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Data accumulated over the past four decades have confirmed that adult hippocampal

neurogenesis (HN) plays a key role in the wide spectrum of hippocampal pathology.

Epilepsy is a disorder of the central nervous system characterized by spontaneous

recurrent seizures. Although neurogenesis in persistent germinative zones is altered

in the adult rodent models of epilepsy, the effects of seizure-induced neurogenesis

in the epileptic brain, in terms of either a pathological or reparative role, are only

beginning to be explored. In this review, we described the most recent advances in

neurogenesis in epilepsy and outlooked future directions for neural stem cells (NSCs)

and epilepsy-in-a-dish models. We proposed that it may help in refining the underlying

molecular mechanisms of epilepsy and improving the therapies and precision medicine

for patients with epilepsy.
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INTRODUCTION

Despite being assumed to be non-existent for decades, the occurrence and regulation of
hippocampal neurogenesis (HN) in adult mammals has been widely accepted (1). Since various
hormonal and environmental regulators are identified, this emerging form of adult brain plasticity
is getting wide attention and has been studied (2). It is clear that these positive results further
increase the interest in HN following the (re)confirmation that they existed in the adult human
brain, which was paralleled by a drastic debate over the sequencing methods, disease model
construction, and a possible reinterpretation of the functional role in the human brain (3).

Adult neurogenesis in the mammalian brain is a process by which functional neurons are
generated from the division of neural stem cells (NSCs), which have a high capacity for long-term
self-renewal while giving rise to the neurons and glia in the subventricular zone/olfactory bulb
(SVZ/OB) system and hippocampal dentate gyrus (DG) from the embryo throughout the lifespan
of animals (4). Conclusive evidence has confirmed that such a process in the adult subventricles and
hippocampi was first documented in rodents, and then extensively explored in human postmortem
brains (5). Specifically, granule neurons derived from adult hippocampal neurogenesis (AHN) in
the DG are the first relay station in the information flow entering the hippocampus, and their
firing rates are strongly regulated by different types of local interneurons, constituting an effective
electrophysiological balance stabilizer. When disrupted by a variety of insults, such as brain injury
that include stroke and status epilepticus (SE), there is hyperexcitability of hippocampal neurons
and a variety of abnormal behaviors, such as memory deficits and decreased motor skills (6, 7).
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The production of neurons decreases with age, possibly due to
an alteration of the neurogenic niche in the SVZ, a developing
environment, or the limited neurogenic capacity of NSCs in
the brain (8). Over time, it may cause a progressive age-
related depletion of the stem pool, although neuron production
in the hippocampus can still be increased with the use of
glucocorticoids and neurosteroids, or exposure of animals to
environmental enrichment comprising physical activity (9).
Several experimental studies on rodents have shown that AHN
during aging is critically involved in learning, memory, and
repair because the number and function of NSCs are reduced,
resulting in fewer new neurons (10). Furthermore, the extent
of cognition and certain types of brain repair are quantitatively
linked to the time dependence of HN rates (11).

Over the years, multiple neurological diseases, such as
epileptic seizures, ischemic stroke, Alzheimer’s disease, and
traumatic brain injury, have been demonstrated to be involved
in the hippocampal neurogenic cascade in multiple ways (12).
These changes have been primarily identified in epilepsy models
and are referred to as aberrant HN, encompassing a wide variety
of abnormal symptoms and alterations in the pathogenic cascade
and size, spine numbers, morphology, function, and location
of newborn granule neurons, which are fundamentally different
from those under the stage of normal neurogenesis (13, 14). Here,
we reviewed the recent findings of aberrant HN in epilepsy to
improve our understanding of this field.

