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Abstract: Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis
and poor survival rates associated with late stages of the disease are major obstacles against
treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial
in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with
analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs.
Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and
aggressiveness of various cancers. However, relative to other cancers, there is limited body of
knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review,
we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the
pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.

Keywords: ovarian cancer; heat shock proteins (HSPs); clusterin; therapeutic resistance; HSP
inhibitors; ovarian cancer treatment

1. Introduction

1.1. Ovarian Cancer Is a Serious Problem in Gynaecological Oncology

Ovarian cancer (OC) is a major life-threatening problem in the field of gynecological oncology.
Globally, it stands as the foremost cause of death in women accounting for approximately 239,000
newly diagnosed cases and over 150,000 deaths per year [1]. Recent reports in the United States
estimated 22,240 new cases with ovarian cancer and 14,070 deaths owing to the disease [2]. Notably,
the highest incidence and mortality rates have been linked to Eastern and Central Europe [1]. Therefore,
great efforts are required to improve the therapeutic outcomes for diseased women. Additionally,
thorough understanding of the molecular mechanisms and key elements contributing the disease is
substantial in combating ovarian cancer [3].

Indeed, ovarian tumors can arise from three ovarian cell types namely, surface epithelium, sex cord
stromal cells and germ cells [4]. Epithelial tumors account for 90% of ovarian malignancies while
non-epithelial tumors including sex cord stromal and germ cell tumors represent 10% of the diagnosed
cases. Epithelial ovarian cancer (EOC) are histologically categorized into serous, endometrioid, clear cell
and mucinous carcinomas; the serous type itself is subclassified into high grade serous carcinoma
(HGSC), low grade serous carcinoma (LGSC) and serous tubal intraepithelial carcinoma (STIC) [3]
(a brief classification of OC histology is illustrated in Figure 1).
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Figure 1. Histological stratification of ovarian cancer . (a) High grade serous carcinoma (HGSC) is

distinguished by increased nuclear atypia, high nuclear-to-cytoplasmic ratio and abundant mitosis.
(b) Serous tubal intraepithelial carcinoma (STIC) resembles HGSC in many morphological aspects
such as severe atypia, defective cellular polarity and mitoses. Therefore, STIC is believed to be a
precursor of HGSC. (c) Low grade serous carcinoma (LGSC) is characterized by increased papillae,
mild nuclear atypia and low nuclear-to-cytoplasmic ratio. (d) Clear cell carcinoma exhibits large tumor
cell sizes and frequent clearing of the cytoplasm together with stromal hyalinization. (e) Endometrioid
adenocarcinoma can be differentiated by gland formation that recapitulates endometrial glands.
This type is further categorized according to cellular architecture and nuclear atypia. (f) Mucinous
adenocarcinoma is characterized by increased cellular mucin and formation of goblet cells. @ Histological
images are adapted from Nature Reviews Disease Primers [3].

OC is often diagnosed at relatively old age of life, with a median age of 63 years in the US women
population (https://seer.cancer.gov/statfacts/html/ovary.html). In addition, current data show that 59%
of the cases have metastatic forms of the disease, while only 15% are diagnosed at the local stage.
Of particular importance, early detection of ovarian malignancies is associated with higher cure rates,
with a five-year survival exceeding 92% for localized ovarian cancer, whereas late stage diagnosis of
the metastatic disease lowers cure rates to 20% [5,6].

The standard treatment protocol for human ovarian cancer includes maximal cytoreductive surgical
debulking followed by the platinum-based chemotherapy. Concurrent with surgical cytoreduction,
staging of the disease remains important [7,8]. Current therapeutic regimens to the first-line treatment
which involve bevacizumab and paclitaxel have shown improved survival among patients with
OC [7,9]. Unfortunately, despite initial remarkable response to chemotherapy, the majority of advanced
OC cases recur after primary drug treatment with fatal outcome [10]. According to Ovarian Cancer
Research Alliance (OCRA), current reports show that patients diagnosed at stages I and II have a
recurrence chance of 10% and 30%, respectively, whereas the chance of recurrence in those of stage III
and IV ranges between 70% and 95% (https://ocrahope.org/patients/about-ovarian-cancer/recurrence/).

Multiple treatment approaches have been adapted for management of relapsed ovarian cancer.
For instance, agents targeting angiogenesis include Bevacizumab, a monoclonal antibody that binds
human vascular endothelial growth factor (VEGF) and inhibits its activity. Cediranib is an oral
VEGEF receptor and c-KIT inhibitor that displays antitumor activity in relapsed EOC in phase I/II
studies. Trebananib is a peptide that suppresses angiogenesis by inhibiting angiopoietin-1 and -2.
Moreover, other treatment strategies involve PARP inhibitors (PARPi) which render PARP enzymes no
more capable of performing DNA repair processes and ultimately leading to synthetic lethality [11].
These PARP inhibitors include olaparib (AZD2281), niraparib (MK4827), rucaparib (CO338, AGO14699,
and PF01367338), veliparib (ABT-888) and talazoparib (BMN 673) [11]. However, it should be noted that
that PARP inhibitors have mostly been successful and are approved for patients with platinum sensitive
ovarian carcinoma rather than resistant disease [12]. Furthermore, recent reports show that sorafenib,
a pleiotropic tyrosine kinase inhibitor that inhibits pathways mediated by angiogenic and growth
stimulating factors, could significantly increase the progression-free survival in platinum-resistant OC
patients compared to placebo [13].
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A common significant problem in the treatment of women with advanced OC is therapeutic
resistance. To enhance therapeutic outcomes in recurrent OC, it would be beneficial to generate drugs
or therapeutic combinations that would overwhelm the resistance and increase the response to the
main therapy. Therefore, targeting the molecular mechanisms underlying such drug resistance in OC
is highly recommended and may allow for optimum treatment [14].

Recent research highlights the implication of heat shock proteins (HSPs) in malignant processes
and their association with drug resistance in cancer. HSPs are known as stress inducible molecules that
are highly conserved across prokaryotic and eukaryotic species ranging from bacteria to human [15,16].
These molecules are well known for their molecular chaperone activities including protein folding,
anti-aggregation of proteins and cellular protein trafficking [17-20]. Expression of HSPs is either
constitutive or induced by various physiological, environmental and pathological factors including
thermal stress, hypoxia, inflammation, toxic agents, heavy metals and cancer [21]. In response to
variant stresses, members of HSPs are mostly regulated by a physiological process collectively known
as “heat shock response (HSR)”, which involves heat shock factor 1 (HSF1) as a key player [22-24].

1.2. Heat Shock Proteins (HSPs) Are Multifamily Chaperones Implicated in Several Malignancies

HSPs have been traditionally grouped into six main families according to their molecular
weight [25,26]. These include small HSPs (sHSPs), HSP40 (DNAJ), chaperonin or HSP60, HSP70, HSP90
and large HSPs (HSP110 and glucose-regulated protein 170, GRP170) [27]. Due to growing numbers of
HSP members and their diverse and/or overlapping structures and functions, Kampinga et al. have set
a new classification of HSP families which includes alphabet letters A, B, C, D, E, H rather than the
traditional molecular weight system [27], see also Table 1.

Table 1. General overview of human heat shock proteins (HSP) families and common members [27].

