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Old individuals are more susceptible to various infections due to immunological changes
that occur during the aging process. These changes named collectively as
“immunosenescence” include decreases in both the innate and adaptive immune
responses in addition to the exacerbated production of inflammatory cytokines. This
scenario of immunological dysfunction and its relationship with disease development in
older people has been widely studied, especially in infections that can be fatal, such as
influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection,
many mechanisms of disease pathogenesis in old individuals have been proposed. To
better understand the dynamics of COVID-19 in this group, aspects related to
immunological senescence must be well elucidated. In this article, we discuss the main
mechanisms involved in immunosenescence and their possible correlations with the
susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more
severe conditions of the disease.
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INTRODUCTION

Human history is marked by major epidemics, and viral respiratory infections have been major
villains in this scenario. The 20th century was certainly marked by the devastating outbreak of the
Spanish flu, caused by an influenza A virus of the H1N1 subtype (1). Currently, in the 21st century,
coronaviruses appear to show their potential, with three epidemics in the past two decades.

Coronavirus epidemics include severe acute respiratory syndrome (SARS) coronavirus (CoV)
(SARS-CoV-1), which occurred between 2002 and 2003, and Middle East respiratory syndrome
(MERS)-CoV, which occurred in 2012 (2). Since December 2019, SARS-CoV-2, a new type of
coronavirus, has caused respiratory infections ranging from mild to severe clinical conditions and
death, and the disease caused by it has been called coronavirus disease 2019 (COVID-19) (3).

The current SARS-CoV-2 outbreak originated in the city of Wuhan in China (4), rapidly spread
worldwide and was declared a pandemic by the World Health Organization. By September 20, 2020,
COVID-19 had already infected more than 30 million people and caused over 950,000 deaths (5). In
this global pandemic scenario, the United States and Brazil are the countries with the highest
org October 2020 | Volume 11 | Article 5792201
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number of cases and deaths from COVID-19 (5). In Brazil,
approximately 51% of SARS cases due to COVID-19 occur in old
individuals (over 60 years of age), accounting for 73% of
deaths (6).

In fact, it was observed that older people have a higher
severity of the disease and are considered the main risk group
for COVID-19 (4). This observation has been reinforced by
SARS-CoV-2 infection in experimental models, where infected
aged Syrian hamsters developed alveolar and perivascular edema
(7). A greater severity in individuals of advanced age has also
been reported in SARS-CoV-1 (8) and MERS (9). Interestingly,
in addition to advanced age, male gender appears to be another
risk factor for COVID-19 (10). Additionally, other conditions
such as obesity, hypertension, and metabolic diseases are also
risk factors for COVID-19 (11).

The following additional four coronaviruses circulate globally
among the population: alpha (229E and NL63) and beta (OC43
and HKU1) CoVs. These coronaviruses generally cause mild
infections of the upper respiratory tract similar to the common
cold (12). However, there are reports of more severe respiratory
diseases caused by OC43 and 229E, mainly in older individuals
and individuals with chronic immune deficits (13).

Thus far, it is known that cytokine storm in the lungs may
be among the immunological components involved in the
pathogenesis of COVID-19 in the aged population. Although
it has been suggested that alveolar macrophages from older
individual have an anti-inflammatory profile, they can
develop higher and uncontrolled responses of cellular
activation and cytokine production after a pathogen insult
and a lower ability to control tissue damage due to infection
leaving the lung in a compromised state (14–16). In fact, at
baseline state, the lungs of old individuals show increase in
levels of complement and surfactant proteins and pro-
inflammatory cytokines (15, 16). Interestingly, half of fatal
cases of COVID-19 experience a cytokine storm, of which 82%
are over the age of 60 (17).

Notably, a series of immunological changes occur with age,
causing older individuals to develop immunosenescence (18).
These factors can contribute to as pulmonary as systemic
exacerbated inflammatory response in older individuals and seem
to play a role in increasing susceptibility to respiratory infections.

In fact, a better knowledge of these mechanisms can
contribute to the understanding of the infection dynamics in
this scenario. Thus, here, we review the main factors related to
the senescence of the innate and adaptive immune responses that
can be responsible for both the severity and pathogenesis of
COVID-19.
BRIEF BACKGROUND OF CORONAVIRUS
INFECTION

Coronaviruses have a positive single-stranded RNA genome of
approximately 30 kb that forms the viral nucleocapsid with the
nucleocapsid (N) protein. This structure is surrounded by an
envelope formed of a lipid bilayer in which the spike (S) proteins,
Frontiers in Immunology | www.frontiersin.org 2
membrane (M) protein, and envelope (E) protein are
inserted (19).

The coronavirus subfamily consists of four genera, i.e., a, b, g,
and d coronaviruses, and the a and b genera are responsible for
human infections (20, 21). Among the coronaviruses that infect
humans, seven are known to cause diseases with flu-like
symptoms, but SARS-CoV-1, MERS-CoV, and, more recently,
SARS-CoV-2 have gained greater notoriety for their high
transmission capacity and severe infections (22–24).

The transmission of coronaviruses occurs mainly through
respiratory droplets and close contact between people. Once in
the body, the viruses enter target cells when protein S binds to
specific input receptors. SARS-CoV-2 S protein binds
angiotensin-converting enzyme 2 (ACE2), which is present on
the surface of several human cells (25). In addition, several
studies have been suggesting that the MERS-CoV receptor,
dipeptidyl peptidase 4 (DPP4), can also be used by SARS-CoV-
2 during infection (26, 27). The interaction between SARS-CoV-
2 and ACE2 recruits the transmembrane protease serine 2
(TMPRSS2), which promotes S protein priming and facilitates
viral entry in the host cell (28). Other cellular proteins, such as
the protease furin, can also promote SARS-CoV-2 S protein
cleavage indicating their potential involvement in viral entrance
(29). Once inside the cell, the envelope fuses with the endosomal
membrane and releases the viral genome into the cytoplasm
where replication and assembly of new viral particles occurs (30).