PATHOLOGIES OF AHN IN EPILEPSY

Adult hippocampal neurogenesis in animals or humans is
a multi-step process that includes migration, activation,
proliferation, differentiation of local NSCs, and neuronal
differentiation; thus, each stage may be more vulnerable
to the dysregulation brought about by the pathological
environment and external stimuli (15). In the case of seizures,
multiple dysfunctional outcomes have been identified in
rodent animal studies (Figure 1) (16). These changes mainly
include an imbalance in quiescence and activation of adult
NSCs, alterations in self-renewal rate of NSCs, decrease in
the proliferative capacity of NSCs, neural progenitor cells,
or neuroblasts, existence of aberrant integrations-hilar basal
dendrites, hilar ectopic migration, mossy fiber sprouting in the
DG-generated cells, and aberrant migration of newborn neurons
into the dentates (17, 18). In particular, the development of an
abnormal dendritic tree has been confirmed to be a significant
feature of AHN because low synaptic connectivity prevents
immature neurons from responding broadly to cortical activity,
potentially contributing to an imbalance between excitation
and inhibition (19). These abnormalities in the number and
morphology of newborn neurons can result in the recruitment
of newly generated neurons into functional hippocampal
networks, creating recurrent excitatory circuits. Furthermore,
excessive activation-coupled astrocytic differentiation of NSCs
causes profound changes in the maturation-related phenotypes
of neurons in the hippocampal DG and the function of
hippocampal circuits (20). Thus, it can be hypothesized that

the aberrant neurogenesis in the hippocampus is associated
with recurrent seizures in patients with epilepsy. In addition,
learning, memory, and psychiatric symptoms that include
mood disorders, such as anxiety and depression, are affected
by hippocampal neuroendocrine regulation and may become
exacerbated.Moreover, AHN in epilepsy is likely to be commonly
associated with brain dysfunction, leading to several behavioral
comorbidities, such as anxiety and depression with learning and
memory deficits (21, 22).

At present, among the common neurodegenerative diseases
associated with AHN, one of the most studied is epilepsy
and psychogenic non-epileptic seizures (23). Although the
heterogeneities of the experimental animal models have been
reported in the literature for epilepsy, it is universally
acknowledged that epileptic seizures are often accompanied
by an increasing rate of HN, followed by a steady decline
(24). Furthermore, there is an abnormal development of
morphological changes and functions in neurons generated in
the animal hippocampus (5, 12). Remarkably, evidence from a
recent study (25) of neurogenesis in the adult primate brain
indicates that changes in neuronal long-lasting structures due to
plasticity are a prominent feature of seizure-associated abnormal
neurogenesis. In addition, the depletion of the NSC pool will be
accelerated by the hyperactivation of NSCs caused by epilepsy,
followed by a long-lasting decrease in NSC number at the later
stages of AHN (26).

With the extensive research and understanding of stem cells,
hyperactivation of NSCs has been studied in detail in recent years.
Upon stimulation with inflammation and stress from convulsive
seizures, quiescent NSCs (qNSCs, a type of slowly dividing
cells) in the subgranular zone (SGZ) enter the cell cycle and
become proliferative NSCs (27). Once activated after epilepsy, the
activated NSCs (aNSCs) have the potential to principally divide
asymmetrically to generate another NSC and amplify neural
progenitors, which are representative of a pluripotent and highly
proliferative state to maintain the NSC pool while expanding
the progenitor pool (28). Asymmetric division coincides with
cell fate determination, and newborn cells that generate aNSCs
can further differentiate into reactive astrocytes through multiple
rounds of asymmetric division, thereby contributing to increased
astrogliosis (29). In general, AHN is regulated by both intrinsic
and extrinsic cellular factors, and the complex regulation of AHN
becomes clear when studying the fate of neural stem/progenitor
cells (NSPCs) transplanted into ectopic locations in the brain
(30). The well-documented neurogenic areas of the adult brain
are the SGZ of the DG in the hippocampus, where new granule
cells originate from NSPCs, and areas of the brain where
astrocytes are neurogenic. These transplant studies indicate that
the local environment or neurogenic niche in the epileptic brain
is crucial for the development of NSCs and neurons (31). The
hippocampal neurogenic niche is composed of a wide array of
cell types, such as NSPCs, neuroblasts and their progeny, mature
granule cells, astrocytes, GABAergic interneurons, microglia,
macrophages, and endothelial cells connecting NSCs and their
progeny to the vasculature (32, 33). Together, all these elements
provide the hippocampus with a finely tuned microenvironment
that is permissive for adult neurogenesis.
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FIGURE 1 | A graph showing normal and aberrant neurogenesis [stained with doublecortin, DCX (red)] in the dentate gyrus of a kainate-induced epilepsy mice model.

