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Abstract

Background: Horizontal gene transfer (HGT) is the event of a DNA sequence being transferred between species not
by inheritance. HGT is a crucial factor in prokaryotic evolution and is a significant source for genomic novelty resulting
in antibiotic resistance or the outbreak of virulent strains. Detection of HGT and the mechanisms responsible and
enabling it, is hence of prime importance.
Existing algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from its recipient
genome. Closely related species pose an even greater challenge as most genes are very similar and therefore, the
phylogenetic signal is weak anyhow. Notwithstanding, the importance of detecting HGT between such organisms is
extremely high for the role of HGT in the emergence of new highly virulent strains.

Results: In a recent work we devised a novel technique that relies on loss of synteny around a gene as a witness for
HGT. We used a novel heuristic for synteny measurement, SI (Syntent Index), and the technique was tested on both
simulated and real data and was found to provide a greater sensitivity than other HGT techniques. This synteny–based
approach suffers low specificity, in particular more closely related species. Here we devise an adaptive approach to
cope with this by varying the criteria according to species distance. The new approach is doubly adaptive as it also
considers the lengths of the genes being transferred. In particular, we use Chernoff bound to decree HGT both in
simulations and real bacterial genomes taken from EggNog database.

Conclusions: Here we show empirically that this approach is more conservative than the previous χ2 based
approach and provides a lower false positive rate, especially for closely related species and under wide range of
genome parameters.
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Background
Genomes of bacteria and archaea are characterized by
extensive gene mobility between species that is crucial not
only for evolution of genome architecture but also for the
functionality of prokaryotic organisms [12]. The princi-
pal mechanism accounting for gene mobility is horizontal
gene transfer (HGT) [6, 14, 18] in which a gene (or a group
of genes) of a donor species being acquired by a recipient
organism. HGT, to a large extent, is mediated by viruses
(bacteriophages), plasmids, transposons and other mobile
elements. The genetic interpretation of this event is a
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gene being copied from the donor genome to the recipient
genome (see Fig. 1).

The study of the HGT is of paramount importance
for several reasons. First, from medical perspective, HGT
plays a major role in the emergence of new human dis-
eases, as well as promoting the spread of antibiotic resis-
tance in bacteria species [21]. From the fundamental,
evolutionary standpoint, HGT links distant branches in
the tree of life, turning it into an evolutionary network [6,
30]. Genetically, HGT is an important, if not the primary
source of new genes that are acquired by bacteria and
archaea and often result in adaptations to new environ-
ments and conditions [5]. Recent advances of comparative
genomics and especially metagenomics indicate that the
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Fig. 1 A genome is viewed as a sequence of genes while a gene is a sequence of nucleotides

complexity of the genetic material that is horizontally
transferred is vast and exceeds by several orders of magni-
tude the complexity of the set of conserved genes that are
mostly vertically inherited [7]. Therefore, identification of
HGT can shed light on many significant evolutionary pro-
cesses that cannot be explained by the traditional tree–like
approach.

Currently, there are two prevailing methods for detect-
ing HGT. The phylogeny based approach takes a rela-
tively large set of homologous (originated from a common
ancestor) coding sequences, constructs their correspond-
ing phylogeny, and contrasts it to the phylogeny of their
originating species. When conflicts are found between
the two trees, they are reconciled by introducing HGTs
(see e.g. [13, 17]). While this approach has the advan-
tage of identifying relatively old events, the approach is
based on a very stringent assumption of where to seek the
events. Finally, it also requires a multiple alignment of the
sequences and inferring a reliable species tree (two major
problems by themselves [31]). The composition based
approach contrasts genomic sequences of different com-
positional structure such as G+C content, dinucleotide
frequencies or codon usage biases, striving to infer dif-
ferent origins (e.g. [3, 11, 18, 20]). This approach suffers
from the fact that the species involved might share similar
compositional patterns. Moreover, the length of a trans-
ferred segment may be too short to reliably reveal these
differences. As concluded in [16], “atypical G+C content
and pattern of codon usage are not reliable indicators of
horizontal gene transfer events”.