Coronavirus infection can affect the airways, causing cough,
headache, and fever. In more severe cases, the infection can cause
tissue damage, especially to the lung tissue, due to the high
degree of inflammation generated to fight the virus, leading to
the development of pneumonia and dyspnea, which can progress
to death (31). Among patients with COVID-19, the highest
incidence of severe cases occurs in individuals affected by
comorbidities such as lung diseases, diabetes, and hypertension
(32–34). Age also appears to be a risk factor for the disease, as
worse outcomes and higher mortality rates are observed in older
patients (35–37).
IMMUNOSENESCENCE: INNATE
IMMUNITY AND SUSCEPTIBILITY TO
COVID-19

Can Inflammaging Enhance
Immunopathogenesis in Old Individuals?
The aging process can be understood as a progressive and natural
decrease in the biological functions of an organism (18). Despite
its enormous plasticity and capacity for renewal, the immune
system is also affected during the aging process. Since a
functional immune response is essential for maintaining
homeostasis and health, the immune aging process, called
immunosenescence (Figure 1), contributes to the increased
susceptibility to infections, cancers and autoimmune diseases
(38–40).

A very striking feature of the immunosenescence process is a
low-grade proinflammatory state, with an increase in serum
October 2020 | Volume 11 | Article 579220
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inflammatory mediators, such as IL-6, IL-1RA, TNF-a, IL-1, and
C-reactive protein (CRP) (41, 42). This low-grade inflammatory
state named “inflammaging” is associated with the diminished
ability to mount efficient immune responses during the aging
process (42) (Figure 1).

Inflammaging is caused by a set of hormonal, metabolic and
immune factors that constantly provide stimuli that are
recognized by innate receptors, favoring an inflammatory
environment (43). In addition, senescent cells commonly
experience changes in their intracellular homeostasis, including
telomeric perturbations and oxidative stress, leading to the
activation of signaling pathways such as nuclear factor kB
(NF-kB) and increased secretion of cytokines, chemokines,
growth factors and lipids (44, 45). This condition in which
senescent cells change their secretory phenotype is called the
senescence-associated secretory phenotype (SASP) and is a
potential contributor to inflammaging (46). The exacerbated
inflammatory process associated with age may also be due to a
failure to resolve inflammation since many regulatory factors are
also deficient in older individuals (47–49).

The inflammatory stimuli that support the phenomenon of
inflammaging can be triggered by several factors, including
chronic infections and microbiota changes, which are going to
be more detailed further in this text. However, sterile
components naturally produced during cell cycle can also
contribute to this phenomenon. Cellular debris resulting from
Frontiers in Immunology | www.frontiersin.org 3
the cell death process that occurs daily due to chemical and
physical stresses as well as the accumulation of metabolic
products and cellular catabolic products, such as lipofuscins
and beta-amyloid proteins play a crucial role in inflammaging
(50, 51). Under the physiological conditions of cell proliferation,
such components are usually diluted between dividing cells.
However, as the cell proliferation rate reaches its lowest levels
due to aging, these molecules accumulate and can be recognized
by pattern recognition receptors (PRRs) (52, 53).

In addition, infectious processes during aging can further
accentuate the inflammatory condition by releasing pathogen-
associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) (54). During cytomegalovirus
(CMV) infection, which infects 40–100% of the population
worldwide (55), inflammatory mediators such as prostaglandin
E2, IL-6 and TNF-a are released, highlighting the important
contribution of this pathogen to inflammaging (56–58).
However, a 10-year longitudinal study compared the impact of
CMV infection on the serum levels of inflammatory cytokines in
249 individuals and showed that cytokine production in CMV-
seropositive and CMV-seronegative individuals is similar (59).

Studies focusing on the current SARS-CoV-2 pandemic have
already investigated the association between the pathogenesis of
the disease and the inflammatory process. Regardless of the age
group, patients affected by COVID-19 have higher plasma
concentrations of inflammatory cytokines, such as TNF-a and
FIGURE 1 | Major immunological alterations observed during immunosenescense. Aging interferes in a number of innate and adaptive immune cells aspects that
can impair or compromise their function and response. Additionally, several factors can dysregulate intracellular homeostasis during aging, intensifying the secretion
of inflammatory cytokines and chemokines (inflammaging).
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IL-6, and the chemokines and molecules that activate cells, such
as CXCL10, CCL2, CCL3, G-CSF, IL-2, IL-7, and IL-10 (24, 60).
There is also a circulating increase in others well-known
inflammatory markers, such as CRP, ferritin, D-dimer, and
serum amyloid A (SAA) (61–64).

Additionally, in vitro SARS-CoV-1 studies have found that the
viral cytopathic effect induces apoptosis in Vero E6 and HEK293
cells (65, 66) and that MERS-CoV promotes apoptosis in lung and
kidney cells via Smad7 and FGF2 (67). A similar effect has also
been observed in the HCoV virus (229E) in monocytic cells (68).
These findings suggest that target cell apoptosis is a factor
contributing to the tissue damage caused during in vivo
infection. Potential DAMPs released during apoptosis can
contribute to the local and systemic inflammatory response by
activating PRRs, further aggravating the infection. Additionally, in
silico studies have indicated that a strong protein-protein
interaction exists between the viral S protein and TLR4, a PPR,
suggesting that SARS-CoV-2 directly activates proinflammatory
pathways (69).

One of the main intracellular pathways resulting from the
activation of PRRs is NF-kB, which is the main pathway
responsible for inducing the inflammatory response and the
appearance of the SASP phenotype (70). DAMPs can also
signal via the NLRP3 receptor, leading to the activation of the
inflammasome pathway and secretion of the inflammatory
cytokines IL-1b and IL-18 (71). Interestingly, serum IL-18
levels increase with age, indicating that the pathway strongly
contributes to inflammaging (72). Higher levels of IL-18 were
also observed in the serum of COVID-19 patients and were
associated with disease severity and clinical outcome (73).
Moreover, monocytes infected in vitro with SARS-CoV-2
presented the formation of NLRP3 puncta, and the same could
be observed in mononuclear cells isolated from COVID-19
patients, indicating activation of the inflammasome pathway
(73). In fact, NLRP3 inhibitors have already been proposed as
potential drugs for the treatment of COVID-19 (74).

In addition, the autophagy pathway seems to be directly
related to the development and progression of the
inflammaging process. This pathway consists of specialized
protein machinery that promotes the recycling of cellular
content, generating nutrients and energy for maintaining
homeostasis (75). Therefore, autophagy contributes to the
elimination of the debris and products of cellular metabolism,
preventing its recognition by PRRs and the consequent
inflammation (76). However, it has been shown that there is a
reduction in the activity of the autophagy pathway during aging
(77). Additionally, deficiencies in other pathways that regulate
proteostasis during aging, such as reduced proteasome activity,
contribute to the accumulation of misfolded protein aggregates
that can activate inflammatory pathways (78).

