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Abstract
Accurately estimating infection prevalence is fundamental to the study of population 
health, disease dynamics, and infection risk factors. Prevalence is estimated as the 
proportion of infected individuals (“individual-based estimation”), but is also esti-
mated as the proportion of samples in which evidence of infection is detected (“anon-
ymous estimation”). The latter method is often used when researchers lack 
information on individual host identity, which can occur during noninvasive sampling 
of wild populations or when the individual that produced a fecal sample is unknown. 
The goal of this study was to investigate biases in individual-based versus anonymous 
prevalence estimation theoretically and to test whether mathematically derived pre-
dictions are evident in a comparative dataset of gastrointestinal helminth infections 
in nonhuman primates. Using a mathematical model, we predict that anonymous es-
timates of prevalence will be lower than individual-based estimates when (a) samples 
from infected individuals do not always contain evidence of infection and/or (b) when 
false negatives occur. The mathematical model further predicts that no difference in 
bias should exist between anonymous estimation and individual-based estimation 
when one sample is collected from each individual. Using data on helminth parasites 
of primates, we find that anonymous estimates of prevalence are significantly and 
substantially (12.17%) lower than individual-based estimates of prevalence. We also 
observed that individual-based estimates of prevalence from studies employing sin-
gle sampling are on average 6.4% higher than anonymous estimates, suggesting a 
bias toward sampling infected individuals. We recommend that researchers use 
individual-based study designs with repeated sampling of individuals to obtain the 
most accurate estimate of infection prevalence. Moreover, to ensure accurate inter-
pretation of their results and to allow for prevalence estimates to be compared 
among studies, it is essential that authors explicitly describe their sampling designs 
and prevalence calculations in publications.
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1  | INTRODUC TION

Prevalence, a key measure in studies of disease ecology, is defined 
as the percentage of individuals in a population infected with a given 
pathogen (Jovani & Tella, 2006). This measure describes the occur-
rence of a pathogen in a population and is an essential component of 
mathematical models in epidemiology (Kermack & McKendrick, 1927). 
Because determining the “true” prevalence of a pathogen in a popu-
lation would require exhaustive sampling from every individual in the 
target population, studies generally estimate pathogen prevalence by 
determining the infection status of a proportion of the population via 
necropsy or sampling of feces, urine, blood, or saliva (Jovani & Tella, 
2006). Because invasive procedures may be impractical or prohibited, 
particularly in studies of threatened populations, the analysis of non-
invasive samples of material that potentially contains evidence of in-
fection (e.g., feces or urine) is often preferred (Leendertz et al. 2006).

Methods for estimating prevalence from such samples can be 
placed in two categories (Figure 1). “Individual-based estimations” 
are made when samples are collected from known individuals. 
Multiple samples may be collected from each individual, and prev-
alence is estimated as the proportion of individuals in which at least 
one sample contains evidence of infection. “Anonymous estima-
tions” are made when samples are collected from the environment 
without being matched to the individual from which they originated, 
with prevalence estimated as the proportion of samples containing 
the evidence of infection. A study that reports prevalence as a pro-
portion of infected samples employs anonymous estimation even if 
the number of sampled individuals or size of the sampled group is 
given, unless the number of samples is equal to the number of sam-
pled individuals, in which case we classify the estimation method as 
individual-based with single sampling.

Several past studies have discussed the accuracy of prevalence es-
timation methods. Muehlenbein (2005) found that the prevalence of 

multiple helminth species increased as Pan troglodytes schweinfurthii 
individuals were sampled repeatedly, and recommended that all re-
searchers should standardize their prevalence estimation methods 
by sampling individuals repeatedly and only using individual-based 
prevalence estimation methods. Huffman, Gotoh, Turner, Hamai, and 
Yoshida (1997) asserted that anonymous estimation methods are bi-
ased relative to individual-based methods, but provided only empir-
ical evidence from a single population of P. troglodytes schweinfurthii 
to back this claim. Several other authors (including Murray, Stem, 
Boudreau, & Goodall, 2000; Gillespie, 2006; Muehlenbein, Schwartz, 
& Richard, 2003) have cautioned against anonymous estimation meth-
ods or claimed to have benefited from individual-based estimation 
methods, but the comparative performance of the two methods has 
yet to be rigorously examined mathematically or empirically.