Arrow indicated that newborn neuron.

Understanding how physiological stimuli may affect
neurogenesis through unique neural stem and progenitor cell
populations may reveal mechanisms underlying phenotypic
outcomes and provide novel therapeutic targets for disease (34).
Interestingly, a recent study (35) revealed that significantly more
dividing qNSCs and a corresponding increase in the number
of surviving new neurons was observed in the hippocampi of
kindled vs. sham-kindled rats. These findings are consistent with
studies describing increased numbers of dividing qNSCs in the
DG of rodents after electroconvulsive seizures or SE induced by
chemo-convulsants kainic acid and pilocarpine (36). Thus, we
speculated that qNSCs may be a novel target for the treatment
of epilepsy and that aberrant neurogenesis could be a cellular
mechanism of seizure development and maintenance. Future
work employing complete neurogenesis ablation strategies (i.e.,
targeting resistant qNSCs) would be required to test whether
aberrant neurogenesis (through the upregulation of qNSCs) is
a cellular mechanism for epilepsy or physiological response to
seizures. In the latter case, aberrantly connected young neurons
could still provide a cellular substrate for seizure maintenance.

GLIAL FUNCTION IN ABERRANT HN

Neurogenesis is a common physiological phenomenon that
continues throughout life and represents the ability of
brain cells to regenerate themselves. In most cases, adult
neurogenesis in mammals is thought to be beneficial for
maintaining physiological homeostasis in the brain and
repairing neurological damage. For example, increasing adult
HN is sufficient to reduce anxiety and depression-like behaviors
in mice administered corticosterone (37). Moreover, enhancing
optogenetic stimulation of adult-born neurons has been shown

to specifically improve olfactory learning and long-term memory
(38). Therefore, the role of neurogenesis in regulating emotional
and cognitive functions has been recognized. A wide range of
scholars have focused on this field, and much research has been
conducted (39).

Recent studies have also suggested the beneficial roles of
activated microglia in neurogenesis in the adult brain for
providing structural, metabolic, and trophic roles for new
neurons, phagocytic removal of dead cells, and modulation of
the adaptive immune system in the central nervous system (40,
41). In addition, aberrant HN induced by acute seizures has
been thought to be among the crucial players in the generation
of spontaneous recurrent seizures and memory impairment
(42).Whether microglial activity affects seizure-induced aberrant
neurogenesis has only begun to be investigated in recent years.

Specifically, minocycline treatment led to a decreased
activation of microglial cells, and the aberrant neurogenesis of
the hippocampus after pilocarpine-induced acute seizures was
attenuated, while this abnormal neurogenesis was promoted
when the microglia were activated with lipopolysaccharide
(43). More recently, it has been observed that the convulsive
seizure-mediated aberrant neurogenesis was ameliorated by
microglia in kainic acid (KA)-induced mice via the activation
of toll-like receptor 9 (TLR9), a pattern recognition receptor of
the innate immune system that recognizes microbial DNA and
triggers inflammatory responses (44). In their study, the self-
DNAs released from the damaged cells or neurons were sensed
by TLR9 in microglia, which activated the NF-kB signaling
pathway, causing aberrant seizure-induced neurogenesis.
Another interesting study showed that microglia promoted
seizure-induced aberrant neurogenesis through its P2Y12
receptor (P2Y12R) and increased seizure-induced immature
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neuronal projections between the DG and CA3 regions (45).
Their results identified microglial P2Y12R as an important
regulator of neurogenesis and suggested that targeting it may be
a potential method for pro-epileptogenic processes (46). Taken
together, these data suggest that microglia are involved in the
regulation of the phenotype of acute epileptic seizures and play
an important role in the proliferation, survival, and development
of NSCs and neuritis during epileptic seizures (45).