Preliminary studies in DAF2 mutant invertebrates, a
longevity study model, indicate that silencing autophagy
pathway genes reduces life expectancy in these organisms (79).
Additionally, in a clinical trial, Mannick et al. (2018)
demonstrated that enhancing the autophagy pathway using
mTOR inhibitors reduces the incidence of infections in older
Frontiers in Immunology | www.frontiersin.org 4
individuals and promotes the expression of antiviral genes and a
better response to vaccination against the influenza virus,
corroborating the importance of the autophagy pathway in the
immune response and fighting infections in individuals of
advanced age (80).

Another consequence of reduced autophagy during aging is a
lower rate of mitophagy, which leads to the accumulation of
dysfunctional and damaged mitochondria, changes in the
respiratory chain and the generation of reactive oxygen species
(ROS) (81, 82). Oxidative phosphorylation products, such as
ATP and ROS, induce an inflammatory response by activating
the inflammasome pathway (83, 84). In an experimental model,
it has been verified that the influenza virus induces the
production of mitochondrial ROS, contributing to
inflammation, higher viral titers and increased neutrophil
infiltration in the airways and lungs (85). It has also been
found that oxidative stress generated by H5N1 infection
induces the formation of oxidized phospholipids, which
activate the TLR4-TRIF pathway in pulmonary macrophages,
inducing the inflammatory response (86). In fact, in the context
of COVID-19, it was recently shown that mitoquinol and N-
acetyl cysteine, two antioxidant drugs, prevented SARS-CoV-2
infection in human primary monocytes (87).

Additionally, mitochondrial lesions generated by stress lead
to the release of DAMPs, such as mitochondrial DNA (mtDNA)
rich in CpG motifs and bacterial DNA, and, therefore, can
activate the inflammatory response via TLRs, NLRs and cGAS
(88, 89). In this context, a positive correlation was found between
the increase in mtDNA and proinflammatory cytokines such as
TNF-a, IL-6 and CCL5 during aging (90).

Furthermore, it has been speculated that mitochondrial
dysfunctions could be involved in the older population’s
greater susceptibility to viral infections since the functioning of
MAVS, a protein that assists the RIG-IRF-IFN cascade located in
the mitochondrial membrane, depends on the integrity of the
mitochondria and oxidative phosphorylation (91, 92). SARS-
CoV-1 infection induces mitochondrial fission and MAVS
degradation, suppressing the host’s antiviral response (93).

The intestinal microbiota can also play an important role in
modulating the proinflammatory response during aging (94, 95).
Over time, the composition and diversity of the microbiome
changes, leading to dysbiosis in the host and a predominance of
Th1-type responses (95, 96). Simultaneously, there is an increase
in intestinal permeability with aging, favoring bacterial
translocation and inflammaging (95). It has been observed that
centenary individuals have a greater prevalence of opportunistic
bacteria with proinflammatory characteristics in the intestinal
microbiota and a reduced number of bacteria with anti-
inflammatory properties. These data are strongly correlated
with the serum levels of inflammatory cytokines such as IL-6
and IL-8, suggesting that the microbiota also contributes to the
maintenance of inflammaging (97).

Some studies suggest that an exacerbated immune response is
mainly responsible for the worsening of SARS-CoV-1 and
MERS-CoV infections by contributing more to tissue damage
than the actual infection, regardless of the age group (98).
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Regarding COVID-19, these effects do not seem to be any
different. Excessive immune activation and production of
proinflammatory cytokines are commonly observed in patients
with COVID-19 (99). This exacerbated immune response
involving high levels of cytokine release is known as cytokine
storm syndrome. Although inflammatory responses are crucial
for pathogen clearance, uncontrolled immune responses can be
destructive by leading to systemic inflammation, vascular
hyperpermeability, multiple organ failure and eventually death
(100). In viral infections that reach the lungs, cytokine storm
syndrome contributes to apoptosis in epithelial and endothelial
cells, leading to fluid leakage in the lungs, the accumulation of
leukocytes and tissue fibrosis (101), which, in turn, cause
ARDS (102).

Considering the abovementioned aspects, it is possible that
the inflammaging process favors the greater severity of COVID-
19 in the aged population (Figure 2B). Although experimental
reports are still scarce in the literature, several researchers have
proposed that inflammaging could contribute to the more severe
outcomes of COVID-19 in older patients (10, 103). In fact,
Guaraldi and colleagues demonstrated that treatment with
tocilizumab, a monoclonal anti-IL-6 receptor antibody, could
Frontiers in Immunology | www.frontiersin.org 5
attenuate COVID-19 severity in patients older than 60
years (104).

Other Aspects of Innate Immunity That
May Favor SARS-CoV-2
The cells of the innate immune system can be quantitatively
and qualitatively affected by the aging process. In the case of
monocytes, there is a prevalence of nonclassical and
intermediate subtypes associated with a lower phagocytic
capacity (43). Monocytes from older individuals also secrete
less IFN-a, IFN-g, IL-1b, CCL20 and CCL8 when stimulated
with adjuvants of the innate immune response (105), although
some studies have suggested that these cells have a greater
capacity to secrete proinflammatory cytokines under baseline
conditions or after stimulation in older individuals (106–109).
Recently, Zheng and colleagues reported an increase in the
monocyte population in aged healthy adults, especially
classical CD14 monocytes (110). Monocytes from aged
individuals have higher expression of inflammatory genes,
such as IL1B, TNF and CXCL8, and increased activation of
the NF-kB, Toll-like receptor, inflammasome, and MAPK
signaling pathways (110).
FIGURE 2 | Hypothetical framework of SARS-CoV-2 pulmonary infection in old individuals. SARS-CoV-2 consists of single RNA strand and the following proteins:
Spike (S), membrane (M), envelope (E) and nucleocapsid (Np). (A) After entering the organism, the virus infects lung cells by binding to the receptor angiotensin-
converting enzyme 2 (ACE-2) and establishes its replicative cycle releasing new viral particles. (B) Older people have a constitutive low-grade proinflammatory state
that, along with other peculiarities of the immunosenescence, can favor the cytokine storm syndrome, leading to a faster progression to ARDS and severe
manifestations of COVID-19. In addition, tissue resident or lung-infiltrating immune cells (e.g., neutrophils, monocytes and alveolar macrophages) can contribute to
disease severity either by dysfunctional responses associated to immunosenescence or by facilitating viral internalization through ADE. ARDS = Acute respiratory
distress syndrome. ADE = Antibody-dependent enhancement.
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In the case of infection by SARS-CoV-2, there is a greater
production of IL-6 and GM-CSF in the peripheral blood by
CD14+ CD16+ monocytes (61). Additionally, in vitro infection of
human monocytes with SARS-CoV-2 leads to the production of
several inflammatory cytokines, such as IL-6, IL-1b, TNF-a, and
IFN-I (87). Moreover, COVID-19 patients of advanced age have
more monocytes than younger patients (110). These cells with an
inflammatory profile can migrate into the lungs, contributing to
the exacerbated inflammatory response and consequent tissue
damage characteristic of the pathogenesis of the disease. In fact,
because of their inflammatory properties, monocytes have been
suggested to be among the main contributors to the disparate
severity of COVID-19 in older patients (111).