Both the phylogenetic and the sequence based
approaches rely on a strong enough signal for the HGT.
Such a signal may not exists when dealing with closely
related species or even strains of the same species. In
two recent works [1, 24], we have defined the notion of
synteny index (SI) between two genomes (species) and
used it as a marker of evolutionary footprints. Gene
synteny [8, 23] is the conservation of gene order across
species along the evolutionary course. Synteny (or lack
of) was already employed for defining a distance measure
between genomes (species), counting the minimal num-
ber of operations to transform one genome to another [4].
Nevertheless this distance is irrelevant in the context of a
particular single gene. In contrast, SI measures how much
a gene, orthologous to the two species, is in its “natural
place”, or in other words, shares the same neighborhood

in both genomes. In [24] we averaged the SI over the
whole genome and used it to infer evolutionary distance.
We next aimed at identifying HGTs between closely
related species by means of SI [1]. The technique relies
on the constant relative mutability (CRM) property
that asserts that the ratio between the mutational rates
of genes is maintained across species (even if the rates
themselves change along time/species). The method was
compared to several representative HGT methods, both
phylogenetic methods such as RIATA–HGT and PhylTR
[19, 27], and sequence based– HGT–DB [11]. It was also
employed to real biological data, the three strains of E.
Coli that were studied in [28] and were found to exhibit
a very high rate of HGT. Understanding and detecting
HGT within the strains, could be of great importance,
for instance in understanding the origin of pathogenicity
of certain pathogenic strains, particularly those whose
ancestors were not pathogenic.

In this work we make another step forward by formu-
lating the problem in a statistical framework. This allows
us to apply probabilistic tools that are more advanced
than those employed in [1]. We start by providing a tool
to measure the significance of SI of a given gene over
the background noise of its hosting genomes. Next we
apply bounds on large deviations to assess the proba-
bility of a gene being transfered to the hosting genome
or it has existed there since divergence from the donor
species. This check requires the transformation between
two spaces: one, in which the CRM exists and allows
us to derive expected values for the gene distance, and
another, in which we can assess the likelihood of the
observed distance with respect to the expected one. We
conducted a simulation study where we compared the cur-
rent approach with that of [1] and showed it provides a
greater specificity (i.e., lower false positive rate). All steps
of the proposed method are very efficient as they oper-
ate between pairs of orthologous genes and therefore the
complexity of the method is at most quadratic in the size
of the taxa set.

Definitions and methods
We now define our working model that will serve to
locate HGT between genes. A genome G is a sequence
(although we sometimes treat it as an ordered set) of genes
(g1, g2, . . . , gn) and each gene is a sequence of DNA letters.
That is, our view of a genome is at a resolution of genes,
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Fig. 2 Comparing G1 with G2 for k = 3: SI(g, G1, G2) = 3, SI(x, G1, G2) = 0, SI(�, G1, G2) = 0

and of a gene at a resolution of nucleotides (See Fig. 2).
The k–neighborhood of a gene g0 in genome G, Nk(G, g0)
is the set of genes at distance at most k from g0 in G (i.e.
at most k genes upstream or downstream, not including
gene g0 itself ). The core set (i.e., intersection) of genomes
G1 and G2 is G1 ∩ G2, and the symmetric difference of G1
and G2 is G1 � G2 = G1 ∪ G2 \ G1 ∩ G2.

The conservation of the order between genes in ∩G1,G2
is called synteny. Let g0 ∈ ∩G1,G2 . Then the k synteny
index (k-SI), or just SI when it is clear from the context,
of g0 in Gi, Gj is the number of common genes in the k
neighborhoods of g0 in both Gi and Gj: SI(g0, Gi, Gj) =
|Nk(Gi, g0) ∩ Nk(Gj, g0)|. For the sake of completeness, for
g0 /∈ Gi ∩ Gj, SI(g0, Gi, Gj) = 0. See Fig. 2 for illustration.

A genome undergoes events of gene gain and loss in
which genes are added or removed respectively. As we
are focused in the core set of genes that are common to
two organisms, we are not interested in the latter pro-
cesses. Every gene undergoes a process of sequence evo-
lution according to some stochastic evolutionary model
[9]. The evolutionary model we consider is such that the
nucleotides along a gene are identically and independently
distributed (IID). The value of the nucleotide is the state
(we sometimes use just “nucleotide” to denote its state).
A single mutation (or point mutation or just a mutation
for short) is the event of a nucleotide changing its value
to a different one (for reasons of simplicity, we use the
term ’mutation’ as for a point mutation that occurs and
then gets fixed, i.e., ’a nucleotide substitution’). An evo-
lutionary model M models the (stochastic) process of
mutations occurring at a site as a function of mutation
rates �i,j modeling the rate of transitions from state i to j,
and a specified time period t. We use the transition nota-
tion in the context of Markov chains and note that it has
nothing to do with the type of mutation baring the same
notation (see [9] for more details). Given M, mutation
rates [�i,j], and a time period t, the transition probabil-
ity pi,j from nucleotide i to j during t is uniquely defined
by an appropriate function (determined by M). An evo-
lutionary model M is said to be time reversible if it is
not possible to determine the direction of time given two
states of a nucleotide, separated by a time period t. The
evolutionary distance (or mutation distance or simply dis-
tance) is the number of mutations separating between two

