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Protein AMPylation refers to the covalent attachment of an AMP moiety to the
amino acid side chains of target proteins using ATP as nucleotide donor. This
process is catalysed by dedicated AMP transferases, called AMPylases. Since
this initial discovery, several research groups have identified AMPylation as
a critical post-translational modification relevant to normal and pathological
cell signalling in both bacteria and metazoans. Bacterial AMPylases are
abundant enzymes that either regulate the function of endogenous bacterial
proteins or are translocated into host cells to hijack host cell signalling pro-
cesses. By contrast, only two classes of metazoan AMPylases have been
identified so far: enzymes containing a conserved filamentation induced by
cAMP (Fic) domain (Fic AMPylases), which primarily modify the ER-resident
chaperone BiP, and SelO, a mitochondrial AMPylase involved in redox signal-
ling. In this review, we compare and contrast bacterial and metazoan Fic and
non-Fic AMPylases, and summarize recent technological and conceptual
developments in the emerging field of AMPylation.
1. Introduction
Post-translational modifications (PTMs) may regulate proteins by activating or
repressing protein function, allowing protein oligo- or monomerization or instal-
ling binding sites for allosteric interactors. The nature and impact of PTMs is
diverse: some PTMs are irreversible and stable while others are transient and
can be removed by dedicated enzymes in response to cellular cues. While
some PTMs—such as glycosylation, lipidation or phosphorylation—have been
studied extensively, others, like UMPylation, glutaminylation or AMPylation,
have only recently begun to garner interest. AMPylation, also referred to as ade-
nylylation, is conferred by AMPylases, which belong to four distinct protein
families: fic domain-containing (FicD) enzymes, selenoproteins (SelO), gluta-
mine synthetase adenylyl transferases (GS-ATase) and DrrA. These enzymes
catalyse the formation of a covalent bond between the phosphate group of
AMP and an accessible Ser, Thr or Tyr hydroxyl group of the target protein.

The FicD family of AMPylases is the most abundant, with more than 63 000
members (InterPro domain IPR003812 [1]) encompassing all three kingdoms of
life (Archaea, Bacteria and Eukaryota). Almost all AMPylases contain the con-
served Fic motif (HxFx(D/E)GN(G/K)RxxR) within their active site, which is
essential for nucleotide transfer. While most FicD enzymes catalyse AMPylation,
others have acquired their own novel functions. For example, the bacteriophage-
encoded FicD protein, Doc, abrogates bacterial cell division and propagation
through phosphorylation of the bacterial translation elongation factor EF-Tu
[2,3]. Similarly, AnkX, a FicD enzyme encoded by Legionella pneumophila,
engages in phosphocholination of Rab GTPases, disrupting endosome trafficking
and intracellular secretory pathways [4]. Furthermore, some metazoan [5,6] and
bacterial AMPylases [7] can also accept and transfer other nucleotides, leading to
protein CMPylation, GMPylation and UMPylation.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.210009&domain=pdf&date_stamp=2021-05-05
mailto:mtruttma@med.umich.edu
http://orcid.org/
http://orcid.org/0000-0003-2626-5763
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Asn354

Arg359

Arg356

Asp352

Asp112

Asp150 Asp110 Asp249

His348

(a)

(b)

Thr35 (CDC42/Rac1)

Fic Motif conserved sequence: HxFxDG1NG2R1xxR2

Tyr77 (Rab1)

Figure 1. Mechanisms of target AMPylation. (a) Reaction scheme of Rab1 AMPylation by non-Fic AMPylase DrrA. Asp150, Asp110 and Asp249 are involved in
coordination of the divalent cation; Asp112 is involved in deprotonation of the incoming target side chain (Tyr77 of Rab1). (b) Reaction scheme of CDC42/
Rac1 AMPylation by Fic domain containing bacterial AMPylase VopS. The conserved His acts as a proton sink and deprotonates Thr35 of Cdc42/Rac1. The
figure emphasizes the significance of Fic motif in coordinating the phosphates of the ATP molecule and catalysing AMP transfer. ATP molecule is depicted in
green, and red arrows depict the reaction steps during AMPylation. This figure has been modified from Hedberg C. and Itzen A [8] and Gavriljuk et.al. [9].
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In contrast to FicD enzymes, GS-ATase, DrrA and the
eukaryotic pseudokinase, SelO, do not contain the conserved
FicD, and employ a catalytic mechanism distinct from FicD
AMPylases (figure 1). These AMPylases, together with puta-
tive additional AMPylases and deAMPylases, define the
protein AMPylome, or the universe of AMPylated proteins.

In this review,wediscuss bacterialAMPylases thatAMPylate
eukaryotic proteins as a means to subvert host cell signalling,
and metazoan AMPylases that modify endogenous substrates
involved in regulatingprotein homeostasis andother physiologi-
cal processes. We will not discuss bacterial AMPylases that
modify endogenous substrates which are discussed in excellent
reviews by Woolery et al. [10] and Casey et al. [11]
2. Bacterial AMPylases that AMPylate
eukaryotic targets

2.1. Non-FIC AMPylases
DrrA (SidM), one of many Type IV secretion system effector
proteins employed by the intracellular pathogen Legionella
pneumophilia, facilitates the active recruitment of vesicles exit-
ing the ER, which adversely affects ER-Golgi transport [12].
The function of these effector proteins is to prevent fusion
of the Legionella-containing vacuole (LCV) with lysosomes,
and engage in vacuole remodelling by recruiting ER-derived



Box 1. GS-ATase: a bifunctional AMPylase.

One of the earliest pieces of evidence of AMPylation as a PTM came from a study conducted by Anderson et al. who ident-
ified the bacterial enzyme glutamine synthetase adenylyl-transferase (GS-ATase) to be acting as an AMPylase [20]. GS-ATase
catalyses the synthesis of L-Gln from Glu and ammonia, and is a key regulator of nitrogen metabolism [21]. GS-ATase can act
bifunctionally to catalyse both AMPylation and deAMPylation of GS through two distinct catalytic sites: a C-terminal domain
(residues 425–945) that catalyses AMPylation and an N-terminal domain (residues 1–423) that catalyses deAMPylation [22].
The switch between AMPylation and deAMPylation states is mediated by a signal transducing protein trimer, PII, that acts as
a nitrogen sensor in bacterial cells [23,24]. When nitrogen levels are high, GS-ATase forms a complex with PII to AMPylate GS
at Tyr397, thereby inhibiting its function and reducing production of L-Glutamine. However, under conditions of nitrogen
starvation, PII is UMPylated by the enzyme uridyl transferase (UTase). Subsequently, the PIIUMP-GS-ATase complex deAM-
Pylates and thus activates GS [20,21,24–27]. Human GS is present throughout the brain and plays a major role in detoxifying
astrocytes by converting excess ammonia to glutamine, and in regulating the metabolism of the neurotransmitter glutamate
[28]. It is not yet known if eukaryotic GS is AMPylated and/or de-AMPylated, or what effect these modification(s) may have
on astrocyte function.
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vesicles [12]. DrrA acts as a guanine nucleotide-exchange
factor [13] and is responsible for the recruitment of a host
GTPase Rab1 to the LCVs. DrrA AMPylates Rab1 on Tyr77,
a conserved Tyr located in the switch II domain of the
GTPase [14]. Tyr77 AMPylation prevents GTPase activating
proteins (GAPs) from binding to Rab1 and promoting GTP
hydrolysis [15], thus maintaining a pool of GTP-bound
Rab1 on the surface of the LCVs. The C-terminal domain of
DrrA contains a phosphatidylinositol-4-phosphate binding
domain responsible for its attachment to the external mem-
brane of the vacuole [16]. The N-terminal region of DrrA,
which is cytotoxic when expressed alone, is structurally
similar to the C-terminal adenylyl transferase domain of
GS-ATase and AMPylates Rab1 in vitro [14]. Both GS-ATase
(box 1) and DrrA belongs to the DNA-β-polymerase like
family of nucelotidyl transferases that are structurally charac-
terized by a three-stranded β-sheet involved in Mg2+ ion
coordination and phosphate stabilization [17–19]. They also
contain the degenerate motif [Gly-X11-Asp/Glu-X-Asp/Glu]
in which the Asp residues of one such motif coordinates
two Mg2+ ions along with another Asp or Glu residue from
the following β-sheet. Asp112 of the DrrA catalytic motif
[Gly-X11-Asp110-X-Asp112] acts as base, deprotonating the
hydroxyl group of Tyr77 in Rab1, thereby enabling it to
launch a nucleophilic attack on the α-phosphate of ATP,
while Asp112, along with Asp150 and Asp249 (from separate
β-strands), coordinate and stabilize the interaction of Mg2+

with the phosphates [9]. Both Asp110/Asp112 are critical
for enzyme function as mutating either or both residues
results in a loss of target AMPylation (figure 1a) [14].