HSP Family Recent Name Number of Members Common Members and Their Alternative Names
HSPH1 (HSP105)
HSP110 HSPH 4 HSPH2 (HSP110, HSPA4 and APG-2)

HSPH4 (HYOU1/Grp170, ORP150 and HSP12A)
HSPC2 (HSP90«, HSP90AA2, HSPCA and HSPCAL3)

HSPC3 (HSP90p, HSP90AB1, HSPC2, HSPCB, D65182,
HSP90 HSPC 5 HSP90B, FL]26984)

HSPC4 (GRP9%4, HSP90B1, GP96, ECGP, TRA1, endoplasmin)
HSPC5 (TRAP1, HSP75, HSP90L)
HSPA1A (HSP70-1, HSP72 and HSPA1)
HSPA1B (HSP70-2)
HSPAS (BIP, GRP78 and MIF2)

HSP70 HSPA 13 HSPA6 (Heat shock 70kD protein 6 and HSP70B)
HSPA8 (HSC70, HSC71, HSP71 and HSP73)
HSPA9 (GRP75, HSPA9B, MOT, MOT?, PBP74 and mot-2)
HSPD1 (HSP60 and GroEL)
Chaperonins HSPD and HSPE 14

HSPE1 (HSP10, chaperonin 10 and GroES)
DNAJAT (DJ-2, DjA1, HDJ2, HSDJ, HSJ2, HSPF4 and hDJ-2)
HSP40 DNA]J 50 DNAJB1 (HSPF1 and HSP40)
DNAJC1 (MTJ1, ERdj1, ERjlp and Dnajl1)

HSPB1 (HSP27, HSP28, HSP25, HS.76067, DKFZp586P1322,
CMT2F and HMN2B)

HSPB4 (CRYAA, crystallin alpha A and CRYA1)
HSPB5 (CRYAB, crystallin alpha B and CRYA2)

sHSPs HSPB 11

High expression levels of HSPs have been reported in many cancers, including breast, head and
neck, gallbladder, colorectal, skin, liver, colon, renal, prostate as well as ovarian cancer [21,28].
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Of particular interest, HSPs play dual complex role in apoptosis via promoting or counteracting cell
death. For instance, HSPs have been shown to activate apoptotic mediators such as pro-caspase
3 [29,30] and conversely, they bind and inhibit several molecules at different levels in the apoptotic
pathway [31]. Among the anti-apoptotic events is the blockade of cytochrome C and SMAC Diablo
release from the mitochondria by HSP27 besides antagonizing caspase 3 and 9 [32-34]. HSP27 can also
suppress other apoptotic death receptor pathways, including TNFe«, Fas and TRAIL [35]. Similarly,
HSP70 inhibits apoptosis by interfering with the c-jun kinase pathway and preventing cytochrome C
release from mitochondria [34,36] (See Figure 2). Moreover, HSPs have been found to chaperone several
oncogenes including mutant P53 and prevent its degradation, thus evading the classical apoptotic
pathway and resulting in cancer cell survival [37-39]. Furthermore, increased levels of certain HSPs
conferred drug resistance in many cancers including prostate [40,41], liver [42], lung [43], colon [44],
head and neck [45] and ovarian cancer [6].
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Figure 2. Anti-apoptotic and cell survival activities of some HSPs in cancer. (A) Variant roles of HSP70
in carcinogenesis. High expression of HSP70 in tumor cells suppresses apoptosis by (1) hindering APAF1
recruitment to apoptosome, interfering with BAX translocation to mitochondria, downregulation of
AIF1 and other stress-related kinases. Additionally, (2) HSP70 regulates both p53-dependent and
-independent senescence pathways, (3) supports autophagy by stabilization of lysosomal membrane
and finally (4) it forms complex with HSP90 which is essential for efficient functionality. (B) HSP60
controls apoptosis by stabilizing mitochondrial survivin (SVV) and hindering P53 pro-apoptotic actions.
HSP60 ablation results in degradation of SVV and activation of the mitochondrial apoptotic pathway.
In addition, silencing of HSP60 increases P53 stability and subsequently, triggers p53-dependent
transcription of apoptotic proteins such as BAX which promotes cell death [46]. (C) HSP27 performs
multiple functions in cancer including protein folding, actin remodeling, minimizing oxidative stress
and inhibition of apoptosis. Sample anti-apoptotic events of HSP27 are indicated by red blunt arrows.
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Having anti-apoptotic properties and drug resistance characteristics, overexpression of HSPs in
variant malignancies has been correlated to cell survival, tumor progression and metastasis as well
as poor prognosis [47,48]. Therefore, most studies consider HSPs not only as diagnostic/prognostic
markers but also as ideal therapeutic targets for cancer therapy [21,49,50]

By virtue of the increasing interest in HSPs as a potential drug target for cancer treatment among
gynaecologists, we focused on the function of HSPs in ovarian cancer and highlighted their roles in
carcinogenesis and therapeutic resistance. We will start by briefly discussing the general function of
HSPs in ovaries in both physiological and pathological conditions.

2. Biological Functions of HSPs in Healthy and Diseased Ovaries

Previous invitro and in vivo studies have demonstrated the importance of HSPs in the
development of normal ovaries, growth of ovarian follicles and their resistance to stress conditions.
In swine, thermal stress and serum deprivation induced high transcription levels of HSP70.2, HSP72
and HSP105/110 in both granulosa cells and ovarian follicles. Moreover, the expression levels of the
respective HSPs was reduced following hormonal treatment highlighting the regulation of stress
related changes by hormones in ovarian tissues [51]. In rat, treatment of immature granulosa cells with
follicle stimulating hormone (FSH) resulted in cell rounding concurrent with activation of p38 mitogen
activated protein kinase (MAPK) pathway and HSP27 phosphorylation [52].

Notably, chaperones including HSP90 and HSP70 play a key role in regulation of the function of
steroid hormones by modulating their receptor activity such as estrogen receptor (ER), progesterone
receptor (PR) and androgen receptor (AR) [40,53-55]. Expression of HSP70 has been also described in
normal ovaries where a chaperone complex including HSP70 and HSP90 is suggested to bind steroid
receptors and regulate their function [56]. For that, two hypotheses have been suggested to modulate
steroid receptor function; the first hypothesizes the association of a chaperone heterocomplex including
HSP90, HSP70, HSP40, p23, etc. to the unbound receptors and keep them in an inactive state [57].
Binding of the ligand to steroid receptor results in dissociation of the complex and release of HSP70
and HSP90 chaperones. Since proliferation of the growing follicles in proestrus occurs because of sex
steroids, HSP70 has been thought as inhibitor of steroidal effects [56]. Additionally, elevated HSP70
levels have been shown to repress steroid biosynthesis and secretion [58,59]. Heat shocked rat luteal
cells lost their ability to synthesize or secrete LH-sensitive progesterone and 20x-dihydroprogesterone
after treatment with 8-bromo-cAMP and forskolin [58]. Conversely, the other hypothesis postulates
that HSP90/HSP70 machinery is essential for maintaining the appropriate conformation required for
hormone-binding activity of the receptor [60]. Therefore, it is collectively apparent that HSPs modulate
ovarian physiology via controlling sex steroid receptors functionality as well as regulating apoptotic
mechanisms [6,61,62].