Here, we formally compare the performance of individual-based 
and anonymous prevalence estimation methods. We begin by present-
ing a simple mathematical model that demonstrates the differences in 
bias between the two. Our model guides us toward two specific pre-
dictions, described below, which we investigate with empirical data on 
gastrointestinal helminth infections of primates taken from the Global 
Mammal Parasite Database (GMPD) (Nunn & Altizer, 2005; Stephens 
et al., 2017). We focus on these hosts and parasites because helminths 
are the main parasite for which fecal sampling occurs, and sampling 
challenges are common in primates due to their complex ecology and 
some species’ threatened status.

2  | THEORETIC AL E X AMINATION OF 
BIA SES IN PRE VALENCE ESTIMATION

2.1 | Individual-based prevalence estimation

Using the definition above, “true” prevalence (P) is defined  
mathematically as: 

F IGURE  1 Prevalence estimation methods. In anonymous prevalence estimation, the origin of samples is unknown, and any information 
about the number of hosts that generated the samples cannot be used in estimating prevalence. In individual-based prevalence estimation 
with single sampling, each sample is paired to a different host. In individual-based prevalence estimation with repeated sampling, multiple 
samples are paired to each host, enabling more accurate estimates of prevalence when infected hosts do not always produce samples 
containing evidence of infection
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In this equation, I is the number of infected individuals in a pop-
ulation, and N is the total number of individuals. True prevalence is a 
theoretical representation of the actual occurrence of a pathogen in 
a discrete population.

In practice, the true prevalence of a pathogen is often impossi-
ble or impractical to measure, and sampling designs are restricted to 
providing an estimate of prevalence (̂P). An estimate of prevalence is 
biased if its expected value (E[ ̂P]) is not equal to the true prevalence 
(P). If E[ ̂P] < P, prevalence will be underestimated, while if E[ ̂P] > P, 
prevalence will be overestimated.

In individual-based methods, ̂P is calculated by dividing the num-
ber of individuals observed to be infected (i) by the total number of 
individuals that were sampled (n): 

When n < N, this calculation assumes that sampling is random. 
Using Equation (3), we can calculate the expected value of ̂P while 
incorporating information about repeated sampling of individuals 
and the efficacy of the method used to detect evidence of infection 
in a sample.

In this equation, D is the probability that a sample containing ev-
idence of infection is detected as such (i.e., detection rate), and X is 
the number of samples collected from each individual (see Appendix 
for derivations of all equations). If D = 1, the expected value of ̂P 
is equal to P, and thus, ̂P is an unbiased estimator of prevalence. If 
D < 1, ̂P is a negatively biased estimator of P. Thus, ̂P underestimates 
P whenever the probability of a false negative is greater than zero. 
Many factors can cause the detection rate to fall below 1. For ex-
ample, certain chemicals used in the past are not conducive to long-
term preservation of delicate specimens, such as some protozoa. 
Many protozoa and even some of the more common helminths can 
also be difficult to distinguish from fecal debris. However, bias due 
to false negatives decreases as per-individual sampling effort (X) in-
creases, because 1 - (1 - D)X approaches 1 as X increases.

Further bias is introduced if there is variation in the presence 
of evidence of infection in samples from an infected individual. For 
example, egg production by helminths can vary with age of the para-
site population and the presence of co-infections by other parasites 
(Muehlenbein & Lewis, 2013). In Equation (4), we define F as the pro-
portion of an infected individual’s samples that contain evidence of 
infection, or the occurrence rate. In this scenario, the expected value 
of ̂P is as follows: 

If D < 1 or F < 1 in this equation, ̂P is a negatively biased estima-
tor of P, regardless of the sampling effort. However, the bias still 
decreases as X increases because repeatedly sampling individuals 

increase the likelihood that infected individuals will be correctly 
identified as such. It is not necessary to distinguish between the ef-
fects of false negatives and variation in the presence of evidence of 
infection in order to infer the presence of bias, because the F and D 
terms are multiplicatively combined.