Unlike effectors that AMPylate host cell targets through a
conserved mechanism of catalysis mediated by the Fic
domain (described in subsequent sections), GS-ATase and
DrrA catalyse AMPylation through a very different catalytic
fold, indicative of a divergent evolution of these two
AMPylases [29].
2.2. Fic AMPylases

2.2.1. VopS

Several years after the discovery of GS-ATase, there was
a renewed interest in the function of AMPylases when
VopS, a type III secretion system (T3SS) effector of Vibrio
parahaemolyticus was found to AMPylate Rho family GTPases
members Rac, Rho and CDC42 upon translocation into host
cells [30]. Ectopic expression of VopS, but not of the AMPyla-
tion-deficient mutant, VopSH348A, induced a severely
rounded phenotype eventually leading to cell death in
HeLa cells. VopS-mediated AMPylation of CDC42 and Rac1
is proposed to follow a sequential reaction mechanism invol-
ving the formation of a ternary complex composed of VopS,
ATP and CDC42/Rac1. In this process, VopS first transfers
AMP to the conserved His348 residue, and, in a subsequent
reaction, this AMP is attached to CDC42/Rac1 on Thr35
(target modification) [31]. His348 of the VopS Fic motif acts
as a base in the catalytic reaction and extracts a proton
from the hydroxyl group of Thr35, thereby enabling it to per-
form a nucleophilic attack on the α-phosphate of ATP (figure
1b). Asn354 and Arg356, residues embedded in the conserved
Fic motif, stabilize the β- and γ- phosphate, respectively, while
Asp352 coordinates the position of the Mg2+ ion and stabil-
izes it via interactions with the β- and γ-phosphates [31].
Thr35 of Rac1/CDC42 is a conserved residue located in the
switch I region and plays a key role in GTP and effector bind-
ing [30]. Mechanistically, Rho GTPase AMPylation on Thr35
influences downstream signalling of NFΚB and MAPK path-
ways, induces activation of the phagocytic NADPH oxidase
complex, interferes with host cell autophagy, affects GTPase
E3 ubiquitin ligase interactions required for Rac and Rho
degradation and turnover, and bypasses the innate immunity
arm of the host cell by suppressing the activation of pyrin
inflammasomes [32–34].
2.2.2. IbpA

The bacterial fibrillary surface antigen IbpA of Histophilus
somnii is another well studied bacterial AMPylase that inhi-
bits host cell GTPase activity. This protein contains two Fic
domains (Fic1, Fic2), an arm domain important for substrate
recognition [35], and a C-terminal YopT domain [36]. AMPy-
lation of several Rho family GTPases by IbpA (table 1) results
in cell death, presumably due to collapse of the cytoskeletal
architecture, as observed with VopS [30,32–34]. AMPylation
occurs at the conserved tyrosine residues in the switch I
region of the GTPases (Tyr32 in CDC42/Rac1; Tyr34
in RhoA). Mutation of the conserved histidine residue
(H3717A) in the IbpA Fic motifs did not result in cytotoxicity,
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confirming once again the role of this residue in AMPylation
[36]. IbpA-Fic2 AMPylates GDP and RhoGDI (guanosine
nucleotide dissociation inhibitor) bound inactive forms of
the Rho GTPases, as well as the GTP bound active form and
consequently, Rho GTPase-mediated downstream signalling
pathways are inhibited [7].

2.2.3. Pfhb2

PfhB2, a secreted virulence factor of Pasteurella multiocida, con-
tains two Fic domains, Fic1 and Fic2, and shares a 64% amino
acid sequence similarity with Ibp-A’s Fic1 and Fic2 domains,
respectively. Along with IbpA and VopS, PfhB2 forms a tri-
fecta of bacterial Fic domain AMPylases that engage in host
cell killing through AMPylation of the host Rho family
GTPases. Similar to VopS and IbpA-Fic2, in vitro, PfhB2
AMPylates the conserved Tyr32 residue of Rho family
GTPases (TC10, RhoB, RhoC and RhoG) and disrupts host
cytoskeletal regulation, leading to gross anomalies in the
cytoskeletal architecture.

Phylogenetic analysis revealed that these three AMPy-
lases form a distinct ‘clade’ and branches away from other
bacterial Fic domain proteins such as EcFicT, GS-ATase and
HpFic. These observations indicate that these proteins may
have evolved to target mammalian (host) proteins to facilitate
their survival and promote virulence [7].

2.2.4. Bartonella spp. effectors

The pathogenic Bartonella sp. mediates host cell subversion
and pathogenicity by translocating Bartonella effector pro-
teins (Beps) through its Type-IV secretion system (T4SS)
into host cells. Some of these Bep effector proteins (table 1)
contain an N-terminal Fic domain that catalyses AMPylation
of host cell targets. BepA of Bartonella henselae was found to
AMPylate yet-unknown targets having molecular weights
of approximately 40 kDa and 50 kDa [60]. Bep1 of Bartonella
rochalimaea AMPylates Rac1/2/3 and RhoG at Tyr32 causing
cytoskeletal rearrangements that favour bacterial entry and
survival, while Bep2 AMPylates mouse Vimentin, an integral
component of intermediate filaments [43,45]. Target speci-
ficity of Bep1 (almost exclusively AMPylating Rac
subfamily of Rho GTPases), as opposed to VopS (AMPylates
Ras GTPase superfamily members indiscriminately), and
IbpA-Fic2 (AMPylates almost all Rho but not Rac GTPase
subfamily members). These salt bridges occur between (a)
Asp117 and Lys119 of the extended flap region (a β-hairpin
like structure that partially obstructs the active site and
accommodates the Switch I region of its target through β-
sheet augmentation), and (b) Lys116 and Asp124 of the
T(K/Q)xD motif that forms a groove in Rac2 [44].

Recently, the Dehio group showed that the Bartonella
henselae effector protein C (BepC) triggers actin stress fibre for-
mation in HeLa cells through the activation of the RhoA
GTPase signalling pathway by interacting with and relocating
the nucleotide exchange factor GEF-H1 from its canonical
location in the microtubules to the plasma membrane [59].
GEF-H1 activates RhoA by facilitating an exchange of GDP
withGTP; this is followedbya series of downstreambiochemical
reactions that ultimately lead to the phosphorylation of myosin
light chain (MLC), leading to actin stress fibre formation. The
N-terminal BepC Fic domain interacts with GEF-H1 while the
C-terminal BID (Bep intracellular delivery) domain anchors
BepC to the plasma membrane [59]. Interestingly, the authors
found that Fic domain-mediated AMPylation is not responsible
for the interaction between BepC and GEF-H1 as a BepC quad-
ruple mutant harbouring mutations in the active site (H146A,
K150A, R154A and R157A) of the Fic motif (HxFxKGNGRxxR)
was able to trigger stress fibre formation as effectively as WT
BepC. This observation indicates that this non-canonical BepC
Fic domain (acidic Glu/Asp is replaced by a basic Lys) is
involved in a non-catalytic role (protein–protein interaction)
and is the first example to our knowledge where a bacterial
FicD effector protein induces host cell killing without
AMPylating any host target proteins [63,64].