On the other hand, HSPs have been associated with cystic ovarian disease (COD). Expression
profiles of HSP27, HSP70, HSP60 and HSP90 revealed abundant levels of HSP27 in primary, secondary,
tertiary and cystic follicles and diminished in atretic follicles [63]. Furthermore, overexpression of
HSP70, HSP60 and HSP90 has been noticed in tertiary and atretic follicles. As a conclusion, the aberrant
expression of HSPs in ovarian cysts is suggested to counteract apoptosis and delay regression of
cystic follicles [63,64]. Interestingly, the herbicide atrazine, which dysregulates estrous cycle in rats
and impairs folliculogenesis, has been shown to reduce expression of HSP90 and increase follicular
atresia [65]. Additionally, in rats, ACTH or cold stress-induced polycystic ovary syndrome (PCOS)
reveal a significant elevation of the expression of HSP90 and abnormal ovarian morphology compared
to the control group [66]. Furthermore, proteomic studies in women with PCOS have demonstrated
two-fold increase in HSP90B1 levels suggesting a role in promoting cell survival and suppression of
apoptosis [67].
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3. Heat Shock Factor 1 (HSF1) in Ovarian Cancer

As briefly introduced, the heat shock response (HSR) is a cytoprotective physiological response in
all mammals to resist various stresses. Notably, the same response accompanies different pathological
conditions as well as many cancers [68,69]. It is well established that HSF1 is a key mediator of this
response which induces the expression of HSP or chaperone genes to enable the stressed cells recover
from potential damage [22,70]. Accumulating evidence has suggested the contribution of HSF1 to
tumorigenesis. For instance, HSF1 has been demonstrated to control several genes that promote the
transformed phenotype such as those involved in signaling, metabolism, cell-cycle regulation, adhesion
and translation [71,72]. Moreover, overexpression of HSF1 has been reported in a multitude of cancers
including liver, lung, breast and colon cancers where high HSF1 levels were related to unfavorable
prognosis [71,73]. Furthermore, HSF1 knock-out mice are refractory to chemically-induced tumors [22]
and mouse embryonic fibroblasts lacking HSF1 are resistant to oncogene-induced transformation [22].

Powell et al. have studied the implication of HSF1 in epithelial-to-mesenchymal transition (EMT)
and TGF{ signaling in the ovarian cancer cell lines SKOV3 and HEY that were knocked down for HSF1.
Interestingly, the expression of fibronectin that is known to promote the EMT following induction
by TGF(3 was dramatically reduced either under basal or TGFf-induced conditions [74] strongly
supporting the implication of HSF1 in TGFf signaling as well as EMT in OC [74].

Targeting HSF1 in Ovarian Cancer

Since HSF1 has been shown to be overexpressed in OC tissues and HSF1 is involved in tumor
development and metastasis, Chen et al. have investigated its targeting as a potential therapeutic
strategy against human EOC [75]. HSF1 knock-down in SKOV3 using specific shRNA cells could
downregulate HSF1, leading to marked antitumor consequences, including increased apoptosis and
reduced proliferation. Moreover, an animal study carried out by the same group confirmed the
tumorigenic tendency of HSF1 expressing cells as injection of HSF1-deficient cells into immunodeficient
nude female mice displayed no tumorigenesis until 39 days post-injection whereas injection of the
control cells formed obvious tumors after 14 days [75]. Consistent with these results, in vitro and
in vivo studies have revealed that targeting HSF1 using the nucleoside analogue (Ly101-4B) yields
potent anticancer activity in epithelial ovarian cancer [76].

4. HSPs in Ovarian Cancer

4.1. HSPC (HSP90) Family

Mammalian HSPs comprise four main HSP90 proteins that have molecular mass of about 90 kDa
and resides in different cellular organelles, including the ER, the mitochondria and the cytosol [77].
HSP90 members are essentially involved in key regulatory and oncological pathways (Figure 3) [21].
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Figure 3. HSP90 functions as a mediator of many oncogenic and signaling pathways [21]. Several
oncogenic proteins (shown in red) require HSP90 chaperonage for their proper folding and stabilization.
For instance, HSP90 impacts the activity and/or function of receptor tyrosine kinases, serine-threonine
kinases, steroid receptors, Src family members, telomerases and cell cycle proteins. Other distinctive
pathways regulated by HSP90 are illustrated in different colors, including apoptotic pathway (brown),
JAK/STAT pathway and cell-adhesion and Wnt-signaling (purple and light brown).

It is apparent that all HSP90 members are involved in the pathogenesis of ovarian cancer.
Overexpression of HSP90 has been reported in ovarian carcinoma where it was linked to the International
Federation of Gynecology and Obstetrics (FIGO) stage of the disease [78,79]. Additionally, many reports
denote the association of high HSP90 levels with tumor aggressiveness, metastasis and resistance to
chemotherapeutics [41,48,80-82]. Advanced serological approaches have identified HSP90 among the
tumor antigen proteins in OC [80]. mRNA and proteomic analysis of 17AAG treated OC cell lines,
A2780, have revealed increased expression of HSP72, HSC70, HSP27, HSP47 and HSP90B1 at the
mRNA level. At the protein level, expression levels of the heterochromatin protein 1 were increased
while expression of the histone acetyltransferase 1 and the histone arginine methyltransferase PRMT5
was reduced. The observed changes following HSP90 inhibitor 17AAG treatment indicate a complex
molecular roles of HSP90 in OC cells [83].

Tumor necrosis factor receptor-associated protein 1 (TRAP1), the mitochondrial homologue of
HSP90, is significantly involved in several cancers including ovarian cancer. TRAP1 has been strongly
expressed in tumor cells such as breast, colon, pancreas and lung whereas basal expression was
detected in corresponding normal cells [84,85]. Interestingly, recent data from large scale studies
demonstrated that lower TRAP1 levels that have been surprisingly observed in ovarian cancer are
compatible with bad prognosis [85-87]. Moreover, TRAP1 expression has been found to correlate
inversely to tumor grade or stage and correlate directly to the overall survival [87]. These results
are in line with studies, in which a better response to chemotherapeutics in patients showing higher
expression levels of TRAP1 was observed leading thus to the assumption that TRAP1 acts likely as
a tumor suppressor [88]. Furthermore, Amoroso et al., 2016 suggested that the decrease in TRAP1
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expression in ovarian cancer might be due to genetic deletion or gene-level copy number variations
(CNVs) particularly in late stages of high-grade serous OC [89].

Of note, recent insights on ovarian cancer assign TRAP1 a key metabolic role in disease progression,
platinum response and inflammatory activation [90]. TRAP1 can inhibit the mitochondrial respiratory
chain through its direct interaction with the mitochondrial subunit B of SDH (SDHB). This significant
effect confers survival to cancer cells and supports a mainly glycolytic type or Warburg phenotype of
metabolism indicating that in certain types of cancers, TRAP1 can also be considered as pro-oncogene
depending on the metabolic features of the tumor tissue [85,90]. In support to these intriguing
observations on the diverse TRAP1 roles, it has been reported that TRAP1 constitutes a molecular
complex with the cytosolic homologue HSP90 and cyclophilin D that serves to suppress apoptosis via
regulating the mitochondrial transition pore opening [91].

Interestingly, the metabolic alteration effects of TRAP1 seemed to greatly influence the
inflammatory response in terms of cytokines and chemokines. Upregulation of IL-6 and CSF2,
two significant mediators of inflammatory response, has been demonstrated in TRAP1 deficient
cells [90].

