measured in 100 mM acetate (pH 4) with 2.5 mM ABTS as reducing substrate. The high error values in the
rCviUPO and T158A constants originate from the use of Equation (2) due to observed inhibition (Figure S4E)
that, despite the good adjustments (R2 values of 0.988 and 0.997, respectively), has limited precision in predicting
kinetic constants.

For this reason, second sets of kinetic curves and constants were obtained using
24 mM H2O2 (Figure S4F–I and Table S2, respectively) for better enzyme saturation. Under
these conditions, increased catalytic efficiency of the simple and double variants could
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be observed. For F88A/T158A, up to 75-, 10- and 4-fold increases (with respect to native
rCviUPO) were found for naphthalene, veratryl alcohol/ABTS, and benzyl alcohol, respec-
tively. The broadest channel variant 6Ala showed improved affinity with all substrates, but
often also lower reaction rates, resulting in lower catalytic efficiency.

Concerning oleic acid oxygenation by native rCviUPO and variants (Table 2), smaller
differences in kinetic constants than those found for the other substrates were generally
observed. Among them, it is worth mentioning the following: (i) a 50% increase of cat-
alytic efficiency by the F88A/T158A variant, due to moderate improvements in both
affinity and turnover; and (ii) over 5-fold reduction in catalytic efficiency by the F88A and
6Ala variants.

Table 2. Kinetic constants for oleic acid oxygenation by native rCviUPO and variants.

kcat (s−1) Km (µM) kcat/Km
(s−1·mM−1) ki (µM)

Native 12.6 ± 0.3 58.8 ± 6.0 214 ± 53 -
F88A 10.5 ± 1.7 278.0 ± 49.0 38 ± 9 1120 ± 400

T158A 21.0 ± 1.1 89.0 ± 16.4 184 ± 35 -
F88A/T158A 16.5 ± 0.5 51.6 ± 5.4 319 ± 35 2900 ± 610

6Ala 16.6 ± 3.6 399.0 ± 94.6 42 ± 13 1360 ± 710
The kinetic constants were measured in 50 mM phosphate buffer (pH 7) in the presence of 24 mM H2O2.

The structural changes introduced in the new variants generated some catalytic im-
provements in oxygenation ability, particularly with the F88A/T158A variant compared
with the native rCviUPO, as shown using naphthalene and oleic acid. These results indi-
cate that this heme channel variant is a potentially interesting epoxidation biocatalyst, as
described below.

3.2. Fatty-Acid Oxygenation Patterns by rCviUPO and Heme-Channel Variants

GC-MS analyses revealed different oxygenation products in the reactions of oleic,
linoleic, and α-linolenic acids with rCviUPO and its F88A, T158A, F158A/T158A, and
6Ala variants (see chromatographic profiles in Figures S5–S7). The relative abundance of
the different product classes—namely 9-epoxy, 12-epoxy, 15-epoxy, diepoxy, OH-/keto,
and OH-epoxy derivatives—together with the conversion percentage and the epoxidation
yield, are indicated in Table 3. In all cases, up to 88–99% conversions were attained with
the native enzyme and its variants. Due to the native rCviUPO selectivity towards mono-
epoxidation, its epoxidation yield decreased from oleic acid (71%) to α-linolenic acid (32%).
However, the changes introduced in the mutated variants improved the epoxidation yields,
reaching 93% with oleic acid (T158A), 90% with linoleic acid (F88A/T158A), and 60% with
α-linolenic acid (F88A/T158A).

Concerning the products, chromatograms in Figure 3 illustrate the most interesting
reactions: (i) preferential epoxidation of oleic acid by the 6Ala variant (B) without the fatty
acid hydroxylated derivatives (at the allylic position) formed by the native enzyme (A),
and (ii) preferential diepoxidation (>80% of products) of linoleic and α–linolenic acids
(D and F, respectively) by the F88A/T158A variant instead of the mono-epoxidation pro-
duced by the native enzyme (C and E, respectively).
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Table 3. Fatty acid conversion, percentages of main products, and epoxidation yield (calculated with
respect to the total number of double bonds present) in the reactions of 18-C fatty acids with native
rCviUPO and four heme channel variants.

Conversion Products (%) Epoxidation

(%) 15-Epoxy 12-Epoxy 9-Epoxy Diepoxy OH/Keto OH-Epoxy Yield (%)

C18:1
Native 96 - - 71 - 28 1 71
F88A 97 - - 69 - 6 25 91

T158A 98 - - 87 - 5 8 93
F88A/T158A 95 - - 63 - 13 24 82

6Ala 96 - - 96 - 4 - 92

C18:2
Native 97 - 56 10 - 8 26 45
F88A 98 - 15 2 46 12 25 66

T158A 88 - 23 17 29 27 4 43
F88A/T158A 99 - 4 - 81 - 15 90

6Ala 99 - - 25 64 - 11 81

C18:3
Native 96 77 6 2 - - 15 32
F88A 98 16 6 4 53 8 13 47

T158A 98 26 30 17 3 20 3 27
F88A/T158A 99 2 3 - 82 - 13 60

6Ala 99 17 35 16 10 16 6 47

The products from 30 min reactions of 0.25 µM or 0.40 µM enzyme with C18:1/C18:3 and C18:2, respectively, in
50 mM phosphate buffer (pH 7) containing 20% acetone, were extracted with methyl tert-butyl ether and analyzed
by GC-MS as trimethylsilyl derivatives.