Together, these examples highlight that pathogenic bac-
teria employ protein AMPylation as a means to subvert
host cell physiology, preferably targeting members of the
Ras superfamily of GTPases (figure 2). Altering GTPase func-
tion through AMPylation enables these pathogens to evade
host cell immune responses and/or affect downstream signal-
ling pathways involved in cell maintenance. Future studies
are expected to identify additional physiological targets of
partially characterized bacterial FicD proteins that are trans-
located into host cells during infection where they may
modify proteins to hijack host signalling (table 1).
3. Eukaryotic AMPylases
Most studies on metazoan AMPylases have focused on the
human (FICD),Drosophila melanogaster (dFIC) and Caenorhabdi-
tis elegans (FIC-1) enzymes. These FicD-type AMPylases exhibit
remarkable similarity in their structural architecture: an
N-terminal transmembrane domain (TM) responsible for ER
localization of these enzymes and anchoring to the ER luminal
membrane, followed by one or two tetratricopeptide repeats
(TPRs) involved in substrate recognition and specificity, and a
C-terminal Fic domain linked to the TPRs by a less-conserved
α-helical linker required formediating allosteric conformational
changes (figure 3) [5,6,56]. Extensive sequencing of eukaryotic
genomes has revealed the presence of a single functional fic
allele in most metazoans [65], probably acquired through mul-
tiple horizontal gene transfer events [29]. Recent work by the
Tagliabracci laboratoryhas found that the humanpseudokinase
selenoprotein-O (SelO) efficiently transfers AMP to mitochon-
drial proteins [54]. This discovery of a non-ficD AMPylase
shows that different folds can catalyse protein AMPylation.
It is thus tempting to speculate that more metazoan AMPylases
may be revealed in the future.

In the following segments, we review both FicD and non-
FicD eukaryotic AMPylases and discuss similarities and
differences in their structure and function.
3.1. Human SelO: a non-Fic AMPylase

3.1.1. Structure

Sreelatha et al. [54] recently discovered that the human pseu-
dokinase, Selenoprotein-O (SelO) functions as an AMPylase.
Pseudokinases are variants of canonical kinases that often
contain key mutations in conserved kinase motifs, preventing
ATP binding and hydrolysis [66]. Thus, these enzymes are
proposed to mainly function as scaffolding agents [67,68].
A small subset of pseudokinases harbour compensatory
mutations which reinstall or build a new active site that cat-
alyses phosphorylation [69,70]. The three conserved kinase
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motifs in which pseudokinases often bear mutations are
(a) the DFG motif, (b) the VAIK motif or (c) the HRD motif
[66]. SelO carries a mutation of the catalytic Asp (in the
HRD motif ) that acts as a base in the catalytic loop and sup-
ports the phospho-transfer reaction [66]. Interestingly, the
crystal structure of Pseudomonas syringae SelO bound to a
non-hydrolysable ATP analogue AMP-PNP showed a flipped
ATP molecule in the kinase-like fold. The kinase core of SelO
adopted a typical kinase-like fold comprised of α-helices and
β-sheets, but the γ-phosphate of AMP-PNP was found buried
in between the two lobes of the kinase domain [54]. This is in
contrast to nucleotide binding to canonical protein kinases
where the α-phosphate remains buried, while the γ-phos-
phate is primed for phosphate transfer (figure 4).
The binding site for the flipped nucleotide is formed by
unique insertions in the β-sheet rich N lobe and the α-helical
rich C lobe. Lys113 coordinates the γ-phosphate while
Glu136 stabilizes this interaction. Arg176 and Arg183 also
stabilize the γ-phosphate. Such interactions are also found in
a canonical kinase but these interactions occur with the
α-phosphate of ATP. Furthermore, Asp262 of the DFG motif
acts a deprotonator of the phospho-acceptor hydroxyl on the
protein side chain, and, together with Asn253, also coordi-
nates the divalent cation Mg2+ which is required for
stabilization of the α- and β-phosphates [54]. A comparative
analysis of AMP-PNP binding conformations in SelO and a
canonical kinase, Protein Kinase A (PKA), suggested that
Asp262 of SelO acts similarly to Asp166 of PKA, except that
the positioning of the SelO Asp262 facilitates a favourable con-
formation of the α-phosphate resulting in AMPylation, while
Asp166 (PKA) facilitates a favourable conformation of the
γ-phosphate leading to phosphorylation via ATP hydrolysis.
Finally, the SelO structure also revealed that an intramolecular
disulphide bond between Cys272 and Cys476 acts as an
internal regulator of SelO AMPylase activity, a mechanism
employed by multiple mitochondrial proteins [71].
In vitro autoradiography assays using recombinant
human WT-SelO and radiolabelled ATP showed that SelO
catalysed radiolabel transfer when using [α−32P] ATP, but
not [γ−32P] ATP, as a reaction substrate, indicating that SelO
is an AMPylase. Mutating the DFG motif in SelO resulted
in a complete loss of AMPylation activity, suggesting that
the observed AMPylation is SelO-specific. Similar to FicD-
type AMPylases, SelO auto-AMPylates several tyrosine and
serine residues and prefers ATP as a nucleotide substrate [54].

3.2. Functional implications of SelO AMPylation
Human SelO localizes to the mitochondria [72] and, like other
SelO proteins, is involved in redox homeostasis [73]. To ident-
ify potential substrates AMPylated by SelO in the
mitochondria, the Tagliabracci laboratory used biotin-17-
ATP, E. coli extract and purified WT human SelO, and, follow-
ing SelO-mediated in vitro modification of putative targets
with biotin-17-AMP, retrieved biotinylated proteins using
avidin. Comparative mass spectrometry revealed the pres-
ence of biotin-17-AMP-linked sucA, the bacterial
homologue of α-keto dehydrogenase [74] and glutaredoxin
(grx), a thioredoxin-like protein that catalyses deglutathiony-
lation [75], as the top hits. Both of these proteins are involved
in the regulation of redox homeostasis. Subsequent in vitro
AMPylation assays confirmed SelO-mediated AMPylation
of sucA at Thr405 and grx at Tyr13 [54]. Physiologically,
SelO is required to protect Saccharomyces cerevisiae cells from
H2O2-induced oxidative stress. SelO knockout (KO) yeast
cells showed reduced cell viability under an oxidizing
environment, which was rescued by the expression of WT
SelO, but not the catalytically inactive SelOD348A. The AMPy-
lated Tyr13 of grx lies within the conserved active site of this
enzyme, which is proposed to influence the equilibrium
between glutathionylated and deglutathionylated states of
grx under oxidative stress conditions. Indeed, SelO KO
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yeast cells subjected to oxidized glutathione (GSSH), known
to increase S-glutathionylation levels, showed a significant
decrease in glutathionylation levels as compared to SelO
KO yeast cells grown under normal growth conditions. This
suggests that SelO inhibition of grx-mediated deglutathiony-
lation is critical in maintaining this equilibrium, and a
dysregulated equilibrium favouring enhanced deglutathiony-
lation prevents the cell from implementing a cytoprotective
response through the induction of S-glutathionylation [76].