4.1.1. HSP90 and Therapeutic Resistance

Certain HSP90 isoforms such as TRAP1 can modulate the responsiveness to anti-cancer drugs
such as cisplatin in ovarian cancer [90]. Together with HSP27 and HSP70, the mRNA levels of TRAP1
were significantly up-regulated in cisplatin resistant OC cell lines compared to sensitive cells [92].
Interestingly, overexpression of TRAP1 has been considered an important factor in determining the
degree of drug resistance in OC cells. PEO1CDDP cells, which express relatively high TRAP1 levels,
were far resistant, by twenty times, to cisplatin when compared to the lower cisplatin-resistant parental
cells, PE01 [93,94]. In addition, other HSP90 proteins have been proven to confer resistance in OC cells
as deduced following their targeting (see the next section).

4.1.2. Targeting HSP90 in OC

The fact that HSP90 contributes to cancer progression and metastasis has rendered it an ideal
molecule to target in several malignancies. In ovarian cancer, previous studies have shown that targeted
inhibition of HSP90 is advantageous in terms of wide inhibition of numerous oncoproteins in EOC (see
Figure 1 and Table 2). For instance, ganetespib as a monotherapy or in combination with paclitaxel
showed marked reduction in cell growth, cell cycle arrest and induced apoptosis in vitro as well as
ovarian tumors in transgenic mice in vivo [95]. Radicicol is another HSP90 inhibitor that has been
shown to potentiate TRAIL mediated apoptosis in epithelial ovarian adenocarcinoma [96]. Moreover,
since HSP90 is involved in the folding and stability of key mutant oncogenic proteins such as mutant
p53 protein [97,98], targeting HSP90 disrupts HSP90/mutant p53 protein complex resulting in exposure
of the mutant p53 to degradation by MDM2 and CHIP E3 ubiquitin ligases [98]. As an evidence, HSP90
inhibition exhibited strong cytotoxicity in p53 mutant cancer cells and xenografts [6,99]. Similarly,
indirect targeting of multiple RTK receptors using HSP90 inhibitors, which interrupt the downstream
pathways resulted in profound pro-apoptotic and anti-proliferative effects [100]. AUY922 that inhibits
HSP90 has been tested alone or in combination treatment with carboplatin where it suppressed cell
proliferation and significantly reduced carboplatin IC50 [101]. In line with the previous findings, recent
studies have shown that the HSP90 inhibitor ganetespib potentiates the cytotoxic effect of carboplatin
even in tumor cells lacking wild-type p53 [102]. Combined treatment of the two drugs led to persistent
DNA damage and massive global chromosome fragmentation through inhibition of DNA repair and
cell cycle control mechanisms [102].
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Table 2. Summary of studies and clinical trials related to HSP90 targeting in ovarian cancer (OC).

Compound Use.d for HSP90 Effect/Mechanism Reference
Targeting
-Cell-cycle arrest and induction of apoptosis in vitro.
Ganetespib (small molecule —Dela.yed growth of orthotoPlc x.enografts and spontaneous
- ovarian tumors in transgenic mice. [95]
inhibitor of HSP90) . . .
-Downregulation and suppression of numerous proteins
associated with EOC progression
Ganetespib + paclitaxel -Paclitaxel potentiated the activity of ganetespib both in [95]
cultured cells and tumors.
Ganetespib + siRNAs -Synergistic effect [95]
Radicicol —ln;rea'sed enhanced TRAIL-induced apqptosm—related protein [96]
activation, nuclear damage and apoptosis
Suberovlanilide hvdroxamic -SAHA is histone deacetylase inhibitor (HDACi) which targets
v Y the HSP90/mutant p53 protein complex and liberates mutP35 [97,98]
acid (SAHA) . K .
from the complex leading to its degradation
17-AAG or 17AAG + -Marked apoptotic effect was observed in SKQVB, OYCAle9 ’
. R S and ES2 cells after using of 17-AAG alone or in combination [100]
tyrosine kinase inhibitors . . . S
compared to single tyrosine kinase inhibitor
AUY922 or AUY922 + -The HSP90 inhibitor AUY922 suppressed proliferation of OC [101]
carboplatin cells and decreased carboplatin IC50
Ganetespib + carboplatin -Marked synergistic action in terms of cytotoxicity in ovarian [102]

tumor cells lacking wild-type p53

Ganetespib + other
anticancer drugs including
niraparib, carboplatin,
paclitaxel, gemcitabine
(ongoing phase II trial)

-This study is known as European Trial on Enhanced DNA
Repair Inhibition in Ovarian Cancer (EUDARIO)

-It includes women with variant stages of ovarian cancer,
fallopian Tube Cancer and primary Peritoneal Carcinoma
-The trial started in 30 November 2018 and completion date are
expected to be in 30 June 2022

ClinicalTrials.gov Identifier:

NCT03783949

Ganetespib + paclitaxel
(GANNETS53, completed
phase I and phase II trials)

-The addition of ganetespib, HSP90 inhibitor besides weekly
paclitaxel did not improve survival in platinum-resistant
epithelial ovarian cancer (PROC) patients

ClinicalTrials.gov Identifier:
NCT02012192 [103,104]

AT13387 + talazoparib
(phase I)

-AT13387 is an HSP90 Inhibitor, while talazoparib is a PARP
inhibitor

ClinicalTrials.gov Identifier:
NCT02627430

Onalespib (AT13387) +
olaparib (ongoing phase I
trial)

-AT13387 is an HSP90 Inhibitor, whereas olaparib is a PARP
inhibitor

-The trial started in 19 May 2017 and completion date is
expected to be in 1 June 2020

ClinicalTrials.gov Identifier:
NCT02898207

4.1.3. Diagnostic and Prognostic Value of HSP90 in OC

Serological screening in patients with OC has identified HSP90 among the tumor antigens. These
included other molecules like S18, JK-recombination signal binding protein, CDC23, ribonucleoprotein
H1, RAN binding protein 7, TG-interacting factor, eukaryotic translation initiation factor p40 subunit,
ribosomal protein L8, human amyloid precursor protein-binding protein 1, IQ motif containing GTPase
activating protein 1 and ribosomal protein L3 [80]. Further analysis of HSP90 autoantibodies prevalence
revealed that HSP90 was linked to late stage of OC, suggesting its use as a potential biomarker [80].
Other previous studies have shown high expression of HSP90 and HSP70 where HSP90 was directly
correlated to levels of sex steroid receptors in the tumor cells [105].

GRP94 or HSP90B1, the ER resident isoform of HSP90, has been recently reported among the
plasma biomarkers associated with EOC [106]. In this study, other plasma biomarkers including
IFNvy, IL-6, IL-8, IL-10, TNF«, placental growth factor (PIGF) were co-assessed with HSP90B1
and adjusted for the well-known cancer antigen CA-125 that is widely expressed in most ovarian
cancers [107-109]. Interestingly, after adjustment for CA-125 and out of all measured biomarkers,
HSP90 could significantly predict the presence of early EOC suggesting its usage as a disease-predictive
biomarker [106]. In patients with recurrent advanced stage ovarian carcinoma the synergistic value
of HSP90 inhibitors as co-therapy with platinol and paclitaxel was utilized, although the prognostic
value of HSP90 in the effusions was not considered [110].
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4.2. HSPA (HSP70) Family

The HSP70 family has been broadly studied in various stress and disease conditions. In human,
there are 13 members within this family and they exhibit varying degrees of structural similarity and
functionality [27,111]. Although most HSP70 members are widely localized in the cytoplasm and
nucleus, certain members of HSP70 occupy distinctive cellular organelles like GRP78 or BiP (HSPADb)
in the ER and GRP75 or mortalin (HSPA9) in the mitochondria [27].