Finally, encouraged by the recently reported enantioselectivity of fatty acid mono-
epoxidations with UPOs [24,25], reactions with oleic acid were carried out at a larger scale,
and the epoxyoleic products were purified prior to chiral HPLC analysis. The 6Ala variant
was selected due to its high regioselectivity to the epoxide, together with the F88A/T158A
variant as the best UPO in terms of the overall epoxidation yield with all substrates (and
native rCviUPO for comparative purposes). The results obtained (Figure S8) revealed only
low enantioselectivity with the three enzymes (ee 0–40%), although an inversion of the
configuration of the main enantiomer was produced between the F88A/T158A and 6Ala
variants (70% S/R and 60% R/S, respectively).

3.3. Optimization of Hydrolyzed Sunflower Oil Epoxidation

After testing the rCviUPO variants on individual unsaturated fatty acids, the goal was
to accomplish the epoxidation of hydrolyzed vegetable oil. For this purpose, a sunflower oil
hydrolyzate was used as substrate, and several parameters—including substrate, enzyme,
and H2O2 concentrations, among others—were optimized.

Firstly, reactions under the same conditions used with pure fatty acids were performed
on hydrolyzed sunflower oil (0.1 mM) using native rCviUPO and its F88A/T158A variant
(Figure 4A,B, respectively). Both enzymes were able to convert the oil unsaturated fatty
acids with similar regioselectivity, forming (i) monoepoxides from oleic acid and linoleic
acid (at 9 and 12 positions) as main products, (ii) two diepoxy isomers (anti and syn)
from linoleic acid, more abundant in the F88A/T158A reaction; and (iii) small amounts
of hydroxy- and hydroxy-epoxy derivatives of oleic acid and linoleic acids, together with
some minor products.
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Figure 3. GC-MS profiles of selected epoxidation reactions of: (i) oleic acid (C18:1) treated with the
6Ala variant (B) compared with native rCviUPO (A), (ii) linoleic acid treated with the F88A/T158A
variant (D) compared with the native rCviUPO (C), and (iii) α–linolenic acid treated with the
F88A/T158A variant (F) compared with the native rCviUPO (E) (see Figures S5–S7 for the whole set
of reactions). Mixtures containing 0.1 mM substrate, 0.25–0.40 µM enzyme, and 1.25 mM H2O2 were
incubated for 30 min, extracted, and derivatized before GC-MS analysis.

Then, differences in the epoxidation yields were observed when varying the en-
zyme dose, using different substrate/enzyme (S/E) molar ratios. As shown in Table 4
(entries 1–6), increasing the rCviUPO dose did not result in improved epoxidation yield,
but doubling the amount of F88A/T158A (0.5 µM, S/E ratio 200) yielded higher amounts
of diepoxides from linoleic acid (the epoxidation of oleic acid was retained); consequently,
a better epoxidation yield (72%) was attained. Nevertheless, a 1 µM dose of the double
variant (S/E ratio 100) produced virtually the same epoxidation profile. Therefore, opti-
mal 400 and 200 S/E ratios were fixed for further scale up with rCviUPO and its double
variant, respectively.
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Figure 4. GC-MS profiles of UPO reactions with sunflower oil hydrolyzate. (A,B) Initial treatment of
0.1 mM oil hydrolyzate with 0.25 µM rCviUPO and its F88A/T158A variant, respectively, for 30 min
in 50 mM phosphate (pH 7) containing 20% acetone and 1 mM H2O2. (C,D) Optimized treatment of
10 mM oil hydrolyzate with 25 µM rCviUPO and 50 µM F88A/T158A for 60 min in 50 mM phosphate
buffer (pH 7) containing 30% acetone and 25 mM H2O2.
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Table 4. Optimizing epoxidation yield (as percentage of the number of total double bonds present) in
treatment of sunflower oil hydrolyzate with the selected rCviUPO variant (F88A/T158A) compared
with native enzyme, by varying reaction parameters—such as substrate loading (mM), enzyme dose
(µM), substrate/enzyme (S/E) molar ratio, acetone content (v/v %), H2O2 dose (mM and equivalents
per fatty-acid double bond), and time (min)—under different combinations (entries 1–17).