3.3. Eukaryotic FicD AMPylases
Eukaryotic Fic AMPylases show little or no AMPylation
activity under standard growth conditions. Overexpression
of endogenous wild-type (WT) AMPylases has limited
effect on physiological processes and recombinant WT
AMPylases are poor in vitro AMPylators [6,36,40,52,56] but
possess the catalytic ability to remove AMP from pre-AMPy-
lated substrates (de-AMPylation) [77,78]. These AMPylases
[5,6,56] are auto-inhibited by an inhibitory α-helix (α-inh)
that sterically hinders ATP binding to the catalytic site, a
mechanistic feature that is shared by a few of their bacterial
counterparts [40]. The Glu residue in the conserved α-inh,
represented by (S/T)xxxE(G/N) forms a salt bridge with an
Arg in the catalytic motif HxFx(D/E)GN(G/K)RxxR, locking
enzymes in their ‘off’ inactive states. Mutating Glu to Gly
relieves auto-inhibition and allows the transition to an ‘on’
state, where AMPylation activity is substantially enhanced
[5,40]. On the other hand, mutating His to Ala in the catalytic
Fic motif HxFx(D/E)GN(G/K)RxxR, results in complete
ablation of AMP transfer, but not of ATP binding [30,36].
Both the constitutively active (Glu->Gly) and the catalytically
impaired single mutants (His->Ala), as well as the double
mutants (Glu->Gly/His->Ala) have served as workhorses
for investigators studying the fundamentals of AMPylation.
HYPE and FIC-1 possess auto-AMPylation abilities in
addition to target AMPylation. HYPE is modified at Thr183,
Ser79 and Thr80, while FIC-1 is modified at Thr352 and
Thr476 [6,52]. Neisseria meningitides AMPylase NmFic has
also been shown to possess auto-AMPylation ability in cis.
Auto-AMPylation (at Thr183 and Tyr188) of NmFic, leading
to partial unfolding of the α-inh, is essential for its ability to
modify target proteins [46].

3.3.1. HYPE: Homo sapiens

Huntingtin Yeast Partner E (HYPE) was initially discovered
in a yeast two-hybrid screen as one of several proteins
(HYPA - HYPH) to interact with the N-terminus of Hunting-
tin; yet, its enzymatic functions remained unnoticed [79].
Years later, after the discovery that bacterial FicD proteins cat-
alyse AMPylation reactions, HYPE was found to be the only
human FicD protein and subsequently shown to possess both
AMPylation and deAMPylation capabilities [5,51,53,77].
HYPE is predominantly found in the ER and the nuclear
envelope continuum [52,80] but emerging evidence suggests
a broader localization pattern of HYPE under certain
circumstances.

3.3.2. Structure of HYPE

HYPE consists of a single transmembrane domain (residues
24–44), two TPR domains TPR1 (residues 105–135) and
TPR2 (residues 140–170), and the conserved, catalytic Fic
domain (residues 216–432) joined to the TPR motifs by a
short linker (residues 170–215) (figure 3). HYPE is predomi-
nantly N-glycosylated at Asn275, which is responsible for
its ER localization [52]. The TPR motifs, which are classic
protein-protein interaction domains [81], are implicated in
contributing to HYPE’s target recruitment [82]. The crystal
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structure of HYPEΔ102 revealed that HYPE is mainly com-
posed of α-helices (figure 5a). The Fic domain of HYPE is
structurally similar to the Fic domains of VopS, IbpA, FIC-1
and dFIC. The Fic core comprises two highly conserved struc-
tural features: (a) the catalytic loop and (b) the flap (figure 5a)
[83]. The catalytic core contains the highly conserved Fic
motif HPF(I/V)DGNGRT(S/A)R, while the flap (residues
311–324) is involved in positioning of the target residues.
HYPE, unlike bacterial AMPylases VopS and IbpA, possesses
an auto-inhibitory helix (α-inh) containing the inhibitory
motif (T/S)V(A/G)IEN (figure 5a) [5,40]. HYPE crystallizes
as an asymmetric dimer with the dimer interface formed
exclusively through interactions between Fic domain residues
(figure 5b). Leu258 is critical for HYPE dimerization
as the HYPEL258D single mutant purified as monomer [5].
The Apo-HYPE crystal structure showed Glu234, critical
for auto-inhibition, positioned in close proximity to the cata-
lytic loop. Crystal structures of ADP bound to WT HYPE and
ATP bound to the HYPEE234G variant revealed accommo-
dation of the α-phosphate by the GNG anion hole (residues
368–370) through hydrogen bonds. A Mg2+ ion in the
ATP-HYPEE234G structure coordinates with the conserved
Asp367 to bridge the α- and β-phosphates. The conserved
Arg374 at the C- terminus of the Fic motif forms hydrogen
bonds with the ribose ring and mediates binding of the
γ- phosphate. The α-inh in apo and ADP-bound variants of
HYPE obstructs the engagement of β- and γ- phosphates as
it competes with the Arg374/γ-phosphate interaction, result-
ing in a non-productive orientation of the α-phosphate [5,40].
This partial obstruction of the ATP binding site has also been
observed in the FicD proteins of Neisseria meningiditis and
Shewanella oneidensis, where N- and C-terminal extensions
of the α-inh protrude into the catalytic Fic domain [40].
This inhibition was released when Glu234 was mutated to
Ala [5]. AMP transfer in the HYPEE234G variant is catalysed
by the conserved His in the Fic motif, which acts as a base
to attack the nucleotide’s phosphodiester bond, resulting in
AMP transfer and the concomitant release of a pyropho-
sphate group (PPi) (figure 1b). While some kinetic studies
point to a sequential reaction where auto-AMPylation is fol-
lowed by target AMPylation, other studies hypothesize a
substrate-assisted attack (figure 6), where the conserved His
functions as a proton acceptor (accepts a proton from a sub-
strate Thr/Tyr), resulting in a subsequent nucleophilic attack
by these residues on the α-phosphate of ATP [35].

WT HYPE acts primarily as a deAMPylase [77,84,85] and
the deAMPylation mechanism proposed by David Ron’s
group [77] suggests that Glu234 is actively engaged (the posi-
tively charged Arg374 holds the negatively charged Glu234
side chain in proximity to the active site) in coordinating a
water molecule which acts as a nucleophile and attacks the
phosphodiester bond between the hydroxyl group of a
target residue (BiP Thr518) and the AMP moiety attached
to the active site of HYPE (figure 6). Consequently, the
AMP moiety is removed from the catalytic site and His363,
which in the AMPylation reaction deprotonates and hence,
primes the hydroxyl group of Thr518 to act as a nucleophile,
now protonates the leaving Thr518 group [77]. Thus His363 is
an active site residue that mediates both AMPylation and
deAMPylation reactions, albeit in a polar opposite fashion.

3.3.3. HYPE function

HYPE and other metazoan AMPylases are tightly regulated.
Knockdown of HYPE in HeLa cells subjected to ER stress-
inducing agents resulted in reduced viability as cells failed
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to cope with increased ER stress [52]. Similarly, FIC−/−

Chinese hamster ovary cells (CHO) show a delay in UPR
activation under ER stress-inducing conditions compared to
WT CHO cells. HYPE plays a positive role in mediating an
unfolded protein response (UPR) in the ER via the ATF-6
and PERK branches of the UPR pathway. This transcriptional
upregulation of UPR genes is mediated by cis-acting UPR
elements found in the HYPE promoter sequence [52]. On
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the other hand, overexpression of a constitutively active
HYPEE234G triggers caspase-dependent apoptosis leading to
elevated levels of cytotoxicity and eventual cell death [80].

In the ER, HYPE regulates the function of the ER-resident
HSP70 family chaperone BiP through cycles of AMPylation
and deAMPylation (figure 7). Molecular docking studies
revealed that the WT HYPE dimer binds BiPT229A (capable
of binding but not hydrolyzing ATP) in a 2 : 2 stoichiometric
ratio. The nucleotide binding domain of BiP binds to the TPR
domains of HYPE through extensive hydrogen binding [82].
WT HYPE behaved as a weak AMPylator while HYPEE234G

was efficient in catalysing both auto- and target AMPylation.
BiP is modified at two sites: Ser365/Thr366, and Thr518 [52].
AMPylation of BiP at Ser365/Thr366, located in the nucleo-
tide binding domain (NBD), was first described by the
Mattoo and Orth groups. The NBD of BiP is involved in
both ATP binding and hydrolysis functions of BiP [86].
Thus, AMPylation of BiP residues (Ser365/Thr366) located
in the NBD could affect ATPase function of BiP. Indeed,
HYPEE234G and, to a lesser extent, WT HYPE-mediated
AMPylation of BiP increased its ATP hydrolysis rate compared
to unmodified BiP, most likely due to allosteric modulation of
the ATP binding active site [52].