homologous sequences. The hamming distance between
two homologous sequences counts the number sites with
different states. These distances are usually normalized
by the length of the sequences and are normally denoted
by d and h respectively. In the Results section, we used
the Jukes–Cantor [15] (JC) evolutionary model. See more
specific details in “Results” section.

A horizontal gene transfer (HGT) is the event in which
a gene of a genome, the donor genome, being copied and
inserted at some position at another genome, the recipient
genome. Since we view the genome as a circled sequence
of genes, the new gene is always between two genes.

Results
Consider two genomes after speciation event. Gene order,
synteny, in the two genomes is nearly the same, and
hence orthologous genes have almost the same neighbor-
ing genes in the two genomes. Due to events such as HGT,
this similarity decreases as the time since the divergence
event grows. Hence, between closely related species (and
in particular strains of a species), if a gene has exception-
ally low SI, we might suspect it has undergone HGT. We
denote these genes as SI HGT suspected.

Significant SI HGT suspected genes
We want to verify that SI suspected genes are indeed a
result of a HGT and not a background noise. When the
core set of genes is small, with some probability, low SI
is observed even if a gene is in its original location. This
is due to gene loss events around that gene. If all genes
around gene g were lost, g has SI zero without being trans-
ferred. We will associate a confidence value with every
SI, and set a threshold value δSI for obtaining low SI by
random (i.e. not by HGT rather simply by gene gain/loss).

Lemma 1 Consider two genomes G1 and G2. Let g be a
gene in the core set of G1 and G2 (g ∈ ∩G1,G2 ) with |G1| =
|G2| = n and let δSI be an arbitrary probability. Then with
probability at most δSI we expect to find by chance SI of
size:

SI <
k
n

(2n − |G1 � G2|) −
√

−k loge δSI (1)

Proof We denote a gene gi as singular if gi ∈ G1 � G2.
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Observation The probability of hitting a singular gene
by chance is |G1�G2|

2n .

Proof Since by assumption the length of both genomes
is n, the symmetric difference G1 � G2 is partitioned
equally on both genomes (since the core set ∩G1,G2 exists
on both). Since a randomly chosen gene from a given
genome is either from ∩G1,G2 or G1 � G2 and n = | ∩G1,G2

| + |G1�G2|
2 , the result follows.

Henceforth we will denote by p this probability, i.e. p =
|G1�G2|

2n , and note that p is easily calculated.
We now focus on genes gi for 1 ≤ i ≤ 2k in the k–

neighborhood of gene g. Let Xi = 1−p if gene gi is singular,
and −p otherwise, and let X = ∑

Xi. Then we observe
that Pr[ Xi = 1 − p] = p and Pr[ Xi = −p] = 1 − p. Hence,
E[ Xi] = 0 and X follows a distribution B(2k, p) − 2kp
where B(n, p) is the usual binomial distribution (this is a
good approximation given the reasonable assumption that
k � n).

Our goal is to bound the probability of deviation from
the expected value and seeing a low SI only by random.
The distribution of X allows us to apply Chernoff bound
[2](Thm A.4) asserting

Pr[ X > a] ≤ e−2a2/n. (2)

We are seeking for the minimal a such that this proba-
bility is smaller than δSI . In our case n is 2k and hence we
set

e−2a2/2k = δSI ⇒ a =
√

−k loge δSI , (3)

yielding:

Pr
(

X >

√
−k loge δSI

)
≤ δSI . (4)

Note that X counts the observed number of genes in
only a single k–neighborhood of g (they are not necessar-
ily singular) minus their expected number– 2kp. That is
X = 2k −SI −2kp, where 2k −−SI is the number of genes
in only a single k–neighborhood of g.