The changes occurring in immunosenescence also affect
antigen-presenting cells (APCs), such as dendritic cells (DCs)
and macrophages (112). In both cell populations, antigen
presentation is compromised in the old population, possibly
due to the lower expression of CD80, CD86 and MHC-II after
exposure to a stimulus (113, 114) and a lower production of
superoxide anion by macrophages after treatment with IFN-g
(115). In vitro studies investigating DCs derived from peripheral
blood monocytes show that infection with MERS-CoV induces
the expression of MHC-II and CD86 and promotes the
production of IFN-g, CXCL10, IL-12, and CCL5 (116).
However, whether DCs from the older people respond
similarly to infection by MERS or other coronaviruses is unclear.

In addition, SARS-CoV-1 is capable of infecting monocyte-
derived DCs, rendering these cells producers of inflammatory
cytokines, such as TNF-a and IL-6, and chemokines, such as
CCL2, CCL3, CCL5 and CXCL10 (117). However, it was not
possible to identify the production of antiviral cytokines, such as
IFN-a, IFN-b, IFN-g and IL-12p40, which may indicate a
possible viral escape mechanism mediated by blocking these
pathways. In fact, Hu et al. showed that the SARS-CoV-1 N
protein interacts with TRIM25, preventing the generation of
IFN-I via RIG-I (118). In COVID-19 patients, an imbalanced
production of IFN-I has also been reported, and it seems to
correlate with disease severity (119, 120). Moreover, SARS-CoV-
2 infection elicits reduced expression of IFN-I and interferon-
stimulated genes (121). In addition, pretreatment with IFN-a or
IFN-b reduced SARS-CoV-2 titers in in vitro infection studies
(122, 123). In fact, IFN-I administration has shown promising
results in COVID-19 patient clinical trials (124). In a phase 2
study, the triple combination of lopinavir–ritonavir, ribavirin
and interferon beta-1b was efficient in reducing symptoms,
shortening the duration of infection and hospital stay in
patients with mild to moderate COVID-19 (125).

Interestingly, in old individuals, the population of
plasmacytoid DCs (pDCs), which is among the main
mechanisms of fighting viral infections, is reduced and has less
capacity for IFN-a secretion when stimulated with influenza
virus due to the deficient expression of TLR7 and TLR9 (126–
128). Complementarily, aged human monocytes have
imbalanced IFN-I and IFN-III production in response to
influenza infection due to defective induction of IFN
transcription (129). Taken together, these findings suggest that
Frontiers in Immunology | www.frontiersin.org 6
a reduced IFN-I response in advanced age can contribute to poor
clinical outcomes of COVID-19.

Another peculiarity that is possibly associated with the greater
susceptibility of old individuals to viral infections is the reduced
ability of DCs to perform cross-presentation due to dysfunction
in mitochondrial activity and changes in the membrane potential
of this organelle (130). These data indicate that the greater
susceptibility of the advanced age population to infections may
be associated with a lower functional capacity of phagocytes to
eliminate pathogens and promote adequate activation of the
adaptive immune response.

Aging also contributes to changes in alveolar macrophages
(131, 132). During aging, there is a reduction in this cell
population in the lungs, which is associated with the
downregulation of pathways related to the cell cycle and
upregulation of pathways associated with the inflammatory
response (14). In fact, alveolar macrophages in animals with an
advanced age are in a greater state of cellular activation, secrete
more proinflammatory cytokines in response to aMycobacterium
tuberculosis stimulus and are refractory to an IFN-g stimulus (16).
Additionally, studies using murine models of influenza infection
indicate that alveolar macrophages have a lower ability to control
tissue damage due to infection (14). In addition, there is lower
expression of the CD204 receptor, suggesting a reduced
phagocytosis capacity of cellular debris that could contribute to
increased tissue damage (14). In an experimental model of
infection by coronavirus hepatitis virus type 1 (MHV-1), the
depletion of alveolar macrophages contributes to the reduction
in mortality and morbidity caused by the infection (133). In fact,
SARS-CoV-2 infection in transgenic mice bearing human ACE2
leads to macrophage infiltration into the alveolar interstitium and
alveolar cavities (134), and macrophage activation syndrome is
associated with severe respiratory failure in COVID-19 patients
(135), suggesting that this cell population plays a crucial role in the
pathogenesis of the disease.

Neutrophils in old individuals are also affected by the
immunosenescence process. During infections in older people,
neutropenia may occur due to the lower proliferative capacity of
neutrophil progenitor cells when stimulated by G-CSF (136).
However, in SARS-CoV-1 infection, an increase in circulating
neutrophils and an association between the infiltrates of this cell
type in the lung and the severity of the injury have been observed
(137). A similar scenario is observed in SARS-CoV-2 infection,
where high neutrophil to lymphocyte ratio in peripheral blood
have been reported in severely ill patients (138). Besides, lung
infiltration of neutrophils was observed in autopsied COVID-19
patients, revealing capillary extravasation and neutrophilic
mucositis (139). These findings indicate that neutrophils not
only contribute to systemic inflammation in COVID-19 but also
play a crucial role in local tissue damage.

Other characteristics of senescent neutrophils include lower
microbicidal activity and a deficiency in the phagocytosis of
opsonized bacteria, possibly due to a reduction in CD16 and the
oxidative burst mediated by Fc-type receptors (140, 141). Some
studies even suggest a deficiency in chemotaxis and release of
ROS and neutrophil extracellular traps (NETs) in neutrophils in
October 2020 | Volume 11 | Article 579220
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old individuals (140, 142, 143). However, there is a higher release
of NETs in COVID-19 patients, and plasma from infected
subjects induces NET release in neutrophils from healthy
donors, indicating the participation of these cells in the
immunopathogenesis of the disease (144).