In agreement with Sanyal et al.’s in vitro study [52], Ham
et al. found Thr366 of BiP to be AMPylated in vitro by the Dro-
sophila melanogaster Ficd enzyme, dFic [56]. However, while
Sanyal et al. proposed that BiP AMPylation positively regu-
lates chaperone function by significantly enhancing ATPase
function of BiP that allows the cell to mount a robust BiP
mediated activation of UPR pathways [52], Ham et al.
observed that BiP AMPylation correlates with reduced BiP
ATPase activity and AMPylated BiP is an inactive chaperone
that is not capable of upregulating/activating downstream
UPR pathways [56]. Importantly, Sanyal et al. conducted
assays with full-length WT human BiP while Ham et al.
used a truncated construct (residues 27–417) [56] that con-
sisted of the BiP ATPase domain (residues 27–407) and an
additional linker (residues 408–417) [87]. Sanyal et al. argue
that such truncated constructs could be responsible for
altered ATPase activity of AMPylated BiP constructs,
although how such truncations affect the correlation between
AMPylation and ATPase activity has not yet been elucidated.

Preissler et al. [88] showed that HYPE also AMPylates BiP
at Thr518 in vitro and in CHO cells. Thr518 is located in the
substrate binding domain (SBD) of BiP and is stabilized by
intramolecular polar interactions in apo or ADP bound BiP
[89]. ATP-bound BiP, however, lacks these interactions and
the residue is therefore free to interact with the active site
of HYPE. BiP AMPylation on Thr518 reduces the ATPase-
dependent protein folding turnover rate but does not prevent
client, co-chaperone or nucleotide binding [52,84,88,90]. BiP
AMPylation also impairs the formation of inactive structured
BiP oligomers [84]. The current consensus model suggests
that unstressed cells maintain a pool of inactive AMPylated
or oligomeric BiP. When the cells sense an increase in the
load of unfolded polypeptides, this inactive pool of BiP is
activated by rapid de-AMPylation or monomerization. This
active BiP population then readily engages in chaperoning
activities enabling the cell to mount a stress response in the
ER. Once proteostasis is restored, HYPE will AMPylate and
thereby inactivate a significant fraction of BiP again. Simul-
taneously, a fraction of non-AMPylated BiP will oligomerize
and be excluded from active chaperoning duty [91–93].
Experiments using ATPase-deficient BiPT229A and BiPE201G

mutants, or nucleotide-free BiP, demonstrated that HYPE pre-
ferentially binds and locks the ATP-bound ‘committed-to-
hydrolysis’ BiP state as opposed to a relaxed ADP-bound
conformation of BiP (attained after ATP hydrolysis and con-
comitant release of folded protein) [88]. The crystal
structure of AMPylated BiP adopts a domain-docked
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conformation, and the NBD of AMPylated BiP attains a simi-
lar conformation to ATP bound WT BiP. The distal loops of
the SBDβ subdomain, harbouring the AMPylation site
Thr518, also exhibits substantial conformational changes to
accommodate the AMP moiety [89].

Sanyal et al. recently approached the physiological impact
of BiP Ser365/Thr366 versus Thr518 AMPylation by perform-
ing advanced in-silico molecular docking experiments to
generate various conformations of HYPE-BiP that could dis-
sect the role of NBD and SBD in HYPE-mediated BiP
modifications. The orientation of the enzyme active site
seemed to be critical for accommodating either the NBD or
the SBD of BiP [82]. In the first orientation, the active site
interface formed between the NBD and HYPE favoured
AMPylation at Ser365/Thr366 and precluded the need for
SBD to interact with NBD. In accordance with such an obser-
vation, HYPEE234GAMPylated the isolated BiPNBD but not the
isolated BiPSBD. The second orientation favoured AMPylation
of Thr518, and HYPE formed active-site interfaces with both
domains of BiP, indicating that AMPylation of Thr518 in the
SBD is influenced by allosteric cross-talk between both
domains [82]. Thus, AMPylation at Ser365/Thr366 acts
antagonistically to AMPylation at Thr518, and such modifi-
cations in tandem could act as internal regulators of
AMPylation-dependent BiP function.

Preissler et al. carried out several experiments to further
investigate whether WT HYPE could act as a deAMPylase,
and to determine how the transition between the AMPylated
and deAMPylated states of BiP occurs [77]. They reported that
WT HYPE deAMPylates hamster BiP in vitro and overexpres-
sion of WT HYPE was not able to restore BiP AMPylation in
FICD−/−CHOcells [77].OverexpressionofWTHYPEprevented
the accumulation of inactive, AMPylated BiP, thereby de-repres-
sing its function [77]. HYPE was found to act as a deAMPylase
and the deAMPylation function was specific to full length WT
BiP, as neither the isolated SBD nor the AMPylation-deficient
BiPT518Awas deAMPylated.HYPEE234Gwas not able to catalyse
de-AMPylation and did not prevent WT HYPE-mediated
BiP de-AMPylation in vitro. Transient overexpression of
HYPEE234G in CHO cells resulted in increased UPR signalling
and AMPylation of BiP, which was attenuated when WT
HYPE was co-expressed [77]. This work established HYPE as
a bi-functional enzyme that catalyses both BiP AMPylation
and deAMPylation.

The switch between AMPylated and deAMPylated BiP
conformations depends on the oligomeric state of HYPE and
the metal ion required to coordinate ATP or AMP positioning
in HYPE’s active site [85]. Such internal structural regulation
of an AMPylase function had been previously observed in
Clostridium difficile, where monomeric CdFic exhibited
increased auto-AMPylation [48]. Strictly monomeric AMPyla-
tion competent HYPEL258D/E234GAMPylates BiP in vitro and in
vivo when overexpressed in FICD−/− cells, as opposed to
dimeric WT HYPE [85]. DeAMPylation activity of the
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monomeric HYPEL258D and partially monomeric HYPEG299S

mutants is reduced approximately two-fold as compared to
WT HYPE. In addition, AMPylated BiP binds more tightly
to dimeric HYPE as compared to monomeric HYPE. Together,
this data suggests that monomeric HYPE mutants possess
enhanced AMPylation function, and a slightly but signifi-
cantly repressed deAMPylase function [85]. Recent work by
Veyron et al. has shown that the WT HYPE-mediated BiP
deAMPylation can be fine-tuned by modulating the Ca2+/
Mg2+ ratio in vitro [47]. Increasing this ratio or removing
Mg2+ completely from the reaction mixture decreases the
deAMPylation efficiency of WT HYPE. Conversely, WT
HYPE efficiently catalysed BiP deAMPylation in the presence
of only Mg2+ [47]. This observation, coupled with similar
results observed for the bifunctional Enterococcus faecalis Fic
(EfFic), led the authors to propose a divalent metal ion differ-
ential as an alternative (or additional) mode of regulation for
the displacement of Glu234 (inherent conformational flexi-
bility) [47]. These results raise the possibility that the FIC
domain may act as an enzymatic calcium sensor, and prompt
us to ask whether HYPE can respond to diffusible signals,
such as a drop in ER calcium levels under stress conditions.