It is still uncertain what triggers microglia, and a matter
of debate whether microglial activation is beneficial or
detrimental to neuronal death and neurogenesis following
seizures (47). Therefore, there is no consensus on whether
they are neuroprotective or neurotoxic in the human brain
associated with epileptic seizures. To clarify the physiological
and pathological roles of microglia in brain homeostasis and
AHN in epilepsy, investigations on the interaction between
the cells and their extracellular environment outside of the
adult brain parenchyma are essential for researchers (39, 42).
Recently, it has also been confirmed that there is a disruption
in the structure and function of the blood-brain barrier in the
progression of epilepsy, which suggests that cerebrovascular
accidents may contribute to microglia-mediated neurogenesis
in epilepsy (48). To prevent the development of epilepsy, it
is crucial to discover the cellular and molecular mechanisms
underlying the synaptic excitatory and inhibitory (E/I) imbalance
of AHN during epileptogenesis (49). Furthermore, to prevent the
development or progression of epilepsy, it is crucial to reveal the
specific cellular and molecular mechanisms underlying synaptic
E/I imbalance produced by AHN during epileptogenesis (50).
Even if epilepsy has long been considered a synaptopathy and
microglia are essential for the development of functional neural
circuits, there have been no studies investigating the relationship
between microglia and synapses in the AHN of epilepsy.

Astrocytes are also an important cell type in the neurogenic
niche and provide a special environment for adult neurogenesis.
Similar to microglia, astrocytes serve as important mediators
that drive immune responses and promote inflammation.
Inflammation is considered one of the greatest causes
of neurogenesis, but some cytokines released may have
neuroprotective functions. Interleukin (IL)-6 and IL-1β are
the cytokines released from astrocytes and are proposed to
act as protectors in the promotion of neuronal differentiation
(51, 52). A previous study found that stem cell factor restores
NPC proliferation in IL-6 knockout mice and that both
hippocampus-dependent cognitive functions and the level
of adult neurogenesis are gradually attenuated (53). Similar
to the results of previous in vivo studies, there was also an
improvement in astrocyte-specific IL-6 knockout mice (54).
These results provide evidence that astrocytic IL-6, produced
under physiological conditions, promotes neurogenesis and
supports cognitive function. However, contrary to these findings,
overexpression of astrocytic IL-6 decreased neurogenesis and
alleviated hippocampus-dependent learning (55).

ROLES OF MICRORNAS IN ABERRANT HN

The relief of AHN caused by epileptic seizures has become a
hot topic of current research, and scholars have put forward

many assumptions during this period. In recent years, miRNAs
(small non-coding RNAs) have gained significant attention as
accumulating evidence has shown that most miRNAs play a
crucial role in regulating AHN, and are also deregulated in the
cases of seizures or chronic epilepsy (56). Here, an overview of
AHN-regulating miRNAs associated with epilepsy was presented
based on the analyses performed using EpimiRBase developed
by Mooney et al. (57). EpimiRBase is a searchable database
(one of the largest manually curated target databases) indexing
more than 2,000 miRNA sequences and annotations linked
to epilepsy, which were developed to address the rapidly
increasing need to track the progress of published literature
on miRNAs related to epilepsy-induced aberrant AHN. The
recently published EpimiRBase has updated miRNAs from more
than 54 publications, and the results showed that 2,183 unique
sequences (1,208 upregulated and 975 downregulated) have been
found, which mainly consist of three species: humans, mice,
and rats (58). Through an integrated analysis of these original
miRNAs, they can be categorized into three classes based on
their molecular functions: expression analysis, functional, and
profiling-biofluid in the brain. Numerous matches have been
provided by searchin EpimiRBase against the families of the
upregulated and downregulated select miRNAs, which have also
been implicated as crucial regulators of AHN, highlighting the
crucial role of miRNAs in regulating AHN after SE (59).

The list of miRNAs that regulate AHN continues to grow,
and AHN-focused miRNA-based therapy may be a promising
strategy for epilepsy, although the complexity by which miRNAs
regulate biological processes makes it challenging. Interestingly,
several attempts to identify miRNA-based anti-epileptic therapies
have been performed, although they have not primarily focused
on AHN (56–58). Accumulating evidence suggests that the
alterations in miRNA-34a expression may be involved in the
pathogenesis of epilepsy (60). Two different rodent epilepsy
studies have undertaken miR-34a silencing approaches to
rescue seizure-induced apoptosis (61, 62). One study found
that neuronal apoptosis in CA1 and CA3 was successfully
in remission after antagomir-34a administration during SE.
However, this was not assessed in the DG; thus, caution should
be exercised when extrapolating these findings to AHN (61).
Another study also silenced miR-34a using antagomirs, but
no neuroprotective effects were observed after a 24-h post
SE induction, indicating a potential time-dependent treatment
window (62). From these data, we concluded that antagomir-
34a administration has no beneficial effects on the duration and
severity of seizures.