If we substitute in (4) X = 2k − SI − 2kp we obtain:

Pr
(

2k − SI − 2kp >

√
−k loge δSI

)

= Pr
(

SI < 2k(1 − p) −
√

−k loge δSI

)
< δSI . (5)

Back substituting p = |G1�G2|
2n , and the result follows.

Lemma 1 allows us to infer about the increase in the
strength of the evidence. For that we equate a in Eq. (2)

to X. As n in Eq. (2) is set constant, the only variable
component is the SI in X (and in a) yielding the following:

Corollary 1 The significance of the evidence grows expo-
nentially in the SI.

Lemma 1, provides an upper bound on the SI scores we
expect to see by chance. However, we should be careful
here. For some combinations of p and δSI our neighbor-
hood may not be large enough. For instance, for |G1 �
G2| = 1600, n = 1000, and δSI = 0.05, a neighborhood
of 10 is not enough, since by our bound, under that prob-
ability we expect to see SI < −1.47 by chance, but k = 30
does suffice (SI < 2.5). If we increase |G1�G2| to 1800 (i.e.
p = 0.9), then even k = 60 is not enough. We therefore
conclude:

Corollary 2 Let p = |G1�G2|
2n , then for a given δSI we

must have

k ≥ − loge δSI
4(1 − p)2 (6)

Proof Since SI ≥ 0 must hold, and according to
Lemma 1, we get: 0 ≥ k

n (2n − |G1 � G2|) − √−k loge δSI .
Then,

√−k loge δSI ≥ k
n (2n − |G1 � G2|). We defined

before p = |G1�G2|
2n , so we get

√−k loge δSI ≥ 2k(1 − p)

and isolation of k is trivial.

Sifting between other mutational events
In the previous section we derived values under which SI
is significant. However, low SI can be a result of other large
scale mutational events: A translocation is the event where
a gene moves to a different location in a genome. A Dupli-
cation is an identical event only that a copy of the gene
remains in the original location.

The following observation follows intuitively from
Fig. 2:

Observation 2 Let G1 and G2 be two genomes shar-
ing a common gene g. Assume g was either translo-
cated or duplicated in G2 (we assume g corresponds to
the copied instance rather than the original). Assuming
no other large scale mutational events occurred, then
E[ SI(g, G1, G2)] ≈ 0.

Proof Amuse G1 and G2 are two identical genomes,
and now gene g is translocated in genome G1. Then,
E[ SI(g, G1, G2)] = 0 except if the new position of gene
g is no further than k from its original neighborhood.
The probability the new position fulfill this requirement
is 4k/n. For realistic closely related genomes (genome size
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of 5000 and symmetric difference < 0.8, which leads to
k < 10), we get E[ SI(g, G1, G2)] ≈ 0.

Indeed, based on SI only, it cannot be distinguished
whether gene d in Fig. 2 has been horizontally transferred
or been translocated. Therefore we cannot rely on low SI
as a single evidence for HGT. To distinguish a gene under-
gone HGT from translocations or duplications, we rely on
the fact that a translocated (duplicated) gene has been in
its hosting genome since its split from another genome, in
contrast to a gene recently acquired through HGT. This
implies that the translocated gene was subjected to small
scale substitutions (point mutation) for the time period
since its split from the other genome. Hence the induced
distance between orthologous genes in two genomes, is
proportional to the time since their divergence.

Constant relative mutability
We now rely on a very basic evolutionary effect recently
demonstrated, dubbed as Universal Pacemaker (UPM) of
genome evolution [25, 26, 29], which serves as a useful
approximation for genome evolution processes. The UPM
principle states that along every lineage in the evolution
of cellular life, most genes change their mutation rate in
unison, as if adhering to a universal (but lineage specific)
pacemaker. To harness the UPM principle to our purpose,
we formulate the problem as follows: We have a gene g, SI
suspected of having undergone HGT between two strains
S1 and S2, by exhibiting low SI(g, S1, S2) < δSI for some
threshold value δSI . We look for a witness gene, w, and two
reference organisms R1 and R2 under the constraint that
w ∈ R1, R2, S1, S2 and g ∈ R1, R2. By the UPM, genes g
and w, although may mutate at different rates, maintain
approximately a constant ratio between their rates. More
precisely:

Definition 1 (CRM) Let g and g′ be genes residing in a
genome G mutating at (not necessarily constant) rates a
and a′ . Then g and g′ have constant relative mutability
(CRM) (or alternatively – conservation), if at any time, the
ratio ρ = a/a′ is (approximately) constant.