The crystal structure of apo-HYPE suggests that hydrogen
bonds involving Lys256 and Glu242 link the dimer interface
with the enzyme’s active site and impinges on the auto-
inhibitory Glu234, as both K256S and E242A mutants formed
dimers and AMPylated BiP [5]. Furthermore, combining
K256S with an L258D mutation rendered HYPE monomeric
and led to a further increase in BiP AMPylation. These obser-
vations indicate that allosteric cross talk between the
dimerization interface and the catalytic active site, mediated
by linker residues, leads to de-repression of AMPylation func-
tion [77,85]. The α-phosphates of the nucleotides (ATP/
AMPPNP) bound to the AMPylation-efficient HYPE variants
(HYPEL258D and HYPEL256S) were observed to be in an AMPy-
lation competent state, as opposed to WT HYPE where the
α-phosphate was in an AMPylation non-competent state and
was unable to coordinate the divalent cation Mg2+. These
mutants bound ATP/AMPPNP in a similar fashion compared
to HYPEE234G [5,85]. The inhibitory Glu234 in these mutants
was displaced from its position in the apo-state and was thus
rendered incapable of forming a salt bridge with Arg374. Con-
sequently, the catalytic site is relieved from steric hindrance as
is observed in the apo- or ATP bound WT HYPE structures
[85]. ATP acts as an external allosteric modulator of HYPE func-
tion by increasing the HYPE monomer to dimer ratio in a
concentration-dependent manner, while ADP acts as an antag-
onist, pushing the equilibrium towards dimer formation [85].
Thus, the functions of both BiP and HYPE are tightly regulated
by intrinsic structural changes (oligomerization) as well as
external modulators that dictate the propensity of BiP to be
modified by HYPE.
4. HYPE: target selection
Before the discovery of HYPE-mediated BiP AMPylation,
initial work using GST-tagged full- length HYPE, as well as
the His6-tagged isolated Fic domain of HYPE (181–458), indi-
cated that, similar to VopS and IbpA, HYPE may AMPylate
CDC42, Rac1 and RhoA in vitro [7,36,40]. However, further
experiments using His6-tagged HYPE45-458 (E234G) or
HYPE103-445 (E234G) failed to confirm Rho GTPase
AMPylation, suggesting that the Rho family of GTPases are
not physiological targets of HYPE [52]. Several studies
have indicated that HYPE variants lacking the TPR domains
are more promiscuous; indeed, HYPE187-437 AMPylates
recombinant HSP40, HSP70 and HSP90 in vitro [51].

Aside from BiP, a significant set of putative HYPE targets
were identified in peptide array and chemical proteo-
mics screens by several groups. Broncel et al. identified 25
substrates of HYPE in HEK293 cells using a two-step
chemo-enzymatic tagging strategy (figure 8a) that installed
an AMP-biotin instead of an AMP group on AMPylated pro-
teins [49]. Apart from BiP, several other proteins involved in
regulating transcription (eEF1a1 [94], E1F2AK2 [95]), cyto-
skeletal development (TUBB [96]), ATP synthesis (ATP5A1
[97], ATP5B [98]) and the ubiquitin-proteasome complex
(UBAP2 L [99]) were found [49]. Histones H1–H4 were also
found to be modified by HYPE in vitro [80]. A major caveat
of this strategy is that the AMPylation reaction relied on sup-
plementing cell lysates with HYPEE234G and Yn-6-ATP. Thus,
the physiological sub-compartmental context was lost with
HYPEE234G potentially modifying proteins that, in an intact
cell, would be secluded from its reach. Kielkowski et al.
circumvented this problem by chemically synthesizing an
adenosine pronucleotide probe (pro-N6pA) that demon-
strated higher cell permeability than commercially available
ATP analogues and also bypassed kinase- mediated phos-
phorylation of the nucleoside moiety [100]. This precursor
is metabolically converted to N6pATP and is used in cellular
AMPylation reactions. In their pioneering study, the Sieber
laboratory treated HeLa cells with pro-N6pA, labelled the
N6p-AMP-containing proteins in a click-chemistry reaction
with biotin-azide, and affinity enriched the modified proteins
by avidin pulldown (figure 8b). Mass spectrometry-based
protein identification revealed that Cathepsin B (CTSB) is a
novel target of HYPE, with HYPEE234G AMPylating CTSB
on the cysteine residues that lie within its conserved catalytic
site [101]. CTSB is a lysosomal cysteine protease involved in
protein catabolism and antigen processing [102], suggesting
that HYPE may play a regulatory role in these processes.
Further proteomic profiling using this method in three differ-
ent cancer cell lines identified a total of 58 AMPylated
proteins, most of which were proposed to not be modified
by HYPE. This leads to the hypothesis that there might be
additional yet-to-be-identified AMPylases involved in the
regulation of different metabolic and proteostasis pathways
[100]. Chemical-proteomic profiling of a neuroblastoma
cell line, SH-SY5Y, under ER stress conditions led to the
identification of 145 AMPylated proteins, indicating that
AMPylation may play a unique role in the central nervous
system. Further analysis of AMPylation profiles in neuronal
progenitor cells (NPCs) revealed that the majority of AMPy-
lated proteins were involved in cytoskeletal remodelling
and vesicular transport, indicating that AMPylation may
be involved in neuronal development [100]. The authors
further modified the protocol to obtain live cell imaging of
protein AMPylation using a slightly modified probe (pro-
N6pAazA) that binds to potential endogenous targets; sub-
sequently, the targets are either linked to PEG-biotin (for
LC-MS/MS based target identification) or coupled to a fluor-
ophore that can be stained for and visualized using
fluorescence microscopy [50]. This protocol preserves the
integrity of the cell and provides relevant physiological infor-
mation about the sub-compartmental context of AMPylation.
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The authors, in addition to targets identified using the
pro-N6pA approach, found CTSC and CTSZ (cysteine
cathepsins), ABHD6 (a lipase), ACP2 (a lysosomal acid
phosphatase), PNPLA3 (catalyses coenzyme-A mediated acy-
lation) and TPP1 (a serine protease) to be modified [50]. Live
cells tolerated the probe well and time-lapse fluorescent
imaging in fibroblast cells revealed directional transport of
AMPylated proteins across processes extending out from
the ends of the cell bodies and implicates AMPylation in
polarization of fibroblasts [50]. Such a tool can thus be used
to study real time AMPylation inside cells subjected to
various conditions of stress.
Recently, Gulen et al. [103] developed a novel strategy for
capturing AMPylated targets. This strategy is based on the
covalent attachment and activation of a nucleotide co-sub-
strate inside the active site of the enzyme. The resulting
binary probe (enzyme-nucleotide complex) subsequently
captures modified targets (figure 8c) [103]. This strategy
required the strategic placement of a Cys residue close to
the ATP binding pocket of FicD enzymes (Ile3755/Asn111/
Glu404 was mutated to Cys for IbpA/BepA/HYPE, respect-
ively). Next, synthetic thiol-reactive nucleotide derivatives
(TReNDs) were designed to stably attach to the Cys residue
of the AMPylase for optimal reactivity. These binary probes
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(FicTREND) were then incubated with HEK293T cell lysates
where they formed a stable ternary complex with endo-
genously modified targets. Unlike other methods, this
technique avoids competition with endogenous ATP, as the
enzyme’s ATP binding site is irreversibly occupied by a
TReND and thus can no longer accommodate unmodified
ATP [103]. Using this approach, the Itzen group identified
several new targets of IbpA, BepA and HYPE in addition to
previously known targets like CDC42 (IbpA) and BiP
(HYPE). For HYPE, the most enriched hits were eEF1A2
(transcription factor), UMPS (involved in UMP biosynthesis),
CDK4 and CDKN2A (proteins involved in cell cycle pro-
gression), SUGT1 (a protein probably involved in
ubiquitination and proteasomal degradation), MAPK1IP1 L
(regulates cell differentiation and proliferation) and EIF3D
(translation initiation factor) [103].