Muehlenbein (2005) provides an empirical example of how 
repeated sampling can mitigate the bias introduced when not all 
samples from infected individuals test positive. He found that 
within a population of wild chimpanzees, cumulative parasite rich-
ness (number of unique intestinal parasites infecting a given host) 
significantly increased for every sequential sample (up to four 
samples) taken per animal. In the same study, the most commonly 
occurring parasites were found in all of the serial samples of only 
a fraction of the chimpanzees, and not one of the twelve parasitic 
species recovered from the group was found in all samples from 
any one animal.

Sampling protocols that only collect one or a few samples per 
individual are particularly prone to large biases in prevalence esti-
mation, especially when D and or F are much less than 1. To observe 
these biases, many estimates of prevalence from multiple studies of 
the same disease system would have to be compared. In a dataset of 
many disease systems that vary significantly in terms of P, F, and D, 
the complex interaction between these variables would obscure the 
pattern of how increased sampling effort corresponds to increased 
estimated prevalence.

2.2 | Anonymous prevalence estimation

In anonymous estimation methods, prevalence is estimated by divid-
ing the number of samples that test positive (SI) for the pathogen by 
the total number of samples collected (SN) (Equation 5). This approach 
is based on the assumption that the proportion of infected samples 
reflects the proportion of infected individuals in the population: 

Note that measures of population size are not present in the equa-
tion. A major assumption underlying this calculation is that sampling 
is random. The expected value of ̂P for anonymous sampling is: 

The expected value of prevalence is the same for anonymous 
estimations of prevalence and individual-based estimations of prev-
alence from studies in which individuals are only sampled once (i.e., 
Equation 4 reduces to Equation 6 when X = 1). In all other cases, as-
suming that the detection rate (D) and occurrence rate (F) are less 
than 1, the bias for anonymous prevalence estimation is more neg-
ative than the bias for individual-based prevalence estimation (see 
Appendix). This effect arises because anonymous estimation is un-
able to account for infected individuals producing samples that do 
not contain any evidence of infection. Individual-based estimation 
methods can partially overcome this problem by accounting for the 
repeated sampling of individuals.

(1)P=
I

N

(2)̂P=
i

n

(3)E[ ̂P]=P(1− (1−D)X)

(4)E[ ̂P]=P(1− (1−FD)X)

(5)̂P=
SI

SN

(6)E[ ̂P]=PFD
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A sensitivity analysis of the effect of the values of P, F, D, and X 
on the difference in bias between individual-based and anonymous 
prevalence estimation methods is given in the Appendix. The key 
finding that emerges from this analysis is that the difference be-
tween the prevalence estimates generated using the two methods 
increases proportionally to P and is greater for higher values of X. 
Individual-based estimates of prevalence are greater than or equal to 
anonymous estimates of prevalence for all values of all parameters.

2.3 | Predictions

Our theoretical treatment of prevalence estimation gives rise to two 
predictions with regard to the performance of individual-based and 
anonymous estimations of prevalence. First, individual-based esti-
mates of prevalence from studies in which individuals are repeatedly 
sampled should be on average higher than anonymous estimates of 
prevalence, assuming that random sampling of individuals or samples 
occurred in all studies. This prediction arises because we expect that 
less than 100% of samples from infected individuals will show evi-
dence of infection (i.e., F and/or D < 1), based on technical and biologi-
cal failures to detect infections as described above. Second, we predict 
equivalence between individual-based estimates of prevalence from 
studies with single sampling of individuals and anonymous estimates 
of prevalence. If differences in sampling bias toward infected individu-
als exist between these two categories of prevalence estimates, then 
these estimates of prevalence will differ, based on the equations and 
assumptions given above (Equations 4 and 6). To test both predictions, 
the estimates of prevalence being compared must represent a random 
sample of parasites, hosts, and laboratory techniques, as this helps ac-
count for variation in F and D among studies.