Overexpression of HSP70 has been linked to the aggressiveness of ovarian cancer [112]. Moreover,
supported by both cell culture and xenograft mouse model, HSP70-2 has been recently shown to
support tumor growth and invasion in EOC via modulating several cellular events including cell
cycle, apoptosis and epithelial mesenchymal transition pathways [113]. Furthermore, Koshiyama et al.
revealed a strong correlation between HSP72 expression and p-53 positive ovarian tumors [62].
Studies on the effusions from OC patients revealed an association between HSP70 and poor overall
survival [14,114]. Nevertheless, former studies lessened the significance of HSP70 in prognosis of
epithelial ovarian carcinoma and correlated its expression with FIGO cancer stages [78].

Mortalin or HSPA9, the mitochondria-resident HSP70 isoform, has been also implicated in ovarian
carcinogenesis and tumor malignancy [115]. Microarray results obtained from ovarian cancer tissue
have revealed that mortalin is abundantly expressed in advanced stages compared with early stages of
ovarian carcinomas and normal ovarian tissues [116]. Overexpression of mortalin and its capability
to induce malignancy comes likely from its binding to the cytoplasmic P53 [117]. Hu et al. have
demonstrated that mortalin displays its oncogenic role in ovarian cancer by promoting tumor growth
and migration/invasion via crucial pathways including cell-cycle and the MAPK-ERK signaling
pathways [118]. Other reports have shown that mortalin inhibition could suppress serous ovarian
carcinoma cell proliferation, cell motility and EMT progression via inhibition of Wnt/p3-Catenin
signaling pathway [119]. Moreover, recent studies have demonstrated that expression of mortalin in
OC cells is regulated via association of the NF-«B p65 to the mortalin promoter [120].

Similar to other HSP70 homologues, the ER localized chaperone GRP78 contributes to the OC
development and progression [121]. Humoral response against GRP78 has been initially reported
in OC patients in 1997 [122]. Interestingly, sera collected from ovarian cancer patients could detect
GRP78 in cancerous ovarian tissues but not normal ovaries suggesting that the existence of GRP78
antigen is specific to OC [122,123]. Taylor et al. have shown that the expression of GRP78 can be used
to discriminate between early stage and stage IlI/IV ovarian cancer [124]. Nevertheless, controversial
results have demonstrated lack of difference between the levels of GRP78 autoantibodies in ovarian
cancer and control patients [125]. Recent investigations have revealed overexpression of membrane
GRP78 in OC and its positive correlation with proliferation [126]. With regard to these variations in the
level of GRP78 autoantibodies in OC patients, Delie et al. have suggested that these differences might
be due to variant methods used (ELISA or immunoblot) or unequal sample size [121].

4.2.1. Therapeutic Resistance and Targeting of HSP70 in OC

It has been proven that HSP70 is highly expressed in resistant OC cells and its overexpression
counteracts cisplatin-induced apoptosis by preventing Bax translocation to the mitochondria and
subsequent mitochondrial protein release to cytosol (see Figure 2A for HSP70 cancer promoting
functions) [127]. Overexpression of HSP70 has been detected in several OC cell lines and cells derived
from patients following manumycin, a famesyl transferase inhibitor (FIT), treatment. Up-regulation of
HSP70 has been suggested as a cytoprotective response and resistance strategy against FTIs induced
apoptosis in cancer cells [128]. HSPAS6, a cytosolic HSP70 member associated with heat stress, has been
recently reported to resist Magnetic Fluid Hyperthermia MFH-based treatment of ovarian cancer.
Inhibition of HSPA6 using siRNA or 2-phenylethyenesulfonamide (PES) led to enhanced OC cell death
following exposure to MFH [129]. In addition, ovarian cancer cells which highly express GRP78 showed
resistance to paclitaxel treatment. This refractory response was markedly altered upon targeting GRP78
using siRNA where the cells showed high sensitivity to paclitaxel [130]. As a support for these findings,
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Li et al. have reported weak staining of GRP78 in the chemotherapy-sensitive ovarian tumor sections
compared to strong staining in the cisplatin-resistant C13K cells [131]. Moreover, the same researchers
found that GRP78 knockdown in cisplatin-resistant OC cells could rescue the senescence sensitivity to
cisplatin [131]. Collectively, these data highlight the contribution of HSP70 members to therapeutic
resistance in OC and suggest the potential of their targeting for OC treatment as presented in Table 3.

Table 3. Summary of pre-clinical studies targeting HSP70 members in OC.

. Used Cell
HSP 70 Member Targeting Approach Effect Line/Model Reference
HSPA5 (GRP78) siRNA + paclitaxel Marked reduction in cell HO-8910 [130]
viability
Rescues senescence sensitivity
Knocking down to cisplatin through P21 and C13K cells [131]
CDC2
SIRNA and Rigﬁgxg Oiiegs‘ﬁra: ltl;ty A2780 ¢p20 and
HSPA6 (HSP70B’) 2-phenylethyenesulfonamide YWIng exp . P [129]
(PES) magnetic fluid hyperthermia HeyA8
(MFH)
Decreased cell proliferation,
HSPA9 (GRP75 or . . . pot.entlatlon of . A2780 .and AZ780
. shRNA + cisplatin cisplatin-induced apoptosis cisplatin resistant [116]
Mortalin) . . .
and lowering cell invasion cells
potential

Despite the promise of using HSP inhibitors in cancer treatment regimens either alone or in
combination with other drugs, there exist certain limitations that should be considered. For instance,
the high sequence homology among HSP members within the same family, which may reach 80-100%
in case of HSPA family [111], may hamper specific HSP targeting and in many cases can produce
cytotoxic effects. Another obstacle for using HSP inhibitors, in general, in cancer treatment is that
silencing single HSP member may not be as efficient as proposed because of functional compensation by
other HSP homologues [132]. This conclusion has recently been evidenced by observations reported by
Prince et al., who demonstrated that dual targeting of HSP70 and HSP90 in bladder cancer cells is more
advantageous than single HSP inhibition [133]. Furthermore, it has been reported that treatment of
cancer cells with HSP inhibitors or proteasome inhibitors results in HSF1 activation and compensatory
induction of HSPs thereby reducing the antitumor activity of such inhibitors [134]. Other limitations in
preclinical studies testing HSP inhibitors are the usage of cell lines such as A2780, Hey A8, and SKOV3.
Proteomic and genomic analyses have revealed that these cell lines and others are poor models for
HGSC [135,136].

4.2.2. Diagnostic and Prognostic Value of HSP70 in OC

The diagnostic value of HSP70 in ovarian cancer patients has been recently discussed by Kang
et al. [137]. Expression analyses of Fas-associated factor 1 (FAF1) and heat shock protein 70 (HSP70)
revealed lower expression of FAF1 while concurrent increase in HSP70 levels in ovarian cancer
compared to their levels in normal ovary [137]. Moreover, both proteins were differently linked to
the tumor stage. FAF1 showed reduced expression levels in advanced stages of OC, namely stage
III and stage IV, compared with early stages (stage I or stage II). On the other hand, HSP70 was
predominantly overexpressed in papillary serous carcinomas and undifferentiated ovarian cancer.
Taken together, these data indicate a potential for the use of the characteristic FAF1/HSP70 inverse
expression pattern to predict OC [137]. Furthermore, recent proteomic based studies have suggested
HSP70 as a diagnostic yardstick in OC and revealed potent antibody response against HSP70 in OC
sera compared to normal individuals [138]. Additionally, in vitro experiments as well as data from
Oncomine database and Cancer Cell Line Encyclopedia (CCLE) have elucidated a strong association
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between mortalin expression and serous ovarian carcinoma suggesting its promise use as a diagnostic
biomarker in serous ovarian carcinoma [119].