The result of the CRM phenomenon is that differ-
ent genes, unless undergone gene specific extraordinary
events, maintain the same tree topology and even tree
shape. This implies that branch lengths in the correspond-
ing gene trees differ by a multiplicative constant. Note
that this property does not contradict rate heterogeneity
across genes and also across organisms.

In the following, we operate in two distance spaces: The
Hamming distance and the mutation distance (or evolu-
tionary distance or simply, distance). The distances are
always defined between two organisms and WRT a certain
gene (e.g. X1, X2, g respectively): hg(X1, X2) or dg(X1, X2).

When it is clear from the context, we ignore either the
gene or the two organisms associated with the distance.
In the evolutionary distance space, the distance between
organisms is the number of mutations separating them, or
alternatively, the number of mutations occurred at each
lineage since their divergence event.

The Hamming distance is the number of different posi-
tions between the genes at the organisms and it is an
underestimate for the mutation distance since multiple
mutations at a site are unobserved.

To obtain the expected mutation distance (we don’t
know exactly how many mutations indeed occurred) we
use some non–linear distance correction function, d =
corr(h) and an inverse correction h = corr−1(d).

The definition of the CRM phenomenon, operates on
the substitution rates of each gene. We however, observe
the Hamming distances. To use the CRM phenomenon,
we need to convert the Hamming distances to evolution-
ary distances and then to apply the CRM rule.

Observation 3 Assume genes g and g′, with mutation
rates rg and rg′ respectively, satisfy the CRM hypothesis
with ratio ρ = rg

rg′ . Let hg be the Hamming distance WRT
gene g. Then the expected distance WRT gene g′, δg′ is

δg′ = corr(hg)

ρ
(7)

where corr is a distance correction function to correct from
the observed Hamming distance to the mutation distance.

Proof The expected number of substitutions along gene
g between two sequences X1, X2, i.e. the real distance is
defined by dg = corr(hg(X1, X2)). On the other hand,
dg = trg where t is the time separating X1, X2, or in other
words, twice the time since divergence. Since, by the CRM
property rg′ = rg

ρ
, we obtain

δg′(X1, X2) = trg′ = trg

ρ
= dg(X1, X2)

ρ
= corr(hg(X1, X2))

ρ

(8)

Observation 3 derives the expected distance of a gene g′
based on the CRM hypothesis and the hamming distance
of another gene g. If we apply the inverse correction corr−1

to the expected distance dg′ we obtain the expected Ham-
ming distance hg′ . This is essential since in the hamming
distance space we can apply bounds on deviations from
the mean that do not apply in the mutation distance space.
Therefore, in order to link between the expected and
the observed distance WRT gene g, we use the following
Lemma:
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Lemma 2 Assume genes g and g′, adhering the CRM
hypothesis. Let dg′ be the expected distance WRT to g′ as
derived in Observation 3. Let hg′ be the expected Hamming
distance obtained by applying the inverse correction on dg′ :
hg′ = corr−1(dg′). Then, the difference between hg′ and the
observed Hamming distance ĥg′ satisfies:

Pr
[∣∣∣hg′ − ĥg′

∣∣∣ > ε
]

≤ 2e−2nε2
, (9)

where n is the length a number of nucleotides of g′.

Proof The expected Hamming distance is the probabil-
ity p of observing a difference at a position between the
two corresponding sequences. Let ĥi be an indicator vari-
able indicating a difference at position i at both copies of
g′. By definition of ĥg′ ,

ĥg′ = 1
n

∑
i

ĥi

and

E
[
ĥg′

]
= 1

n
E

[∑
i

ĥi

]
= 1

n
∑

i
E

[
ĥi

]
= 1

n
np = hg ,

where the second equation is due to linearity of expecta-
tion.

Letting X = ∑
i ĥi, we can use again Chernoff inequal-

ity [2] to bound the deviation of a sum of IID indicator
random variables from its mean. For any ε > 0 holds:

Pr[ |X − E[ X] | > εn] ≤ 2e−2(εn)2/n, (10)

and the result follows.