3  | EMPIRIC AL A SSESSMENT OF 
SAMPLING DESIGN PERFORMANCE

3.1 | Methods

We evaluate the above predictions using empirical data on gastro-
intestinal helminth parasite infections in primate hosts, detected 
through fecal sampling, from the GMPD (Nunn & Altizer, 2005; 
Stephens et al., 2017), a database compiled through systematic lit-
erature searches for infectious diseases of primates. The data we ex-
tracted span 31 host genera and 64 parasite genera, and are drawn 
from 123 published papers representing multiple different labora-
tories and authors. Thus, we view our dataset as a random sample 
of prevalence estimates. We extracted the prevalence estimates, 
sample sizes, host species, and parasite species from each relevant 
entry in the GMPD and then coded the prevalence estimates as ei-
ther “individual-based” or “anonymous.” All ambiguously described 
prevalence estimates were coded as anonymous. We did not extract 
anonymous estimates of prevalence from studies where the num-
ber of individuals sampled was stated and equal to the number of 
samples, but instead considered these data to represent individual-
based estimates of prevalence with single sampling. When a study 

reported separate prevalence estimates for age and sex classes 
within a population, or when a study reported prevalence estimates 
for study subpopulations (i.e., different social groups within a park), 
we pooled the data and calculated a combined prevalence estimate. 
This was carried out to make these data consistent with data from 
other studies that pooled data across demographic groups and 
subpopulations. Prevalence estimates reported for the same study 
population in different years were treated as separate data points, 
because such studies often investigated changes in prevalence over 
time due to factors such as environmental change. In several cases, 
multiple prevalence estimates corresponding to different laboratory 
techniques were given for a host–parasite pair within a study and 
were treated as separate data points. Finally, we removed entries for 
which all forms of estimated prevalence were equal to 0, which indi-
cates that the authors searched for the parasite but failed to find it.

To test our first prediction, we first compared anonymous and 
individual-based prevalence estimates from studies that provide 
both of these types of estimates using a paired t-test. We then 
conducted a statistical analysis to assess differences between 
individual-based and anonymous estimates of prevalence in the en-
tire dataset. In this larger analysis of all available data, we performed 
model selection with Akaike information criterion (AICc), which 
selects an optimum model based on maximum likelihood (Akaike, 
1998), in the R statistical platform (R Core Team 2014) using the 
“MuMin” (Barton, 2009) and “lme4” (Bates, Maechler, Bolker, & 
Walker, 2014) packages. We averaged models that were within 10 
AIC units of the best model. All candidate models were linear. We 
considered all combinations of prevalence estimation type (“indi-
vidual” or “anonymous”) and the interaction between host genus 
and parasite genus as predictor variables of prevalence estimate. 
We included random effects of host genus and parasite genus in all 
candidate models. We did not include interactions between preva-
lence estimation type and host or parasite genus, as no effects were 
predicted and doing so would not help in evaluating our specific 
predictions about estimation type and prevalence. We chose not to 
use models that specifically incorporate phylogenetic effects (such 
as phylogenetic generalized least squares, i.e., PGLS), because such 
models cannot incorporate more than one data point per species, 
which would prevent the comparison of estimates of prevalence of 
different parasites from the same host. Additionally, such methods 
would control for the phylogeny of either the host or the parasite, 
but not both. However, we were able to control for some phyloge-
netic effects by including host and parasite genus as random effects 
in all candidate models.

To test our second prediction, we investigated differences be-
tween individual-based prevalence estimates from studies that 
sampled individuals only once and anonymous prevalence estimates 
using the model selection approach described above.