The natural killer (NK) cell response is also compromised in
old individuals. There is a prevalence of NK CD56dim cells, a cell
population with high cytotoxic capacity and production of IFN-
g, and a decrease in NK CD56bright cells, which have a high
capacity for cytokine and chemokine production (145, 146). NK
cells produced in older people also produce less IFN-g in the
absence of stimulation, which helps to explain the greater
susceptibility to viral infections during this stage of life (147).
In an animal model of influenza infection, a decrease in NK cells
in the lungs, with less capacity for IFN-g production and
degranulation, was observed (148, 149). Similarly, clinical
observations of patients with COVID-19 revealed a significant
reduction in this cell population during SARS-CoV-2 infection
(99). In addition, Zheng et al. reported impaired NK function in
severe COVID-19 patients, expressing higher levels of the NKG2A
receptor, a cellular exhaustion marker, indicating impaired
antiviral immunity (150). However, single-cell analysis of lung
bronchoalveolar immune cells revealed a significant increase of
NK cells in patients with COVID-19 when compared to healthy
controls (151). In addition, in a senescent mice model of SARS-
CoV-1 infection, NK cells have been shown tomigrate to the lungs
(152), indicating a possible contribution of these cells in
coronaviruses infection pathogenesis.

Taken together, these findings lead us to propose that innate
immune cell dysfunction linked to immunosenescence could be
involved in the greater COVID pathogenesis in old individuals
either by promoting a less efficient response for fighting the
infection and/or favoring an exacerbated inflammatory response.
IMMUNOSENESCENCE: ADAPTIVE
IMMUNITY AND SUSCEPTIBILITY TO
COVID-19

Can Exhausted T Cells Compromise the
Cellular Response Against SARS-CoV-2?
Changes due to aging are also present in the adaptive immune
response and are associated with the functional impairment of
T and B lymphocytes (153). The sum of these changes renders
old people vulnerable to new emerging infectious diseases, as
recently observed with SARS-CoV-2. The most prominent
factor involves a decrease in the number of naïve cells
because of thymic involution (154), an increase in memory/
exhausted T cells and a reduction in B cell progenitors in the
bone marrow (155). Consequently, these changes reflect the
cumulative effect of previous and persistent infections in older
individuals (156).

Initial studies involving patients with COVID-19 in China
have observed decrease in peripheral lymphocytes was observed
(24, 32). This lymphopenia was more prominent in the cases
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with more severe disease, and 42% of these patients were aged
≥65 years (32). SARS-CoV-1 patients also have been reported to
have reduced circulating CD4+ and CD8+ T cells (157, 158).
Indeed, in more severe cases of COVID-19, there is a reduction
in CD8+ T cells (159), which could prevent an adequate cytotoxic
response to fight the virus. Taken together, this profile has been
proposed as a biomarker for diagnosis (160).

However, recent data from Arunachalam et al. evidences an
increase in effector CD8+ T cells population in infected patients
in comparison to health donors in an American and Chinese
cohort (161). This could reflect the fact that COVID-19 has
distinct effects in different population. In addition, the
enhancement of effector T cells has been associated with
recovery of SARS-CoV-2 infection (162, 163).

Whether the reduction in the number of T lymphocytes in old
individuals could be a condition that predisposes such patients to
more severe pathogenesis by COVID-19 remains unknown.
However, analysis of immune cell sequencing showed that
SARS-CoV-2 enhances T cell polarization from naïve to
effector cells and that aging promotes the expression of SARS-
CoV-2 susceptibility genes, mainly in T cells (110). In addition to
lymphopenia, other age-related comorbidities are predictive of
severe/critical cases and a high fatality rate during COVID-
19 (37).

Individuals of advanced age have an increase in memory T
cells with oligoclonal expansion and a decrease in the T cell
receptor (TCR) repertoire (164, 165). These senescent T cells are
mainly characterized not only by a low proliferative potential
after activation but also by a shortening of telomeres and low
telomerase activity, high production of ROS and constitutive
activation of p38 MAP kinase, which once activated, blocks
signaling via TCRs (166). Therefore, the inhibition of p38
MAPK could restore the proliferation and activation of
telomerase in senescent T cells.

Phenotypically, senescent T lymphocytes can be identified by
the expression of surface markers (CD28-, CD27-, CD57+ and
CD45RA+) (167–169). In old individuals, the decrease of CD28
has been linked to persistent antigenic stimulation, and with each
cycle of proliferation, its expression on the cell surface decreases
(170). In addition, telomere shortening occurs, characterizing the
process of replicative senescence in T lymphocytes (171).

CD28+CD27+ undifferentiated T cells have long telomeres,
while highly differentiated or senescent CD28-CD27- cells have
shortened telomeres (172). This phenotype (CD28-) is also
observed in persistent human immunodeficiency virus (HIV),
CMV infections and chronic inflammatory diseases such as
rheumatoid arthritis (171). Under these conditions, a persistent
antigenic stimulus occurs that leads to replicative senescence.

Several studies indicate that senescent T lymphocytes express
the exhaustion molecules PD-1+ and Tim3+, a phenotype also
observed in infections by lymphocytic choriomeningitis virus
(LCMV), HIV and HCV (173). Exhausted cells have a low
functional capacity, which could prevent the adequate cellular
response to the virus, favoring viral escape and intensifying the
pathogenesis of COVID-19 in old individuals. We base this
hypothesis on studies showing that in SARS-CoV-2 infection,
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CD4+ and CD8+ T lymphocytes also have PD-1+ and Tim3+

expression, prominently in CD8+ T cells (159, 174).
In addition, changes in cytokine expression/secretion

contribute to the development of immunological senescence.
For example, IL-2 is decreased in old individuals, directly
impacting the activation and proliferation of T cells (175, 176),
which can lead to changes in the intensity and duration of the
immune response and contribute to the immunosenescence
process. In addition, senescent T cells also secrete high levels
of the proinflammatory cytokines IFN-g and TNF-a (166).

Regarding CD4+ helper T cells, the older people have a lower
proportion of IFN-g/IL-4 produced by memory CD4+ T cells,
with increased Th2 cytokines and decreased Th1 cytokines,
which may be a mechanism compensating for the increase in
the proinflammatory state characteristic of the aging process
(177). Interestingly, patients with severe COVID-19 (mean age of
61 years) also have decreased T-cell IFN-g production (178). In
addition, it has been shown that there is a lower frequency of
memory CD4+ T cells producing IL-17 (179).