4.3. HSPD and HSPE (Chaperonin) Family

The well-known candidate in the HSPD family is HSPD1/HSP60 that is traditionally known as
60 kDa chaperonin and is mainly localized in the mitochondria [139,140]. It has been demonstrated
that HSP60 regulates cell cycle and apoptosis in cancer via survivin and p53 mediated mechanism
(Figure 2B) [46]. This mitochondrial chaperone has been also reported to exist in different cellular
compartments including the cytosol and the nucleus as well as the extracellular environment [139].
Together with the 10 kDa co-chaperone, HSP60/HSP10 complex, it performs crucial cellular activities
including protein folding, transport of proteins across membranes and other non-chaperone
functions [14]. Therefore, HSP60 has been referred as moonlighting protein [141].

The fact that HSP60 has been widely involved in several malignancies evoked many researchers to
investigate its potential role in ovarian cancer. Initial studies assessing HSP60 in OC patients revealed
detectable yet variable mRNA levels of HSP60 in tissues of ovarian carcinoma [142]. Recent reports
have demonstrated decreased overall survival in patients with advanced OC who express high HSP60
levels suggesting its use as a potential prognostic biomarker [143]. In line with the previous findings,
Bodzek et al. have shown that immunoglobulins against HSP60 and HSP65 were correlated to the
stage of the neoplastic process. For instance, the expression of HSP60 was remarkably higher at the
early stages of OC then decreased with advanced stages [144].

In the context of cooperativity between HSP60 and HSP10 (HSPE1) in terms of forming functional
molecular complex, HSP10 has been also shown to contribute in a certain way to OC. Akyol et al.
have demonstrated that HSP10 can modulate the immune response in patients with advanced
ovarian malignancies. Consistent with its detection in both sera and ascitic fluids of ovarian cancer
patients, HSP10 has been found to suppress the expression of T cell receptor (TCR)-associated
signal transducing zeta chain (CD3-zeta) leading to impaired immune responsiveness of T cells and
ultimately tumor-mediated T-cell dysfunction [145]. Furthermore, DNA microarray technology has
been exploited to identify differentially expressed genes in chemosensitive and chemoresistant ovarian
serous papillary carcinomas in a study including 158 patients. Interestingly, gene expression analysis
as well as immunohistochemistry have identified HSP10 as an independent factor of progression-free
survival [146].

4.3.1. HSP60 and Therapeutic Resistance

Early investigations have shown the implication of HSP60 in OC resistance to chemotherapeutics.
Compared with controls, HSP60 transcripts were remarkably abundant in A2780 human ovarian
carcinoma cells that were selected for cisplatin or oxaliplatin resistance. These uneven mRNA levels of
HSP60 denote a strong association with in vitro resistance to platinum compounds [147]. In accordance
with these results, it has been recently shown that targeting HSP60 sensitizes variant resistant OC cell
lines to docetaxel or cisplatin treatment and results in significant cytotoxic effects [148]. A study by
Kamishima et al. revealed the contribution of cytosolic HSP60 (c-HSP60) in conferring resistance to
OC cell lines [149]. In this study, HSPs levels and roles were compared in two human ovarian cancer
cell lines; the first, TYK-R10, which resists cisplatin and exhibits cross-resistance to anti-cancer drugs
including adriamycin (ADR), vincristine (VCR) and etoposide and the second, is the parental line
(TYK-nu). Under normal culture condition, the cisplatin-resistant TYK-R10 cells have been found
to significantly express c-HSP27, c- HSP60, c-HSP70 and n-HSP70 compared to diminished levels
in TYK-nu cells. Strikingly, while heat shock treatment augmented cisplatin resistance in TYK-R10,
but not TYK-nu, the resistance of TYK-nu to ADR was significantly increased compared to TYK-R10.
The acquired resistance to ADR has been attributed to overexpression and cellular relocalization of
HSP27 and HSP60 in TYK-nu cells [149].
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4.3.2. Targeting HSP60 in OC

Though its involvement in resistance to anti-cancer drugs, therapeutic interventions that target
HSP60 in OC is relatively low as compared to other HSPs. Nevertheless, we would say that anti-HSP60
drugs are emerging rapidly. Meng et al. have recently shed the light on HSP60 modulators, including
inhibitors from both natural products and synthetic compounds, which are expected to be largely used
in cancer research including OC in the near future [139].

4.4. DNAJ (HSP40) Family

DNAJ or HSP40 is the largest HSP family in humans comprising almost 50 members [27].
Structurally, DNA] is characterized by a conserved J-domain that is essential for the recruitment and
stimulation of the HSPA ATPase activity [150,151]. Despite its implication in many human malignancies
such as lung [152], gastric [153], colorectal [154] and cervical cancers [155], members of this family are
less studied in ovarian cancer.

Though scarcity of HSP40 studies on OC, an interesting observation by Shridhar et al. has led to the
identification a gene that is in part homologous to the DNAJ domain, which exists in a several proteins
including HSP40 family [156]. The identified gene has been designated as methylation-controlled ]
protein (MCJ). Strikingly, unlike normal ovarian cells, loss of MC] expression has been reported in OC
cell lines. Additionally, in patients with primary ovarian tumors, MCJ downregulation or complete
absence of expression has been reported in 67% of the cases. Furthermore, treatment of OV202 cells
with 5-Aza-2’ -deoxycytidine caused upregulation of MCJ in in a dose-dependent manner. Altogether,
these results suggest that MCJ loss may serve as a potential prognostic factor in OC and may confer
resistance to OC chemotherapeutics [156].

4.5. Small Heat Shock Proteins (sHSPs)

This class of molecular chaperones include proteins with molecular weight of 12-43 kDa [157].
sHSPs are present in different cellular locations including cytoplasm, nucleus and plasma membranes
and serve primarily to prevent aggregation of denatured and misfolded proteins [158]. Members
within this family are functionally distinguished from large HSPs because they lack ATPase activity
and they have broad substrate specificity; therefore, they are commonly known as “holdases” [159].
In addition to their chaperone function, sHSPs are widely implicated in pivotal biological processes
including cell proliferation, apoptosis, stress defense, cell cycle regulation and, of critical importance,
cellular transformation to malignant phenotypes [35,160,161]. Notably, the function of key sHSPs is
tightly regulated by post-translational modifications like phosphorylation (see Figure 4A for general
HSPs’ structure including small HSPs). It has been shown that aberrant phosphorylation of sHSPs is
correlated with cancer development and progression [162,163]. Additionally, sHSPs have been known
for anti-apoptotic properties in cancer cells (Figure 2C) [34,164,165].



Cancers 2019, 11, 1389 14 of 29

A.