3.2 | Results

In total, we extracted 737 total entries on helminth infection preva-
lence estimated through fecal sampling from the GMPD. Of these, 
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425 give an individual-based estimate of prevalence, 349 give an 
anonymous estimate of prevalence, and 37 give both individual-
based and anonymous estimates of prevalence. Our data span 31 
host genera and 64 parasite genera. Further details are provided in 
Table S1.

Among the 37 entries that provided both individual and anony-
mous estimates of prevalence, we find that individual sampling led to 
higher estimates of prevalence (Figure 2). The mean of the individual-
based estimates of prevalence is 44.5% (SD = 30.9%), and the mean 
of the anonymous estimates of prevalence is 27.2% (SD = 24.7%), 
leading to a mean difference of 17.3% (95% CI: 11.8%–22.7%). 
Only one entry reports a higher anonymous than individual-based 

prevalence estimate, and in that case, the difference is very small 
(3%). In support of Prediction 1, a paired t-test reveals that anony-
mous estimates of prevalence are significantly lower than individual-
based estimates of prevalence (t36 = 6.46, p < 0.0001).

We observe this same pattern in the broader analysis of the full 
dataset of prevalence estimates from studies that reported one or 
both types of estimates. The results of the model selection process 
reveal that the top model received 100% of the weight (Table 1). 
Prevalence estimation type has a relative importance score of 1. In 
this model, anonymous prevalence estimation is again associated 
with substantially decreased prevalence (coefficient = −0.1217, 
t = −5.87, p < 0.0001). Thus, measures of prevalence from 

F IGURE  2 Paired individual and 
anonymous prevalence estimates. Data 
shown are individual-based and anonymous 
prevalence estimates calculated for the 
same host–parasite pair within a study. 
Lines connect paired prevalence estimates. 
Colors indicate the phylum of the parasite. 
Diamonds within the boxplots show mean 
values

TABLE  1 Multimodel inference of the effect of individual-based vs. anonymous prevalence estimation method

Prevalence  
estimation method

Host genus by parasite 
genus interaction Intercept df Log(lik) AICc ΔAICc Weight

+ 0.32 5 −105.17 220.4 0 1

Note. AICc: Akaike information criterion.
Table 1 shows the top model selected for the analysis of prevalence. “+” symbols indicate included variables. All other models had ΔAICc > 10, were not 
included in the averaged model, and are not shown.

F IGURE  3  Individual-based and anonymous prevalence estimates. Data shown are all measures of individual and anonymous prevalence 
extracted from the GMPD (includes all data shown in Figure 2). Colors indicate the phylum of the parasite. Diamonds within the boxplots 
show mean values
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individual-based designs are on average 12.17% higher than those 
from anonymous designs after accounting for the genus of the host 
and the parasite (Figure 3), also supporting our first prediction.

In testing Prediction 2, we find that individual-based estimates 
of prevalence from studies with single sampling of individuals 
(N = 120) differ from anonymous measures of prevalence (Figure 4). 
Prevalence estimation method has a relative importance score of 
0.29 (Table 2). In the averaged model, the coefficient of anonymous 
prevalence estimation is −0.064 (Z = 2.40, p < 0.02). This indicates 
that after controlling for other factors, anonymous estimations of 
prevalence are on average 6.4% lower than individual-based esti-
mates of prevalence.

4  | DISCUSSION

Our theoretical examination of prevalence estimation indicates that 
individual-based and anonymous methods both underestimate true 
prevalence (in the likely scenario where either the occurrence rate 
or detection rate is less than one), yet individual-based estimates 
have less negative bias than anonymous estimates. In other words, 
our equations suggest that individual-based estimates of preva-
lence should be larger than anonymous-based estimates. This effect 
emerges because individual-based estimates can make use of infor-
mation about repeated sampling of individuals, improving the likeli-
hood of identifying infected individuals.