The functional impairment of the CD4+ T cell response
contributes to the increase in pathology during influenza
infection in old individuals (180). The same seems to be true
for COVID-19 infections, since patients affected by the most
severe form of the disease (mean age of 50 years) develop
pathogenic Th1 lymphocytes that coexpress IFN-g and GM-
CSF and are associated with a hyperinflammatory response in
the pathogenesis of the disease (61).

CD4+ T cells may also contribute to the production of
cytokines in the cytokine storm, which is a main mechanism
associated with the pathogenesis of COVID-19 in old individuals
(181). In patients with severe COVID-19, CD4+ T cells express
high levels of OX40 (159), a molecule involved in the production
of cytokines by T cells (182).

However, an adequate balance between pro- and anti-
inflammatory immune responses is essential for preserving
health in old individuals. In fact, in severe cases of COVID-19,
the evolution to acute respiratory distress syndrome (ARDS) and
respiratory failure is a rapid process, which can occur before
adaptive response establishment, emphasizing that excessive
innate immunity (such as inflammaging) and inadequate
regulatory responses may favor the evolution of the infection.

Regulatory T cells (Tregs) are potentially capable of
suppressing the immune response and guaranteeing
homeostasis (183). The number of naïve circulating Treg cells
decreases while the number of memory Treg cells increases with
age (184). Although both are suppressive, these different
subtypes act at distinct sites in the body, according their
expression of chemokine receptors. In addition increase in
memory Treg cells is associated with a poor humoral response
to influenza vaccination in older individuals (184). In mice, an
increase in Treg cells at the expense of helper T cells has also
been observed with age (185). Interestingly, patients with more
severe COVID-19 present with fewer Treg cells than patients
with less severe COVID-19 (186).

Immunosenescence studies are essential for understanding the
greater susceptibility of older people to severe respiratory failure
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induced by viral infections. The presence of exhausted
lymphocytes with a low functional capacity compromises the
efficient antiviral cellular response, and changes in regulation
favor the inflammatory status. These aspects appear to
contribute to the severity of COVID-19 due to the cytokine storm.

Can Previous Antibodies in Old Individuals
Aggravate the Pulmonary Condition of
COVID-19?
Another important aspect of immunosenescence associated with
the adaptive immune response concerns changes in B cells and
the consequent failure of the humoral response. Memory B cells
have a limited B cell receptor (BCR) repertoire, leading to a
decrease in the humoral response to new antigens, with less
efficient antibodies and less avidity (187).

A decrease in the ability to produce high-affinity antibodies in
old individuals may result from defects in T cell signaling for the
adequate activation of B cells, such as inadequate support
mediated by T follicular helper cells (TFH) (188). Thus, many
vaccines are ineffective in old individuals, rendeing them highly
vulnerable to newly emerging pathogens, such as SARS and
rapidly evolving viruses, such as influenza (189).

In an experimental model of influenza A infection, compared to
young mice, aged mice showed a lower frequency of TFH cells and
germinal center B cells, with reduced IgG titers but not IgM titers,
but the IgM levels do not seem to depend on age (190). Thus, during
the aging process, there may be some intrinsic impairment in B cells
that compromises their functionality (191).

COVID-19 cohort studies show that seroconversion is
observed on approximately the 10th day after symptom onset
by increased IgM and IgG antibodies against the viral proteins N
and S (60, 192). An age-dependent increase in the viral load
(mean age of 66 years) was observed, but there was no
correlation between age and the antibody levels. Interestingly,
COVID-19 patients with associated comorbidities show lower
levels of specific antibodies than COVID-19 patients without
associated comorbidities (192).

A subset of B cells called age-associated B cells (ABCs)
identified in mice has been closely related to the process of
immunological senescence and minimally responds BCR and
CD40 binding (193–195). ABCs have the potential to inhibit the
growth of B cell precursors through the effects of TNF-a,
inducing pro-B cell apoptosis (196, 197).

The transcription factor E47 is involved in the regulation of most
B cell functions and is negatively regulated in splenic B cells in aged
mice, promoting a reduction in the activation of activation-induced
cytidine deaminase (AID) and class-switch recombination (198). In
older humans, B cells have an age-dependent lower expression of
E47 and AID, an associated decline in the number of memory B
cells that have undergone class switching (IgG+ or IgA+) and an
increase in naïve cells (IgG-/IgA-/CD27-) (199).

CD27 expression is related to somatically mutated B cell
subsets (200, 201) and accordingly, CD27- and CD27+ B cells
represent naïve and memory B cells, respectively. In fact, others
studies also found higher number of naïve (CD27-) than memory
(CD27+) B cells in individuals of advanced age (202–204).
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Old people also have a reduction in the number of circulating B
cells (205). In contrast, it has been observed that a double-negative
(DN) B cell subtype (IgD-CD27-), which is the counterpart of ABCs
in humans, is increased in the peripheral blood of older individuals
(206). These DN B cells, also called late memory or exhausted cells,
are associated with the failure to respond to the influenza vaccine in
old individuals. DN B cells show SASP, with greater expression of
proinflammatory cytokines (TNF, IL-6, and IL-8) and microRNAs
associated with inflammation (miR 155/16/93) and are dependent
on metabolic signaling viaMAPK (207). These cells were increased
in cases of chronic inflammation, such as HIV infection (208), and
in systemic lupus erythematosus (209). For COVID-19, DN B cells
are also significantly increased in severe patients (163, 210, 211) but
is still unclear if this conditions is dependent on age.

In addition, recent studies have shown that seronegative healthy
donors have SARS-CoV-2-specific CD4+ T cells, albeit at lower
frequencies, which is indicative of cross-reactivity due to infection
between circulating “common cold” coronaviruses (212–214).
However, it is unknown whether the older individual could have
previous cross-reactive antibodies to the new coronavirus.

In this context, a humoral immune response mechanism
widely proposed to be associated with the severity of COVID-
19 is related to the possible presence of a phenomenon called
antibody-dependent enhancement (ADE) (215–217). ADE
occurs when non-neutralizing antibodies generated in a
previous viral infection bind Fcg receptors (FcgR) present in
host cells and promote viral internalization. This phenomenon
has already been observed in dengue, yellow fever and HIV
infection (218). In fact, ADE has also been demonstrated in other
coronavirus infections, such as SARS-CoV-1 and MERS (215,
219). In COVID-19, ADE in phagocytes such as alveolar
macrophages and lung-infiltrating monocytes could favor
SARS-CoV-2 replication in the lung tissue (Figure 2B). In
addition, the activation of these phagocytes through FcgR
could contribute to the cytokine storm in these patients (220).
Considering the decrease in the quality of antibody production in
older individuals, it is reasonable to think that ADE could be
involved in COVID-19 pathogenesis in advanced age patients.