ATP- binding domain Middle domain C- terminal domain

N'— a - H -MEEVD—C’"* HsP9o

Association with: HSP40, Association with: HSP40,

Hydrophobic linker

J-domain, Bag-1, HIP Hop, Tpr-2, CHIP
N'— - - Substrate binding - C-terminal -EEVD-C%' HSP70
N'— —C573 HSP60
Phosphorylation sites
S15 S78 S82 T143
Q Q0 o
N'= NTD — oa-crystalindomain — CTD =-C2° HSP27

Phosphorylation sites
S19 S45 S49
o Q0

N'=' NTD - o-crystalindomain - CcTD -C'® aB-crystallin

B. o
N - — L R— -C
Clusterin
Cc— — —o -N
o ®

Figure 4. Schematic representation showing structural features of common chaperones involved in
ovarian cancer. (A) From top to bottom; HSP90, HSP70 and HSP60 are ATP-dependent chaperones
that harbor ATP binding sites within their structures whereas sHSPs such as HSP27 and aB-crystallin
do not possess ATP binding sites. All HSPs have N-terminal and C-terminal domains (NTD and
CTD) besides middle domain. sHSPs contain phosphorylation sites at specific serine (S) or threonine
(T) residues, depicted as black sticks with yellow circles at their ends, and they are characterized
by conserved a-crystallin domain that is flanked by variable N- and C-terminal ends. (B) The main
structural topology of clusterin (CLU). Synthesis of CLU includes removal of the short 22-residue signal
peptide (grey) as it enters to the ER lumen. Subsequent posttranslational proteolysis occurs in the Golgi
where the protein is cleaved into «-(upper) and p-(lower) chains. The «- and (3-chains are covalently
connected by five disulfide bridges extending from ‘core region” of both chains (yellow vertical lines).
In addition, the x-chain is predicted to contain one amphipathic «-helix while the 3-chain contains two
a-helices. Moreover, both chains have a coiled coil structure (light green) and the mature protein is
known to have six N-linked glycosylation sites (blue circles).

HSPB1 or HSP27 is an eminent candidate of sHSPs family which has been extensively
studied in many cancers, including breast cancer [166], endometrial cancer [167], lung cancer [168],
liver cancer [169] andprostate cancer [170]. In ovarian cancer, numerous data indicate the involvement
of HSP27 in OC pathogenesis and therapeutic resistance reflecting its significance in predicting
of the disease stage and prognosis [171,172]. For instance, Geisler et al. have demonstrated an
inverse relationship between HS27 expression level and FIGO stage of OC and proposed HSP27 as
independent prognostic indicator of survival in patients with epithelial ovarian carcinoma even after
longer follow-up [173,174]. Increased expression level of HSP27 has been reported to be associated
with ovarian tumor progression and aggressiveness [175,176]. Further investigations confirmed the
presence of HSP27 as well as hsp27-cytochrome ¢ complexes in cell free endo-cervical or posterior
vaginal preparations from women with endometrial or ovarian cancer [177]. In line with the previous
findings, Olejek et al. have shown that sera of women suffering from OC contained higher levels of
HSP27 antibodies compared with healthy ones [178]. Interestingly, both mRNA and protein levels
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were found to be clearly elevated in EOC patients with peritoneal metastasis in comparison with those
without peritoneal metastasis [179]. These results strongly link the overexpression HSP27 in EOC to
the incidence of peritoneal metastasis and subsequent poor clinical outcome [179]. In accordance with
former reports, using ELISA assays, Zhao et al. have shown that serum levels of HSP27 are significantly
high in EOC patients compared to patients with benign ovarian tumors and the overall increase in
HSP27 levels were exclusively detected in patients with peritoneal metastases [180]. Taken together,
the previous data suggest that HSP27 can be used as potential biomarker as well as indicator of ovarian
cancer and its metastatic status [180].

HSPB5 or aB-crystallin (CRYAB) is a stress inducible chaperone that was originally identified
as a major lens protein in the eye [163,181,182]. In response to stress situations like radiation
and peroxidation, CRYAB exerts its chaperoning activity via binding unfolded or disordered
proteins, increasing their solubility and hampering their undesirable hydrophobic interactions, thus,
preventing their aggregation. As a consequence, it inhibits induction of apoptosis and promotes
cell survival [158,183]. On the other hand, the oncogenic properties of CRYAB have been clearly
documented in many malignancies such as lung cancer [184], head and neck cancer [185], breast
cancer [186,187] and colorectal cancer [188].

Many reports have linked CRYAB expression to OC progression and poor clinical
outcome [165,189,190]. Earlier studies have demonstrated that lower CRYAB expression is associated
with adverse patient survival [191]. Recently, however, immunohistochemical analysis of CRYAB
and p53 has revealed that both proteins are highly expressed in ovarian cancer specimens and their
co-expression can serve as independent prognostic factor of disease-free survival (DFS) and overall
survival (OS) [190]. For instance, data reported by Tan et al. have shown that patients with increased
co-expression of CRYAB and p53 have the worst prognosis among individuals with ovarian cancer [190].
Importantly, experiments performed on the human serous ovarian cancer derived cell lines, OV-MZ-6
and HEY, have revealed that overexpression of CRYAB could significantly inhibit TRAIL as well as
cisplatin induced apoptosis [189].

Therapeutic Resistance and Targeting of sHSPs in OC

Several reports pointed to the contribution of sHSPs to chemoresistance in variant cancer
types including OC [6,160,172,192,193]. Upregulation of HSP27 has been strongly correlated with
limited responsiveness to platinum-based and topoisomerase-II-directed chemotherapy [194,195].
In ovarian cancer, previous clinical trials such as GOG111 and OV-10 have demonstrated that combined
paclitaxel and cisplatin chemotherapy showed higher efficacy as compared to cyclophosphamide
and cisplatin co-treatment, the standard regimen at that time [196,197]. The favorable therapeutic
outcomes for paclitaxel/cisplatin combination have been attributed to the ability of paclitaxel to
suppress the HSP27 as shown by Tanaka et al. [198]. Additionally, the same group demonstrated
a potential role for HSP27 in tubulin regulation and arrangement specially in the G2/M phase
giving another explanation for the desirable therapeutic responsiveness upon silencing HSP27 in
OC cells [198]. In agreement with these previous findings, Pai et al. have recently shown that
(2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol) or shortly MT-4 is able to suppress both
sensitive A2780 and multidrug-resistant NCI-ADR/res ovarian cancer cell lines via downregulation
of HSP27 and minimizing its interaction with caspase-3 [193]. Surprisingly, however, the in vitro
results reported by Stope et al. indicated a heterogeneous expression pattern of HSPB1 upon
treatment with paclitaxel and carboplatin, despite their anti-proliferative effect, on selected OC cell
lines [172]. Interestingly YangZheng Xiao]i (YZX]), the traditional Chinese anti-cancer medicine,
has been demonstrated to suppress the phosphorylation of HSP27 and silencing of HSP27 enhances
the cytotoxic effects of YZX]J in OC cells [199]. A summary of these studies and their effect is presented
in Table 4.
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Table 4. Summary of pre-clinical and clinical studies targeting HSP27 in OC.
sHSP Targeting Compound Effect or Mechanism Used Cell Line/Model  Reference
Suppression of HSP27 BG-1 ovarian cancer cells
HSP27 Paclitaxel expression concomitant and HeLa uterine cancer [198]
with cell growth inhibition cells
The OGX-427, antisense
inhibitor targeting HSP 27, .
Apatorsen (OGX-427) caused marked reduction Phas{;iizljsl)(oc [200]
of CA-125 in a dose P
dependent manner
Increasing sensitivity of
(zzgiizg;ealigg}?ii?sle Cherflz?}fg:aceiﬁt,;; ia A2780 and A2780-CP70, [199]
- peutics v SKOV3 and COV504
herbal medicine) modulating
phospho-HSP27 levels
Inhibition of tubulin
polymerization and A2780 and multidrug-
MT-4 induction of apoptosis via resistant NCI-ADR/res [193]
hindering HSP27/caspase 3 human OC cell lines
interaction
None (CRYAB effect was  Resistance of TRAIL-and  OV-MZ-6 and HEY cells
CRYAB proofed in vitro via cisplatin-induced as well as tumor tissues [189]
overexpression) apoptosis from patients with OC