Entry Preparation Substrate,
mM

Enzyme, µM
(S/E Ratio) Acetone, % H2O2, mM

(Equiv) Time, min Epoxidation
Yield, %

1 native 0.1 0.25 (400) 20 1 (6.8) 30 54
2 native 0.1 0.5 (200) 20 1 (6.8) 30 52
3 native 0.1 1 (100) 20 1 (6.8) 30 53
4 F88A/T158A 0.1 0.25 (400) 20 1 (6.8) 30 59
5 F88A/T158A 0.1 0.5 (200) 20 1 (6.8) 30 72
6 F88A/T158A 0.1 1 (100) 20 1 (6.8) 30 75

7 native 5 12.5 (400) 20 50 (6.8) 30 8
8 native 5 12.5 (400) 20 50 (6.8) 60 28
9 F88A/T158A 5 25 (200) 20 50 (6.8) 30 35
10 F88A/T158A 5 25 (200) 20 50 (6.8) 60 84

11 native 10 25 (400) 20 100 (6.8) 60 37
12 native 10 25 (400) 30 100 (6.8) 60 56
13 F88A/T158A 10 50 (200) 20 100 (6.8) 60 40
14 F88A/T158A 10 50 (200) 30 100 (6.8) 60 79
15 F88A/T158A 10 50 (200) 30 50 (3.4) 60 78
16 F88A/T158A 10 50 (200) 30 25 (1.7) 60 85
17 F88A/T158A 10 50 (200) 30 15 (1.0) 60 44

However, when the substrate loading was increased to 5 mM (Table 4 entries 7–10), its
conversion rate decayed with both enzymes within 30 min reactions. Therefore, an exten-
sion of the reaction time up to 60 min was needed to reverse the epoxidation performance
with the F88A/T158A variant at the initial reaction level (entry 10). In fact, the reaction
time becomes critical in UPO epoxidation of fatty acids when the substrate concentration is
close to the solvent saturation [28].

Finally, with 10 mM substrate loading (Table 4 entries 11–17), the importance of the
substrate solubilization was revealed by comparing the epoxidation yields with 20% and
30% acetone cosolvent. With both enzymes, 20% acetone resulted in low conversion and
epoxidation yields (longer times did not improve the results). However, the complete
solubilization of substrates using 30% acetone improved the epoxidation yield, especially
with the double variant (entry 14) forming mono and diepoxide amounts similar to those
observed in reactions with a lower substrate concentration.

With the enzyme dose, amount of co-solvent, and reaction time already optimized,
assays were conducted to determine the lowest dose of H2O2 that enables the production
of the highest epoxidation yield. As depicted in Table 4, the highest epoxidation yield (85%)
was attained using only 1.7 equivalents of this oxidizer (entry 16), compared with the 6.8
(used in most previous assays) and 3.4 (entry 15) equivalents, while adding a stoichiometric
amount of H2O2 (entry 17) led to a decrease in epoxidation yield (to only 44%).

The pattern of oxygenation products produced under optimized conditions
(Figure 4C,D) was similar to that obtained previously, with linoleic acid diepoxides and
oleic acid monoepoxide as the main products in the F88A/T158A reactions. No triepoxides
were detected in any of the reactions, due to the low α–linolenic acid content of sunflower
oil [37]. The above results reveal the remarkable potential of the rCviUPO double variant
for epoxidizing sunflower oil hydrolyzate, demonstrating a much higher conversion yield
than the native enzyme.
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4. Conclusions

Opening the rCviUPO heme access channel allowed us to improve the epoxidation ac-
tivity of this enzyme, selected for protein engineering in E. coli. In this way, the variant with
the widest channel, after a sextuple mutation, yielded the highest epoxidation of oleic acid
to the corresponding monoepoxide (with less than 5% of other oxygenation products). In
contrast, a double variant (F88A/T158A) produced the best conversion of both linoleic and
α–linolenic acids with diepoxides, of interest as crosslinking molecules, representing > 80%
of products. Under the same conditions used for individual fatty acids, the double variant
also converted hydrolyzed sunflower oil with a higher epoxidation yield than the native
enzyme. Moreover, process optimization permitted us to increase (×100) the hydrolyzate
concentration, epoxidizing 85% of double bonds after 1 h of reaction time with the mutated
double variant. UPO engineering, strongly limited in the past by difficulties in heterologous
expression of these enzymes in adequate hosts, is a requirement for developing the large
repertoire of reactions of industrial relevance suggested in recent reviews [23,39–45] on an
enzyme family of the highest interest for selective oxyfunctionalization reactions [46].

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/antiox11050915/s1. Kinetic constants for substrate ox-
idation by native rCviUPO and variants in the presence of 1 mM and 24 mM H2O2 (Table S1 and
Table S2, respectively); SDS-PAGE of purified native rCviUPO and variants (Figure S1); UV–visible
spectra of resting states and CO complexes of rCviUPO and variants (Figure S2); Effect of pH on the
oxidation of different substrates (Figure S3); Kinetic curves for different UPO reducing substrates and
H2O2 (Figure S4); GC-MS analyses of oleic, linoleic, and α–linolenic acids reactions with CviUPO
and four heme channel variants (Figure S5, Figure S6 and S7, respectively); and Chiral HPLC analysis
of oleic acid epoxide (Figure S8).
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