Sanyal et al. recently showed that HYPE also AMPylates α-
synuclein in vitro [53].HYPE binds and AMPylates α-synuclein
at residues Thr33, Thr54 (located in the amphipathic
N-terminus of the protein) and Thr75 (located in the central
hydrophobic NAC domain). WT α-synuclein disrupts the
lipid bilayer integrity through its interaction with membrane
surfaces, and sequesters aggregated α-synuclein aggregates
in extracellular space, leading to neurotoxicity. AMPylated
α-synuclein displayed reduced membrane permeabilization
and disruption of membrane bound vesicles, suggesting that
HYPE-mediated AMPylation of α-synuclein may attenuate
neurotoxicity [53]. In vitro assays using Thioflavin T to monitor
aggregation kinetics of mouseWT and AMPylated α-synuclein
showed that the AMPylated protein displayed a compromised
ability to form fibrils as compared to WT α-synuclein aggrega-
tion, which reached saturating levels under assay conditions.
Furthermore, transmission electronmicroscopy (TEM) analysis
of amyloid-like fibrils formed by AMPylated α-synuclein as
opposed to WT α-synuclein revealed distinct morphological
differences [53]. Thus, AMPylation modulates α-synuclein
pathology through altering fibril structure-associated toxicity,
andmay be triggered as a neuroprotective response to elevated
levels of α-synuclein aggregates. Although in vivo relevance of
these findings are yet to be conclusively ascertained, HYPE
localization in the dopaminergic neurons of the substantia
nigra of WT rats [53] raises the possibility that HYPE may
indeed AMPylate α-synuclein in dopaminergic neurons,
which are predominately affected by α-synuclein aggregation
in Parkinson’s disease (PD).

4.1. dFIC (CG9523): Drosophila melanogaster
dFIC is theDrosophila melanogasterHYPE orthologue. Similar to
HYPE, dFIC is glycosylated at Asn288, releasing the functional
protein into the ER lumen. dFIC also localizes on the surface
of glia cells, and is enriched in the capitate endings that these
cells use to interact with synaptic endings of photoreceptor
synapses [55]. To identify potential targets of dFIC, the
Krämer laboratory performed pull-down assays that used
lectin concanavalin A to enrich glycoproteins in cell lysates fol-
lowed by in vitro AMPylation using radiolabelled ATP and the
constitutively active dFIC E247Gmutant. MS analysis revealed
BiP as themajor dFIC target, whichwas confirmed by perform-
ing in vitroAMPylation assays with purified recombinant dFIC
and BiP. As observed for HYPE, the catalytically inactive
dFICH375A lacked AMPylating ability, whereas WT dFIC
showed weak levels of AMPylation [56]. As observed in
human cells, fly cells showed a rapid decline in AMPylated
BiP at 30 min post-ER stress induction [56], suggesting that
BiP deAMPylation upon ER stress provides the cells with
heightened levels of active BiP sufficient to reduce the
burden of unfolded proteins.

dFIC AMPylates BiP at Thr366, a residue close to the ATP
binding site; the authors reasoned that attaching an AMP
moiety to this residue may influence BiPs’ ATPase activity.
However, mutant BiPT366A still hydrolysed ATP efficiently
[56]. This observation suggests that, similar to HYPE-
mediated BiP AMPylation, the modification of BiP by dFIC
does not affect BiP’s ATPase function. dFIC also shows a pre-
ference for AMPylating an ATP-bound but substrate-binding-
deficient BiP conformation [56,104].

A hyperactive dFIC double mutant that lacks the ability to
dimerize (dFICE247G/I271D), showed significantly reduced
levels of auto-AMPylation as compared to dFICE247G. How-
ever, substrate AMPylation (BiPT229A) using this double
mutant and each of the single mutants (dFICE247G and
dFICI271D) showed that both single mutants were able to
AMPylate the substrate, with the double mutant exhibiting
target AMPylation levels several-fold higher than either of
the single mutants alone [78]. These experiments demonstrate
that loss of oligomerization leads to enhanced BiP AMPyla-
tion. Increased substrate AMPylation of BiP by a dFIC
monomer may result from a tighter interaction of the mono-
mer with BiP or an increase in the transfer rate of AMP to
the BiP side chain. Alternatively, intra-molecule interactions
between the two monomeric dFIC arms in WT dFIC could
negatively regulate auto-AMPylation or ATP binding kinetics.
It is tempting to speculate that relieving auto-inhibition and
inhibiting dimerization acts synergistically to enhance the
function of dFIC, although more biophysical studies evaluat-
ing any possible allosteric crosstalk between the catalytic Fic
motif and the dimerization interface need to be performed.

Recombinant dFIC efficiently de-AMPylates AMPylated
BiPT229A in vitro and in cell lysates [77,78]. Unlike AMPyla-
tion, deAMPylation activity of dFIC is not affected by
monomerization, as the strictly monomeric mutant enzyme
dFICI271D is able to deAMPylate AMP-BiPT229A in vivo and
in vitro. Over expression of dFICE247G in a fic-null background
is lethal but well tolerated in a wild-type background. Fur-
thermore, eye-specific expression of dFICE247G resulted in a
rough eye phenotype characterized by severe morphological
defects in eye substructures in fic-null but not in WT flies
[78]. These results indicate that harmful dFICE247G mediated
hyper-AMPylation is counterbalanced by WT dFIC’s deAM-
Pylation activity.

Flies harbouring a loss-of-function mutant Fic55 allele,
albeit viable and fertile, are blind and fail to activate postsyn-
aptic neurons [55]. Vision can be restored by introducing WT
dFIC, but not the catalytically inactive dFICH375A transgene
[55]. dFIC function is also involved in histamine metabolism
and neurotransmitter recycling processes [55], however, the
mechanistic link between AMPylation and neurotransmitter
recycling remains to be established. fic-null flies and flies har-
bouring AMPylation-deficient BiPT366A further show defects
in rhabdomeres, eye substructures linked to photoperception,
when subjected to constant light (LL), implying that AMPy-
lation regulates the structural and morphological integrity
of the fly eye [57]. Furthermore, BiP AMPylation is essential
for retaining visual acuity under LL conditions: Unlike WT
flies, fic-null flies and flies harbouring the BiPT366A mutant
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lack the reserve, inactive pool of AMPylated BiP. Upon LL
conditions that induce ER stress, WT flies can quickly
respond by deAMPylating the reserve pool of AMPylated
BiP, thereby allowing the chaperone to engage in the active
refolding of misfolded polypeptides. However, flies that
are deficient in BiP AMPylation experience a delayed UPR
activation [57]. This is because the cell needs to transcription-
ally upregulate BiP production to cope with the rising levels
of misfolded aggregates as (a) there is no reserve pool of
AMPylated BiP and (b) a large fraction of active BiP is already
engaged in housekeeping functions.

4.2. FIC-1: Caenorhabditis elegans
The HYPE orthologue FIC-1 is the sole member of the Fic
domain family in the nematode C. elegans. Crystal structures
of FIC-1 and FIC-1E274G (corresponding to HYPEE234G)
showed significant similarities in the core α-helical structure
of the Fic domain, including the α-inh helix, which contains
the auto-inhibitory glutamate at position 274. The TPR
domains are similarly stacked (with respect to HYPE) while
the linker region is structurally less similar (figure 3) [6].
FIC-1 crystallizes as an asymmetric dimer, and Val292 and
Ile298 were found to mediate interaction between the two
monomers at their respective dimerization interfaces. FIC-1
dimerization and its AMPylation activity are interlinked as
the FIC-1E274G/I298D double mutant showed significantly
reduced substrate AMPylation but only slightly reduced
auto-AMPylation [6]. This is in contrast to the behaviour of
the dFICE247G/I271D double mutant, which exhibited reduced
auto-AMPylation but very high levels of substrate AMPyla-
tion [78]. More biophysical studies are required to evaluate
how structural differences between these orthologues result
in such functional differences. FIC-1 is found in low levels
throughout the worm body and during all its developmental
stages. Fluorescence microscopy of embryos expressing FIC-1
under a strong heat shock promoter, following heat shock
and subsequent FIC-1 overexpression, revealed a notable
accumulation of the enzyme at the nuclear/ER interface,
similar to intracellular HYPE localization. A small FIC-1
population was also found in the cytoplasm [6].