4.6. Clusterin

Clusterin (CLU) is a chaperone protein whose properties resemble sHSPs in many aspects
including cytoprotective as well as oncogenic criteria [201-205]. This molecular chaperone is a highly
glycosylated glycoprotein with molecular mass of 80 kDa and its structure comprises two polypeptide
chains linked together by four to five disulfide bonds [202,206] (see Figure 4B for CLU structural
architecture). It is of note that CLU stands as one of the major extracellular chaperones that has been
extensively investigated in many cancer types [201,203]. Owing to its shared characteristics with HSPs,
we sought in this section, and in the context of HSPs, to review the relevant research on CLU and its
role OC.

On the whole, CLU is broadly involved in the carcinogenesis, progression, metastasis and
therapeutic resistance of myriad cancers [160,207,208]. These include, liver [209], breast [210], lung [211],
prostate [212] as well as ovarian cancer and other cancer types [207,213]. Interestingly, it has been
postulated that different CLU isoforms play controversial roles inside the cell. For instance, in ovarian
cancer cells, the nuclear form of clusterin (nCLU) has been found to delay cellular growth and promote
apoptosis [213,214], while its secreted form (sCLU) exhibits anti-apoptotic potential and consequently
accounts for the emergence of chemoresistant and aggressive phenotype [213,215,216]. Consistent
with the aforementioned observations, high sCLU expression has been found in recurrent-resistant,
paclitaxel resistant as well as Taxol-resistant tumors [217,218]. Notably, CLU has been demonstrated
to physically bind paclitaxel hampering its interaction with microtubules, thus preventing apoptosis
induction by paclitaxel [219]. Moreover, various in vitro studies have shown the implication of CLU in
progression of OC. Upon silencing CLU using shRNA, Wei et al., have indicated increased sensitivity
of silenced OC cell lines to chemotherapy [213]. In addition, other effects were observed including
diminished cell proliferation, migration and invasion [213]. These results were further supported by
Fu et al., who used a lentivirus-based approach to silence CLU in OC cells. These findings revealed
clear reduction in proliferation, clonability, migration, invasion of the cell lines used [220]. Likewise,
studies including siRNA or OGX-011, a second generation antisense oligodeoxynucleotide against
CLU, have been shown to modulate the responsiveness or sensitivity of OC cell lines to paclitaxel [218].
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4.6.1. CLU as a Prognostic Biomarker in OC

It has been reported that overexpression of CLU in OC is correlated with increased tumorigenesis,
poor survival and unfavorable therapeutic outcome [218,219,221-223]. In a recent proteomic study
by Zhang et al., CLU has been identified among specific upregulated proteins following surgical
intervention in OC patients, suggesting its contribution to postoperative recurrence of epithelial
ovarian cancer [224]. Moreover, in the same study high plasma levels of CLU have been detected
in chemotherapy-resistant patients compared to chemotherapy-sensitive group. Taken together,
these data strongly suggest CLU not only as a biomarker for OC prognosis but also as predictor of
chemotherapy resistance in ovarian cancer [224].

4.6.2. Targeting CLU in OC

Custirsen (OGX-011) is the most well-known anti-CLU drug in the oncology field. Despite
being used intensely in preclinical and clinical studies in various cancer types, such as prostate [225],
HCC [205] and lung cancer [226], very rare have studies incorporated custirsen in clinical trials
regarding OC. For instance, OGX-011 has been used with docetaxel in phase I trial in patients
with ovarian cancers together with others suffering from castration-resistant prostate cancer (CRPC),
non-small cell lung cancer (NSCLC), breast, bladder and renal cancers. The outcomes suggested further
inclusion of OGX-011 in combination with chemotherapy as a compound with demonstrable biological
activity [227].

5. Conclusions and Perspectives

HSPs and CLU have been proven to play a key role in tumorigenesis and can be employed as
potential biomarkers for clinical diagnosis and prognosis in patients with ovarian cancer. The majority
of HSPs show increased expression in ovarian cancer tissues, where they share many carcinogenic
actions, such as impediment of apoptosis and conferring drug resistance. These criteria have raised the
possibility to target HSPs in order to treat ovarian cancer. In this area, most anticancer drugs have
been designed to target HSP90 and HSP70. However, increasing research is currently directed to target
other chaperones like HSP27 and CLU with promising results. Additionally, combination therapy by
targeting two or more HSPs in cancer treatment regimens is in progress. On the other hand, there are
many challenges in clinical development of HSP blockade due to undesired toxicity or limited efficacy
in clinical trials. Therefore, new strategies to develop novel powerful and selective HSP inhibitors are
essential reduce the burden of cancer in the upcoming future.
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Abbreviations

AIF-1 Apoptosis - inducing factor-1

Akt Serine/threonine-protein kinase
APC Adenomatous polyposis coli protein
AR Androgen receptor

ASK1 Apoptotic signal-regulated kinase 1

ATPase Adenosine Triphosphatase
Bax BCL2 - associated X protein
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Cas3 Caspase 3

CHIP Carboxyl terminus of the heat shock cognate protein 70-interacting protein
c-KIT CD117, also called KIT or C-kit receptor
CytC Cytochrome c

EGFR Epidermal growth factor receptor

ELISA Enzyme-linked immunosorbent assay
EIK ETS Like-1 protein

EMT Epithelial-mesenchymal transition

ER Estrogen receptor

ERK Extracellular Signal-Regulated Kinase
FADD Fas-associated protein with death domain
Fas Apoptosis antigen 1

GRP9% Glucose regulated protein
GSK-3p3 Glycogen synthase kinase 3

HSP Heat shock protein

IkB kinas  Inhibitor of NFkB

IL Interleukin

IFNy Interferon gamma

JAK Janus kinase

JNK c-Jun N-terminal Kinase

LEF Lymphoid enhancer factor

MEK MAPK/ERK kinase

p53 protein 53 or tumor protein 53

PARP Poly (ADP-ribose) polymerase

PDK1 Phosphoinositide-dependent kinase 1

PI3K Phosphatidylinositol 3-kinase

Pro-cas Pro-caspase

Raf Rapidly accelerated fibrosarcoma, retroviral oncogen
Ras Rat sarcoma, cancer associated membrane protein
SMAC Second mitochondria-derived activator of caspase
STAT3 Signal Transducers and Activator of Transcription
SVv Survivin

TNF«, Tumor necrosis factor o«

TRAIL TNF - related apoptosis - inducing ligand

VEGF Vascular endothelial growth factor receptor

EGFR Epidermal growth factor receptor

IGFR Insulin-like growth factor receptor
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