Based on this prediction, we investigated whether the theo-
retical advantage of individual-based estimation is reflected in an 

empirical dataset, finding that, for gastrointestinal helminth para-
sites of primates detected through fecal samples, individual-based 
prevalence estimates are indeed higher than anonymous prevalence 
estimates. This is true both within studies that provided both indi-
vidual and anonymous prevalence estimates, and among all studies 
reporting either one or both estimates of prevalence. These results 
lend theoretical and empirical support to the long-held recommen-
dations to use individual-based sampling and avoid anonymous sam-
pling (Huffman et al., 1997; Muehlenbein, 2005).

Individual-based estimates of prevalence are expected to be 
closer to true prevalence than anonymous estimates because they 
are able to use information about the repeated sampling of indi-
viduals; thus, individual-based estimates from studies in which 
each host is sampled only once should lose their advantage over 
anonymous estimates. However, our empirical analysis shows that 
individual-based estimates of prevalence from studies in which in-
dividuals were sampled only once continue to be on average higher 
(or relatively positively biased) compared to anonymous estimates of 
prevalence, after accounting for other factors. This positive relative 
bias suggests that studies that sample individuals only once and use 
individual-based prevalence estimation methods are more biased 
toward sampling infected individuals than studies employing anony-
mous prevalence estimation. Because the values of true prevalence 
are unknown, we cannot determine whether this relative positive 
bias from nonrandom sampling results in an absolute positive bias.

Sampling infected individuals at a higher rate than uninfected in-
dividuals could be the product of unconscious bias of field workers 
toward preferentially sampling individuals that show physical signs of 

TABLE  2 Multimodel inference of the effect of individual-based prevalence estimation without repeat sampling of individuals vs. 
anonymous prevalence estimation

Prevalence  
estimation method

Host genus by parasite 
genus interaction Intercept df Log(lik) AICc ΔAICc Weight

0.23 4 −7.79 23.7 0 0.71

+ 0.27 5 −7.66 25.5 1.79 0.29

Note. AICc: Akaike information criterion.
Table 2 shows the top models selected for the analysis of prevalence. “+” symbols indicate included variables. All other models had ΔAICc > 10, were 
not included in the averaged model, and are not shown.

F IGURE  4  Individual-based estimates 
of prevalence using single sampling and 
anonymous estimates of prevalence. Data 
shown are individual-based estimates of 
prevalence taken from studies that sampled 
individuals only once, and anonymous 
estimates of prevalence. Colors indicate the 
phylum of the parasite. Diamonds within the 
boxplots show mean values
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infection, such as diarrhea or poor body condition. Such individuals 
might simply be easier or more interesting to follow. Direct observation 
of individuals almost always occurs in studies using individual-based 
estimation methods, but could also occur in studies using anonymous 
estimation methods in the rare case that individuals are observed but 
not tracked. Indeed, in our dataset, the number of individuals from 
which samples were collected was not given for 265 of 349 anonymous 
estimates of prevalence. Researchers should be cognizant of potential 
biases toward sampling infected individuals and take special care to ob-
tain samples appropriately when attempting to sample each individual 
only one time. We note, however, that the preferred strategy should 
be to always obtain repeated samples from known individuals and that 
the probability of correctly identifying an individual’s infection status 
increases with the number of repeated samples.

Individual-based prevalence estimation methods should be used 
whenever possible. The only way to reduce the bias inherent to 
anonymous estimation methods is to increase the detection rate (D). 
However, if the methods used to increase the detection rate result in 
false positives, additional biases may arise. Furthermore, individual-
based estimation methods will always outperform anonymous 
estimation methods regardless of the detection rate. Even when ob-
servations of individuals are impossible, samples collected can be 
matched to hosts through genetic methods that obtain host DNA in 
the fecal sample and then allocate the fecal samples to distinct in-
dividuals, thus allowing for individual-based prevalence estimation. 
This approach was used by Liu et al. (2010) in a study of Plasmodium 
in Gorilla gorilla and P. troglodytes. If more widely adopted, identifying 
samples to individuals through similar genetic methods would allow 
for more accurate prevalence estimates by virtue of individual-based 
estimation, while minimizing the disturbance of threatened popula-
tions and sampling bias.