As previously mentioned, different coronaviruses circulate
among the population. Therefore, it is plausible that older people
have been more exposed to these circulating viruses throughout
their lives, thus generating a greater repertoire of antibodies,
which could favor a more severe ADE-dependent COVID
(Figure 2B). This hypothesis is reinforced since children show
less susceptibility to SARS-CoV-2 infection (181) considering
that their immune system is still developing and that they have
had less time to be exposed to antigens. This hypothesis is also
reinforced by the fact that some studies show rapid
seroconversion to IgG in some patients with SARS-CoV-2 (221).

ADE can also occur when antibody concentrations decrease
as a result of waning immunity, as observed by diluted antibodies
for SARS-CoV-1 (219). Thus, high levels of antibodies can
neutralize the virus, while subneutralizing concentrations could
increase infection (222).

It is worth mentioning that highly neutralizing antibodies,
such as those proposed to be generated by some SARS-CoV-2
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candidate vaccines (223, 224) or those present in convalescent
plasma used as treatment for some COVID-19 patients (225,
226), should not trigger ADE.

The IgG-mediated humoral response could also contribute to
more severe pulmonary pathology. Compared to patients who
recovered within the first 15 days after the onset of symptoms,
the patients who died of SARS-CoV-1 had higher levels and
faster development of neutralizing anti-S antibodies (227). In
addition, in a nonhuman primate model, the previous presence
of anti-S IgG antibodies resulted in more severe acute lung
injury, with an increase in inflammatory cytokines (CCL2 and
IL-8) and recruitment of monocytes/macrophages in the lung
(228). These antibodies appear to promote activation via FcgR in
these cells since their blockade reduced the inflammatory
condition. The role of the virus-specific antibody response in
lung injury in the pathogenesis of COVID-19 is still unknown.

The presence of immune complexes (ICs) worsens lung injury
in viral infections by H1N1 influenza (229) and respiratory
syncytial virus (230). Another severe lung disease has also been
associated with IC deposition, which promotes not only FcgR-
dependent cell activation but also complement system activation
and consequent tissue damage (231). It is known that the aging
process predisposes individuals to autoimmunity (232); however,
whether the accumulation of ICs in old individuals is related to
the severity of COVID-19 is unknown.

ICs have a high molecular weight, can be deposited in vessels
and tissues, and can activate the complement system, thereby
aggravating inflammation (233). In fact, the SARS-CoV-2 N
protein has been shown to promote the activation of the
complement system lectin pathway and aggravate lung injury
in an animal model (234). In addition, these complement
pathways were overactivated in the lungs of COVID-19 patients.

To date, no studies have proven that this senescent
proinflammatory profile is dependent on B and T cells or
other innate cell types and may in fact contribute to a more
severe lung pathology in coronavirus-infected patients by
increasing the inflammatory response and tissue injury.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Considering the clinical findings obtained thus far concerning
SARS-CoV-2 infection and reports of diseases of a similar
etiology, it is evident that the immunosenescence process,
particularly the increased production of inflammatory cytokines
resulting from inflammaging, plays a role in determining the
prognosis of COVID-19 in old individuals. From an
immunological perspective, the peculiarities of the immune
system of older individuals may contribute to both the deficiency
of effector mechanisms essential to fighting viral pathogens and the
exacerbated inflammatory response, which can accelerate and
intensify lung tissue damage. However, despite the strong
evidence presented here, tests that accurately demonstrate the
association between immunosenescence and the severity of
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COVID-19 are essential for assisting the search for treatments and
the development of vaccines for this most affected age group.
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epidemiológico Especial - 30. Doença peloCoronavıŕus COVID-19. Semana
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CD8a+ dendritic cells impair CD8 T-cell expansion in response to an
intracellular bacterium. Aging Cell (2012) 11(6):968–77. doi: 10.1111/
j.1474-9726.2012.00867.x

114. Herrero C, Marqués L, Lloberas J, Celada A. IFN-gamma-dependent
transcription of MHC class II IA is impaired in macrophages from aged
mice. J Clin Invest (2001) 107(4):485–93. doi: 10.1172/JCI11696
October 2020 | Volume 11 | Article 579220

https://doi.org/10.3389/fimmu.2020.01021
https://doi.org/10.1038/s41556-018-0092-5
https://doi.org/10.1016/j.cell.2010.02.015
https://doi.org/10.1038/s41580-018-0033-y
https://doi.org/10.1155/2013/638083
https://doi.org/10.1126/science.1087782
https://doi.org/10.1126/scitranslmed.aaq1564
https://doi.org/10.1126/scitranslmed.aaq1564
https://doi.org/10.1007/BF02432509
https://doi.org/10.1155/2017/2012798
https://doi.org/10.1073/pnas.0908698106
https://doi.org/10.1002/eji.200940168
https://doi.org/10.1089/ars.2019.7727
https://doi.org/10.1016/j.cell.2008.02.043
https://doi.org/10.1016/j.cell.2008.02.043
https://doi.org/10.1016/j.cmet.2020.07.007
https://doi.org/10.1189/jlb.0703328
https://doi.org/10.1126/science.1229963
https://doi.org/10.1002/eji.201343921
https://doi.org/10.1002/eji.201343921
https://doi.org/10.3390/biology8020026
https://doi.org/10.1126/scisignal.2001147
https://doi.org/10.4049/jimmunol.1303196
https://doi.org/10.3389/fimmu.2017.01385
https://doi.org/10.1016/j.chom.2017.03.002
https://doi.org/10.1146/annurev-physiol-020911-153330
https://doi.org/10.1371/journal.pone.0010667
https://doi.org/10.1007/s00281-017-0629-x
https://doi.org/10.1016/j.clim.2020.108393
https://doi.org/10.1128/CVI.00636-12
https://doi.org/10.1128/mBio.01186-17
https://doi.org/10.1016/j.cytogfr.2020.05.003
https://doi.org/10.1007/s00011-020-01372-8
https://doi.org/10.1016/S2665-9913(20)30173-9
https://doi.org/10.1016/S2665-9913(20)30173-9
https://doi.org/10.4049/jimmunol.1700148
https://doi.org/10.1186/1742-4933-10-22
https://doi.org/10.1186/1742-4933-10-22
https://doi.org/10.1016/0047-6374(94)90020-5
https://doi.org/10.1089/jir.1998.18.429
https://doi.org/10.1016/s0531-5565(01)00189-9
https://doi.org/10.1007/s13238-020-00762-2
https://doi.org/10.1007/s11357-020-00213-0
https://doi.org/10.1016/j.imlet.2014.06.017
https://doi.org/10.1111/j.1474-9726.2012.00867.x
https://doi.org/10.1111/j.1474-9726.2012.00867.x
https://doi.org/10.1172/JCI11696
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pietrobon et al. Immunosenescence and Inflammaging in COVID-19
115. Yoon P, Keylock KT, Hartman ME, Freund GG, Woods JA. Macrophage
hypo-responsiveness to interferon-gamma in aged mice is associated with
impaired signaling through Jak-STAT. Mech Ageing Dev (2004) 125(2):137–
43. doi: 10.1016/j.mad.2003.11.010

116. Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, et al. Productive
replication of Middle East respiratory syndromecoronavirus in monocyte-
derived dendritic cells modulates innate immune response.Virology (2014)
454–455:197–205. doi: 10.1016/j.virol.2014.02.018

117. Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, et al. Chemokine up-
regulation in SARS-coronavirus-infected, monocyte-derived human dendritic
cells. Blood (2005) 106(7):2366–74. doi: 10.1182/blood-2004-10-4166

118. Hu Y, Li W, Gao T, Cui Y, Jin Y, Li P, et al. The Severe Acute Respiratory
Syndrome Coronavirus NucleocapsidInhibits Type I Interferon Production
by Interfering with TRIM25-Mediated RIG-IUbiquitination. J Virol (2017)
91(8):e02143–16. doi: 10.1128/JVI.02143-16

119. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al.
Impaired type I interferon activity and inflammatory responses in severe
COVID-19 patients. Science (2020) 369(6504):718–24. doi: 10.1126/
science.abc6027

120. Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard JC, Perret M, et al.
Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol
(2020) 146(1):206–208.e2. doi: 10.1016/j.jaci.2020.04.029

121. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R,
et al. Imbalanced Host Response to SARS-CoV-2 Drives Development
of COVID-19. Cell (2020) 181(5):1036–45.e9. doi: 10.1016/j.cell.2020.
04.026

122. Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral
activities of type I interferons to SARS-CoV-2 infection. Antiviral Res
(2020) 179:104811. doi: 10.1016/j.antiviral.2020.104811

123. Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD.
SARS-CoV-2 is sensitive to type I interferonpretreatment. bioRxiv (2020).
doi: 10.1101/2020.03.07.982264

124. Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M,
Abbasian L, et al. A Randomized Clinical Trial of the Efficacy and Safety of
Interferonb-1a in Treatment of Severe COVID-19. Antimicrob
AgentsChemother (2020) 64(9):e01061–20. doi: 10.1128/AAC.01061-20

125. Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple
combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the
treatment of patients admitted to hospital with COVID-19: an open-label,
randomised, phase 2 trial. Lancet (2020) 395(10238):1695–704. doi: 10.1016/
S0140-6736(20)31042-4

126. Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is
associated with a numerical and functional decline in plasmacytoid dendritic
cells, whereas myeloid dendritic cells are relatively unaltered in human
peripheral blood. Hum Immunol (2009) 70(10):777–84. doi: 10.1016/
j.humimm.2009.07.005
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ACE2 Angiotensin-converting enzyme 2
ADE Antibody-dependent enhancement
AID Activation-induced cytidine deaminase
APC Antigen-presenting cell
ARDS Acute respiratory distress syndrome
ATP Adenosine triphosphate
BCR B cell receptor
CCL CC chemokine ligand
CD Cluster of differentiation
cGAS Cyclic GMP-AMP synthase
CMV Cytomegalovirus
CoV Coronavirus
COVID-19 Coronavirus disease 2019
CpG Cytosine-phosphate-Guanine
CRP C-reactive protein
CXCL C-X-C motif chemokine ligand
DAF2 Dauer formation-2
DAMP Damage-associated molecular pattern
DC Dendritic cell
DN double-negative B cell
DNA Deoxyribonucleic acid
DPP4 dipeptidyl peptidase 4
E47 E47 transcription factor
FGF2 Fibroblast growth factor 2
Fc Fragment crystallizable
FcgR Fc gamma receptors
G-CSF Granulocyte colony-stimulating factor
GM-CSF Gr anu l o c y t e ma c r o p h a g e c o l o n y -

stimulating factor
H1N1 Haemagglutinin-1 neuraminidase-1
H5N1 Haemagglutinin-5 neuraminidase-1
HCoV Human coronavirus
HIV Human immunodeficiency virus
IC Immune complex
IFN-I Interferon type I
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Ig Immunoglobulin
IL Interleukin
IRF Interferon regulatory factor
LCMV Lymphocytic choriomeningitis virus
MAP Mitogen-activated protein
MAPK Mitogen-activated protein kinase
MAVS Mitochondrial antiviral-signaling protein
MERS Middle East respiratory syndrome
MHC Major histocompatibility complex
MHV-1 Murine hepatitis virus type 1
mtDNA Mitochondrial DNA
mTOR Mammalian target of rapamycin
NET Neutrophil extracellular trap
NF-kB Nuclear factor kappa B
NK Natural killer
NKG2A CD94/NK group 2 member A
NLR NOD-like receptor
NLRP3 NLR family pyrin domain containing 3
OX40 Tumor necrosis factor receptor superfamily,

member 4 (TNFRSF4)
PAMP Pathogen-associated molecular pattern
PD-1 Programmed cell death 1
pDC Plasmacytoid DC
PRR Pattern recognition receptor
RIG Retinoic acid-inducible gene
RNA Ribonucleic acid
ROS Reactive oxygen species
SAA Serum Amyloid A
SARS Severe acute respiratory syndrome
SARS-CoV-1 Seve re acu te re sp i r a to ry syndrome

coronavirus 1
SARS-CoV-2 Seve re acu te re sp i r a to ry syndrome

coronavirus 2
SASP Senescence-associated secretory phenotype
Smad7 Mothers against decapentaplegic homolog 7
STING Stimulator of interferon genes
TCR T cell receptor
TFH T follicular helper cell
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Tim3 T-cell immunoglobulin and mucin-domain

containing-3
TLR Toll like receptor
TMPRSS2 Transmembrane Protease Serine 2
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TNF-a Tumor necrosis factor alpha
Treg Regulatory T cell
TRIF TIR-domain-containing adapter-inducing

interferon beta
TRIM Tripartite motif
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