More compelling evidence for the role of miRNA-based
regulation in epilepsy implications for therapy comes from
several studies on developing possible targets for antagomir-134
anti-epileptogenic effects (63). As mentioned before, miR-134
is known to be involved in regulating synapse formation and
dendritic spinogenesis; thus, it may be a key regulator of intrinsic
excitability and susceptibility to seizures (64). A significantly
greater proportion of pilocarpine-induced SE has been observed
in developing rats after pretreatment of mice with antagomir-134
over 24 h before SE induction (65). In addition, in antagomir-
treated mice that developed SE, seizure onset was delayed and
the total seizure power was reduced. In another study, the results
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FIGURE 2 | Schematic diagram illustrating the transformation of human-induced pluripotent stem cells (iPSCs) from the clinical trial in a dish to precision medicine for

epilepsy: (A) clinical patient recruitment, (B) generation of human iPSCs from the blood of the patients, (C) gene targeting can be effectively achieved using the

CRISPR/Cas9 editing system, (D) in vitro generation of human iPSC-derived brain organoids from a mixed population of neurons and glial cells, and (E) drug

discovery, individualized therapy, or a clinical trial using the epilepsy-in-a-dish model.

showed that the later occurrence of spontaneous seizures was
induced by over 90% after depletion of miR-134 1 h after the
onset of SE (66). Furthermore, the results indicated that miR-
1 antagomir treatment significantly improved the neurological
deficits and reduced CA3 pyramidal spine density, hippocampal
astrogliosis, and neuronal cell loss, which are the pathological
histological forms of temporal lobe epilepsy (TLE). Despite the
above studies on miR-34a, the effects on AHN-related pathology
were not measured.

ORGANOIDS AND CRISPR/CAS9 TO
STUDY GENETIC EPILEPSY SYNDROMES

A clear understanding of the early stages of epilepsy development
is essential for a thorough investigation into new therapeutic
strategies and target discovery and development. A large number
of studies have shown that the combined application of rodent

models in vivo and human-induced pluripotent stem cells
(iPSC)-NPS models in vitro is a hot topic for future research
on epilepsy (67, 68). Although great efforts have been devoted
to elucidating many aspects of the environment of the epileptic
brain, the understanding of epilepsy development remains
elusive due to the significant difference between the human
and rodent physiology models (69). The cell field has been
transformed by technological advances in recent decades. The
establishment and use of an epilepsy model in a dish have
already been artificially realized (70). Human cells can be
directly harvested for targeted editing of crop genomes using
the CRISPR/Cas system, which is now entering a new era of
personalized medicine. Moreover, it has been a hot topic in the
medical field, where electrophysiological and histological changes
in patients with epilepsy can be erased and studied without the
need for human nerve tissue, which is available to patients with
both surgical and autopsy specimens (71). In the future, we
expect that it will be a motivation to expand the applications
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of the combination of in vivo rodent models and in vitro
patient-derived iPSC models (Figure 2) to help us understand
the different aspects of epilepsy and other neurodevelopmental
disorders (72). Furthermore, we hope that more complex iPSC-
derived epilepsy model systems can be developed and utilized in
the screening of drug candidates, probing disease mechanisms,
and advancing novel therapies.

CONCLUSION

Epilepsy is a set of neurological disorders characterized by
recurrent seizures and significant comorbidities. The role of
NSCs in epilepsy is well-described, but the exact role of AHN
in epileptogenesis remains to be elucidated. Moreover, there
is comparatively little co-development of therapies and tests
based on our current understanding of epilepsy. Given the rapid

advances and the increased reliance on biotechnology, the iPSC-
derivedmodels hold strong promise for generating more relevant
human physiological systems for drug testing, elucidating disease
mechanisms, and developing new epilepsy therapies by bridging
the gap between model systems and patients.
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