Observation 3 and Lemma 2 relied on the CRM phe-
nomenon and the constant ratio ρ to derive the expected
distances and to bound the deviation from them. Since
gene g is HGT suspected between the two strains, we
cannot rely on its distance (Hamming and consequently
mutation) to adhere to CRM. Therefore, we look for
two reference organisms and a witness gene w, such that
both g and w are present in the strains and the refer-
ence organisms. Now we can compute ρ = rg/rw in the
reference organisms, and use it to derive the expected dis-
tance between the strains WRT g. We now state our main
theorem for this section that combines all this informa-
tion with Observation 3 and Lemma 2 to obtain some
confidence level on the observed Hamming distance ĥg
between the strains as a function of the distances between
the reference organisms.

Theorem 1 Let g be a gene suspected of having under-
gone HGT between two strain species S1 and S2 and let

n = |g| be the length of g. Let w be a witness gene while
R1 and R2 are two different reference organisms. Finally,
let ĥg(R) and ĥg(S) be the (observed) hamming distance
WRT gene g between the reference organisms (R1 and R2)
and between the strains (S1 and S2), respectively. Similarly,
let ĥw(R) and ĥw(S) be the hamming distance between the
reference organisms WRT the witness gene w. Then the
probability of observing ĥg(S) given ĥg(R), ĥw(R), ĥw(S)

and n assuming CRM hypothesis is:

Pr
(∣∣∣ĥg(s) − corr−1(dg(S))

∣∣∣ > ε
)

≤ 2e−2nε2
, (11)

where, dg(S) is the expected distance between the strain
species S1 and S2 given by

dg(S) =
corr

(
ĥg(R)

)

corr
(

ĥw(R)
)corr

(
ĥw(S)

)

Proof We first use ĥg(R)) and ĥw(R) to compute ρ =
corr(ĥg (R))

corr(ĥw(R))
and then by Observation 3 we obtain expected

distance between the strains dg(S). Finally, by using the
inverse correction on dg(S) we can use Lemma 2 to bound
the probability of the deviation of the observed Hamming
distance between the strains, hg(s), from the expected one.

Using Theorem 1 we can find a cutoff value for the
difference between the expected and observed Hamming
distances for any given confidence level δr :

Corollary 3 For a given confidence value δr, we can
refute the null hypothesis, i.e., that gene g has evolved
vertically, if the difference

∣∣hg(s) − corr−1(dg)
∣∣ satisfies:

|hg(s) − corr−1(dg)| > ε(δr) =
√− loge δr/2

2n
(12)

Proof Equation (11) gives the probability for a deviation
from the expected distance dg . The bigger the deviation,
the smaller is its probability. Therefore we can calculate
the minimum deviation ε(δr) with probability at most the
threshold value δr , and refute the null hypothesis for any
bigger deviation.

Figure 3 illustrates the situation. The following exam-
ple applies Theorem 1 under the Jukes–Cantor [15] (JC)
evolutionary model, on real data from the E. coli strains
CFT073 and MG1655 [1].

Example 1 To illustrate the use of Theorem 1 we show
some real data example.

The evolutionary model with which we work is the Jukes–
Cantor [15] (JC) evolutionary model. The JC model is a
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Fig. 3 The phylogeny over a group of organisms with branch lengths proportional to distances of gene gh . gh has undergone HGT between the two
strains S1 and S2 and hence their distance is very short compared with two reference organisms R1 and R7. Bottom: The reference gene (blue,
dashed line) must be a gene that accumulates mutations ever since the divergence of both the strains and reference organisms. There are two
cases in which the suspicious gene evolves at the reference organism. (A) No HGT and then the constant relative conservation is maintained. (B) HGT
of the SI suspicious gene at the reference organisms and the constant relative conservation is not maintained

reversible, one parameter model, postulating that at any
position the rate of substitutions from one state to another,
ai,j is the same – a. Under this model, the expected number
of substitutions – that is, the evolutionary distance dJC –
at a site during t time units is dJC = 3at. To obtain the
distance from a given Hamming distance h,we apply the
distance correction for the JC model:

dJC = corrJC(h) = −3
4

loge

(
1 − 4

3
h
)

, (13)

for a given normalized Hamming distance h. Note that
under this correction, h < 3

4 must hold.
Inversely, the expected Hamming distance is:

h = corr−1
JC (dJC) = 3

4

(
1 − e− 4

3 dJC
)

. (14)

Let the two strains S1 and S2 be the E. coli strains CFT073
and MG1655 and the reference organisms, R1 and R2, be
Bacteroides.fragilis and Wolbachia. The HGT suspected
gene is engA and the witness gene is gmk. The Hamming
distances obtained are: hg(s) ≈ 0.0237, hg(r) ≈ 0.583,
hw(r) ≈ 0.541, hw(s) ≈ 0.008 and the average genome size
is 4743. We get:

• hg(s) = 0.0237
• hg(r) = 0.583
• hw(r) = 0.541
• hw(s) = 0.008
• n = 1472.

we get:

dg(s) = corrJC(hg(r))
corrJC(hw(r))

corrJC(hw(s))

= corrJC(0.583)

corrJC(0.541)
corrJC(0.008)

=− 3
4 loge

(
1 − 4

3 · 0.583
)

− 3
4 loge

(
1 − 4

3 · 0.541
) ∗ 3

4
loge

(
1 − 4

3
· 0.008

)
≈ 0.0095.

Hence:

hg(s) − corr−1
jc (dg(s)) = 0.0237 −

(
3
4

(
1 − e− 4

3 ·0.0095
))

= 0.0237 − 0.0094 ≈ 0.0142

and the probability to see a difference greater than
0.0142 is

Pr(|hg(s) − corr−1(dg)| > 0.0142) ≤ 2e−2n·0.01422 ≈ 0.85.
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We can see that for such a difference, the null hypothesis
is not rejected and we cannot refute by gene gmk that gene
engA evolved vertically.

Alternatively, if we set δr = 0.05 then by Eq. (12) we get
a cutoff distances ε(0.05)

ε(0.05) =
√− loge 0.05/2

2 · 1472
≈ 0.035,

which is greater than the value 0.0121 practically
obtained.

Theorem 1 gives the tail probability for all events with
h′

g(s), such that h′
g(s) ≥ hg(s). We refute the null hypoth-

esis (that the gene has evolved vertically between the
strains) if the probability is below some threshold value δr .

We conclude this part with the high–level algorithm SI–
HGT .

Procedure SI–HGT(S1, S2, R, δSI , δr):

1. for all S1, S2 ∈ S

• for every HGT suspected gene gs ∈ S1 ∩ S2 s.t.
PSI

value(gs, S1, S2) < δSI
• let n = |gs|
• let εgs(δr) =

√
− loge δr/2

2n

– for R1, R2 ∈ R s.t. gs ∈ R1 ∩ R2

∗ for all witness genes
gw ∈ S1 ∩ S2 ∩ R1 ∩ R2

∗ if |ĥg(s) − corr−1(dg)| > εgs(δr)
mark gs as putative HGT.

It is important to note here that since we perform many
tests for many witness genes and reference organisms,
a correction for multiple tests bias should be done. We
chose the standard Bonferroni correction by multiplying
the bound obtained by the number of tests for a given
gene.

Simulation study
We conducted a simulation study to assess the advantage
of the new chernoff approach over the simple χ2 approach
of [1]. For that we created a simulation process as fol-
low. At first, we simulated a random genome, i.e., a list
of genes, which were named based on their order, and
we created a random nucleotide sequence for each gene.
We also set a mutation rate for each gene, drawn from a
normal distribution with given mean and standard devia-
tion. These three parts (gene names, gene sequences, gene
mutation rates) constitute a genome object, which will
be marked GA. Next, we created another three genomes,
based on GA. Two of them will serve as witness genomes
(marked as GWA and GWB) with identical gene order.

Each gene sequence of the witness genomes was cre-
ated as a copy of the corresponding gene in GA, then
it had undergone a point mutation performed in accor-
dance with its given mutation rate. The third genome,
GB, was created at first as a copy of GA, then each gene
also undergone a point mutation performed in accordance
with its given mutation rate. Then GB had undergone a
genome rearrangement process which was executed as
follow. In each round, a gene was randomly chosen as well
as neighborhood size. This gene, along with his neighbor-
hood, was swapped with other randomly chosen gene with
identical neighborhood size. The neighborhood size was
randomly chosen from a normal distribution with a given
mean and standard deviation. In addition, each gene in
the neighborhoods was undergone a point mutation pro-
cess accordance with its given mutation rate multiply by
some HGT mutation rate factor, represents the fact that
genes undergone HGT event tend to be more evolution-
ary distant. When dealing with neighborhoods swapping
we refer the genome as a circle. At the end of this pro-
cess we left with 4 genomes and we can execute our HGT
detection algorithm to find the genes undergone rear-
rangement events in GB in relative to GA, while GWA and
GWB serve as witness genomes. By this process we could
test each approach in terms of false positive (FP, genes
which the method identified incorrectly as involved in a
rearrangement event).