Our results rest on several key assumptions. Our theoretical 
predictions carry the assumption that the proportion of sam-
ples containing evidence of infection in the pool of all samples 
reflects the proportion of infected individuals in the host popu-
lation. Some parasites (especially those  that cause diarrhea) may 
cause infected individuals to defecate more frequently than un-
infected individuals, so some anonymous estimates of prevalence 
in our empirical dataset may contain a positive bias. This bias 
would make the differences between anonymous and individual-
based prevalence estimation methods appear smaller, resulting 
in an underrepresentation of the true differences between the 
estimation methods. However, other pathogens may cause chron-
ically infected individuals to experience decreased appetite, and 
thus ingest less food and defecate less frequently. This could 
give some anonymous estimates of prevalence in our empirical 
dataset a negative bias, resulting in an over representation of the 
true differences between estimation methods. Additionally, our 
theoretical predictions rest on the assumption that sampling is 
random in all cases. Our comparison between anonymous preva-
lence estimates and individual-based prevalence estimates from 
studies with single sampling suggests that this may not always be 
the case in practice.

Furthermore, we make several important simplifications during 
our theoretical treatment of prevalence estimation. We do not in-
corporate false positives. False positives are less likely to occur in 
fecal sample analyses that focus on helminth egg detection (relative 
to analyses that seek to identify larva and protozoa), because fecal 
debris and or other materials are unlikely to be confused for helminth 
eggs. However, false negatives do remain an issue, especially in cases 
where it is difficult to discern helminth eggs from fecal debris and 
other material in the sample, and in genetic procedures such as PCR 
(Borst, Box, & Fluit, 2004). We also do not consider parasite misiden-
tification. While this may occur, it would not affect any estimate of 
prevalence as long as the misidentification is consistent, and parasites 
of separate species are not identified as members of the same species.

Our empirical analyses may have been affected by discrepan-
cies between our data coding and the actual methods employed in 
the original studies, as many papers from which we collected em-
pirical data were unclear in their descriptions of sample collection 
and prevalence estimation. However, we classified all ambiguously 
described methods as anonymous estimation, so any incorrect clas-
sifications were almost certainly individual-based estimated being 
classified as anonymous estimates. This would obscure differences 
between estimation types, making it a conservative practice.

In conclusion, we demonstrate theoretically that estimating prev-
alence as a proportion of infected individuals (individual-based esti-
mation), rather than as a proportion of samples containing evidence of 
infection (anonymous estimation), gives a higher and less negatively 
biased estimate of true prevalence. We found evidence of this pat-
tern in an empirical dataset of gastrointestinal helminth infections of 
primates. Therefore, repeatedly sampling known individuals should 
always be the preferred method in parasitological surveys. Because 
different prevalence estimation methods perform differently, explicit 
calculations must be published along with prevalence estimates, 
particularly in studies where the number of samples collected is not 
equal to the number of individuals sampled. Our results also suggest 
that nonrandom sampling of individuals may be common in primate 
parasitology. Therefore, researchers should take care to sample ran-
domly, use methods designed to reduce unconscious sampling bias, 
and fully and unambiguously report their sampling procedures.
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APPENDIX
Calculating Infection Prevalence: Best Practices and Their 
Theoretical Underpinnings

DERIVATION OF EQUATION 3

Equation 3 gives the expected value of an individual-based estimate 
of prevalence. D is the probability that a sample from an infectious 
individual will test positive. All samples from infected individuals are 

assumed to contain the evidence of infection needed to test posi-
tive, and to be equally likely to test positive. P is the true 
prevalence.