FIC-1 targets were identified using a click-chemistry based
approach where worm lysates were spiked with recombinant
FIC-1 and N6-propargyl-ATP as a nucleotide substrate. This
was followed by the covalent coupling of a biotin-azide
handle to putative AMPylated target proteins and their sub-
sequent pull down using streptavidin beads (figure 8a) [6].
LC-MS/MS analysis of these samples identified the HSP70
family chaperones HSP-1 andHSP-3, the translation elongation
factors eEF-1A, eEF-2, and eEF-1G, and the histones H2 andH3
as FIC-1 targets (figure 9). HSP-1 (orthologue of human cytoso-
licHSP70) andHSP-3 (orthologue of humanBiP),were found to
be AMPylated on residues Thr347 and Thr176, respectively [6].
Mutating the residues orthogonal to human BiP Ser365/Thr366
and Thr518 in C. elegans HSP-1 and HSP-3 (Ser370Ala/
Thr371Ala and Thr523Ala) did not prevent HSP-1 and HSP-3
in vitro AMPylation by FIC-1E274G or HYPEE234G [6]. Truncated
variants of FIC-1E274G (FIC-1258-508 and FIC-1134-508) exhibit high
levels of auto-AMPylation and auto-GMPylation, andmoderate
levels of auto-CMPylation and auto-UTPylation, indicating a
high degree of promiscuity when choosing nucleotide tripho-
sphates [6]. Like WT HYPE, WT FIC-1 showed very low levels
of auto and target AMPylation while the catalytically inactive
FIC-1H404A (analogous to HYPEH363A) was unable to AMPylate
target proteins. Interestingly, neither fic-1 deficiency nor the
expression of constitutively active FIC-1E274G from the endo-
genous fic-1 promoter affected worm development in the
presence of tunicamycin-induced ER stress [6].

The inducible expression of C. elegans FIC-1E274G in Sac-
charomyces cerevisiae leads to growth arrest and cell death
[51]. FIC-1E274G expression in this artificial set-up resulted
in AMPylation of the cytosolic HSP70 family chaperone
Ssa2 (figure 7), the induction of an unregulated heat
shock response and the formation of protein aggregates in
the ER and the cytoplasm. Importantly, over-expression of
HYPEE234G in human cells also triggers a heat shock response
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and the formation of nuclear HSF-1 punctae, thus showing
the value of purely artificial set-ups to increase our
understanding of physiologically relevant processes.

Truttmann et al. investigated the role of AMPylation in
protein aggregation dynamics and associated toxicity; a hall-
mark of neurodegenerative diseases (NDs) [58]. Several NDs
are characterized by pathological protein aggregation leading
to compromised proteostasis and eventual cell death [105].
The authors used C. elegans as a model organism to study
how FIC-1-mediated AMPylation affects the dynamics
of Amyloid-β (Aβ), polyglutamine repeat (poly-Q) and
α-synuclein aggregation. Worm strains with constitutive
muscular Aβ expression became paralysed and showed a sig-
nificant reduction in lifespan, while Aβ-expressing strains
additionally harbouring the constitutively active FIC-1E274G

showed increased lifespan and mobility relative to strains
that expressed Aβ alone or were AMPylation-deficient [58].
Furthermore, RNAi mediated individual knockdown of
HSP-1, HSP-3 and HSP-4 doubled survival, while simul-
taneous knock down of all three HSP70 family members
increased worm survival approximately fourfold. Thioflavin
S staining of amyloid plaques under inducing conditions
revealed a significantly larger number of aggregates in
worms expressing the hyperactive FIC-1 mutant as compared
to other strains [58]. These observations imply that FIC-1
mediated AMPylation attenuates aggregation-induced
toxicity through altering chaperone function, which in turn
leads to the formation of larger cytoprotective aggregates as
opposed to toxic oligomers.

Poly-Q diseases, such as Huntington’s disease (HD), are
the result of mutant, unstable poly-Q polypeptide aggrega-
tion [106]. Aggregation of PolyQ repeats is dependent on
the age of animals and the length of such repeats [107].
While polyQ24YFP-expressing worms hardly show any
aggregates till day 10 of adulthood, polyQ40-YFP-expressing
animals already harbour discrete aggregates during larval
development [108]. PolyQ40-YFP expressed in fic-1 null ani-
mals showed an approximately twofold increase in the
number of discrete loci on day 1 of adulthood as compared
to WT worms expressing polyQ40-YFP. This difference
became less conspicuous with age [58]. Further experiments
to assess age-related changes in mobility and size of individ-
ual polyQ foci revealed that AMPylation-deficient animals
contained a higher proportion of smaller aggregates on day
1. With age, however, the authors observed a higher pro-
portion of larger aggregates (and reduced mobility) in these
animals, similar to WT animals. Animals expressing the
hyperactive FIC-1 mutant contained larger polyQ foci com-
pared to AMPylation-deficient animals on day 9. However,
these aggregates were significantly less mobile (by a factor
of approx. 2) when compared with aggregates observed in
AMPylation-deficient animals [58]. These observations
suggest that AMPylation effects vary with the model being
examined and the size of aggregates play an important role
in determining animal fitness.
PD is characterized by the pathogenic aggregation of the
presynaptic protein α-synuclein, which manifest as amyloid
fibrils in Lewy bodies and Lewy neurites. These aggregates
cause a progressive degeneration of dopaminergic neurons
which leads to impaired motor functions and reflexes [109].
Expression of FIC-1(E274G) in α-synuclein-GFP-containing
animals significantly expedited α-synuclein-GFP aggregate
formation as compared to animals expressing only
α-synuclein-GFP,while AMPylation-deficient animals had sig-
nificantly lower number of aggregates as compared to controls
[58]. As observed with the other models of NDs, larger aggre-
gates proved beneficial for worm survival and motility.
AMPylation-deficient animals, in this case, also showed
enhanced survival but not to the extent seen for FIC-1
(E274G) animals [58]. Since AMPylation-deficient animals
lack a putative negative regulator of chaperone function, and
are not compromised in chaperone functions, fic-1 knockout
may enhance the cell’s UPR systems and thus mitigate α-synu-
clein-GFP toxicity. Contrastingly, the expression of FIC-
1(E274G) presumably leads to the reversible inhibition of cer-
tain HSP70 family chaperones (e.g. HSP-1, HSP-3, HSP-4)
and possibly other proteins, which favours the formation of
large, insoluble, α-synuclein-GFP aggregates that are less
toxic or harmless for cells and could potentially be cleared
through ubiquitin-mediated proteasomal degradation.
5. Conclusion and future perspectives
From bacterial toxin AMPylases that modulate host cyto-
skeletal architecture to metazoan AMPylases that regulate
protein homeostasis in the ER, AMPylation plays a role in
a diverse array of signalling pathways. The discovery of
AMPylated proteins that are not likely to be modified by
HYPE and a non-Fic AMPylase tempts us to speculate that
there could be additional non-FicD AMPylases in human
cells. In addition, many key questions regarding HYPE func-
tion remain to be addressed, such as the following. (a) Are
there physiological cues and/or allosteric factors that mediate
the switch between AMPylation/deAMPylation states in
metazoan AMPylases? (b) Are there any dedicated de-AMPy-
lases that mediate protein deAMPylation only? (c) Is HYPE
capable of AMPylating additional ER-resident and/or non-
ER targets? Answering these questions and more will
increase our understanding of the impact of this modification
on cellular physiology.
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