We performed this simulation in which the two
approaches of HGT detection (χ2 and chernoff ) were
competed in terms of False positive events and results
are shown in Fig. 4. As can be seen, chernoff approach
presents much better results in terms of FP, i.e., this con-
figuration yield only few genes which was actually not
involved in any rearrangement event, especially for short
genomes, while the χ2 approach presents relatively high
FP value. This is an expected outcome, in light of the
inherited permissive nature of the χ2 approach.

Real data study
In order to demonstrate the new HGT–detection method
based on Chernoff bound we applied it on large real
data set from EggNog repository [22], and compared the
results to our previous approach based on χ2. The set
contains 1229 pairs of bacteria, in which all pairs are
of the same taxonomy genus and species (for example,
one of the pairs is Acinetobacter baumannii AB0057 and
Acinetobacter baumannii AB307–0294). As can be seen
in Fig. 5, we found that for closely related species (SI
<0.27), the χ2 approach detects more genes than Cher-
noff –based approach. We assume that the other genes are
identified by the χ2–based approach are mostly false pos-
itive, and this finding of HGT–detection in closely related
species is consistent with the simulations presented above
(Fig. 4, which presents the low false positive cases of the
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Fig. 4 Performance comparison between χ2 and Chernoff approach for SI-based HGT detection under simulated data. Four artificial genomes were
created, one served as original genome, one undergone rearrangement events and two served as witness genomes. The two SI-based approaches
for HGT detection were executed and were compared in terms of False positive (FP). Number of HGT events- 10. Each point represents an average
of 10 repeats. Default parameters: genome size=1000, gene length=1000, HGT mutation factor=10, rearrangement event size=7

Chernoff –based approach as its main advantage). For less
related species, Chernoff –based approach detects more
HGT–genes than the χ2 approach, and we assume most of
the differences are false positive cases, and this might be a
results of high neighborhood size which results high cal-
culated threshold for this low synteny similarity presented
by these non–related species (see Eq. (6)). We end this
section by recommendation of using this new approach
for HGT–detection among closely related species.

Discussion and conclusions
In this work we have provided a probabilistic approach
to detect HGTs based on the synteny index (SI) and the
constant relative mutability (CRM) that were defined in
[1]. The advantage of the approach portrayed here is the
quantification of the statistical signal and using probabilis-
tic bounds to decree significance. The first contribution of
this work is assessment of the significance of the SI of a

gene. This is essential as distantly related genomes exhibit
low SI by default and therefore it is required to distinguish
between background noise to signal. The next step is a
rigorous probabilistic formulation of the HGT under the
CRM property, such that deviations from expected values
can be detected and quantified. This requires switching
between two spaces– the hamming distance space where
bounds on deviations are employed, and the mutation dis-
tance space where the CRM property holds. We showed
by simulation that the new approach provides greater
specificity (i.e., lower false positive rate) over the χ2 cri-
terion that was provided by [1]. We also demonstrated
the specificity improvement in real biological data set. We
comment that, as was demonstrated in [1], the advan-
tage of the SI based approach over existing HGT detection
techniques, is between closely related taxa where the sig-
nal is weak whatsoever. Therefore the improvement in
the specificity is imperative. We comment that all steps
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Fig. 5 Performance comparison between χ2 and Chernoff approach for SI-based HGT detection under real biological data. Both the Chernoff -based
approach and the χ2 approach for HGT detection were applied on real biological data set contains 1229 pair of closely related species from Eggnog
repository. Each point represent a pair of species. The X axis is the SI similarity among the pair. The Y axis is the proportions of the number of HGT-
genes detected by the χ2 approach divided by the amount of genes detected by both of the approaches (i.e., high value in the Y axis represents
more genes detected by the χ2 approach then by the Chernoff approach. The yellow line represent the boundary between the two cases)

performed in the algorithm are very fast. One bottleneck
in the implementation is the identification of orthologous
genes, however the same obstacle stands also in other
approaches. Future directions we see in this direction
include the establishment of a special repository holding
the genes found as HGT putative, similarly to the HGT–
DB [10]. Another challenging task is the identification
of orthologous genes across many species. This problem
stands at the heart of almost any task in comparative
genomics. The novelty of our approach is the considera-
tion of gene order among the genomes. While this order
can serve as informative for detecting orthology, its lack
thereof can allude to exceptional events such as HGT.
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