The probability of a single sample from a single infected individual 
not being detected as infected is 1- D. The probability of all samples 
from the same individual not being detected as infected is (1-D)X. 
Therefore, the probability of an infected individual being detected as 
infected is 1- (1-D)X. The number of individuals expected to be in-
fected in a sample of the population is P*n, so the total number of 
individuals expected to be detected as infected is Pn(1 - (1 - D)X). 
Dividing by the total number of individuals sampled gives the 

Eqn 3: E[ ̂P]=P(1− (1−D)X)
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expected estimate of prevalence Pn(1−(1−D)X)

n
 which reduces to 

P(1− (1−D)X)

DERIVATION OF EQUATION 4

Equation 4 gives the expected value of the estimate of prevalence 
in the same scenario as in Equation 3, but with the added assumption 
that samples from an infected individual contain evidence of an in-
fection with probability F.

The probability of a single sample from a single infected individual 
not being detected as infected is the sum of the probability that the 
sample contains evidence of infection and is not detected as in-
fected (F * (1-D)) and the probability that the sample does not con-
tain infectious material and is not detected as infected ((1-F)*1). This 
sum is equal to 1- FD. The probability of all samples from an infected 
individual not being detected as infected is (1-FD)X and therefore the 
probability that an infected individual is detected as infected is 1- (1-
FD)X. The number of individuals expected to be detected as infected 
in a population is Pn(1− (1−FD)X). Dividing by the total number of 
individuals sampled gives the expected estimate of prevalence 
Pn(1−(1−FD)X)

n
 which reduces to P(1− (1−FD)X)

DERIVATION OF EQUATION 6

Equation 6 gives the expected value of the estimate of prevalence 
for anonymous estimation. We assume that all individuals generate 
the same number of samples regardless of their infection status and 
that samples are randomly selected from the “pool” of all samples. 
The number of samples generated from infected individuals contain-
ing evidence of infection will be SN PF. The number of these that will 
be detected as containing infectious material will be SN PFD 
Therefore, the expected proportion of samples detected as contain-
ing infectious material in a population will be SNPFD

SN

, which reduces to 
Equation 6.

COMPARISON OF BIA SE S FOR ANONYMOUS PRE VA-
LENCE E S TIMATION AND INDIVIDUAL-BA SED PRE VA-
LENCE E S TIMATION

The bias of individual-based prevalence estimation is P((1-(1-FD)x)-1) 
(equation 4). The bias of anonymous prevalence estimation is  
P(FD-1) (equation 6).

If X = 1,
P((1-(1-FD)x)-1) = P((1-(1-FD)-1) = P(FD-1)

Eqn 4: E[ ̂P]=P(1− (1−FD)X)

Eqn 6: E[ ̂P]=PDF

F IGURE  A1 Difference in biases of individual-based and anonymous prevalence estimation methods. Contour plots show the values of 
(1- FD – (1- FD)X) for various values of F, D, and X. Multiplying the values displayed in the plots by true prevalence, P, gives the difference 
in bias between individual-based and anonymous estimates of prevalence. When X = 1, the difference in bias is equal to P, as (1 - FD - (1 - 
FD)X) = 1 for all values of F and D
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Therefore, no difference in bias exists between anonymous 
estimation and individual-based estimation with single sampling.

To prove that the bias is always more negative for anonymous 
sampling than for individual-based sampling when X > 1, we wish to 
show that P(FD − 1) < P((1 − (1 − FD)X)−1). 

SENSITIVIT Y ANALYSIS OF 
PRE VALENCE BIA SES

Here, we consider the difference in bias for individual-based and 
anonymous prevalence estimation methods applied to the same sys-
tem (i.e. same values of F, D, and P). The difference in bias is: 

P((1− (1−FD)X)−1)−P(FD−1)

=P(1− (1−FD)X)−PFD

=P(1−FD− (1−FD)X)

Thus, the difference in bias is expected to be directly propor-
tional to true prevalence, P. Figure A1 above shows that in  addition 
to increasing with P, the difference in bias between the two meth-
ods increases with greater values of X and is  maximized at different 
combinations of F and D, depending on the value of X.

FD−1 < (1− (1−FD)X)−1

FD<1− (1−FD)X

FD−1<−(1−FD)X

1−FD> (1−FD)X

1>FD>0⇒1>1−FD>0

⇒ 1−FD> (1−FD)X


