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Abstract

Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV
pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein
required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of
movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was
suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates
EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus
mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by
the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell
density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters
surrounding an EPS core.
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Introduction

Bacteria modulate activity in response to cell density and surface

cues, allowing groups of cells to accomplish more than individuals

[1,2]. Myxococcus xanthus is a Gram-negative soil bacterium that

utilizes multicellularity during vegetative swarming, predation of

prey microorganisms and, when nutrients are reduced, aggrega-

tion into fruiting bodies that contain spores [3,4]. Motility is

required for all of these functions. Unlike other surface motile

bacteria such as Bacillus subtilis and Proteus mirabilis, M. xanthus does

not produce flagella but glides on surfaces through a combination

of Social (S) and Adventurous (A) motility [5,6,7]. The two systems

can be synergistic, but confer distinct advantages depending on the

culture conditions: S-motility promotes group movement on soft,

nutrient rich surfaces like 0.3–0.5% agar, while A-motility

functions best on firmer surfaces, like 1.5–2.0% agar [8,9].

Conditions that promote S-motility result in smooth colony edges

that lack isolated cells. In contrast, conditions that promote A-

motility result in colony edges containing many individual gliding

cells as well as groups.

S-motility occurs by extension and retraction of Type IV pili, but

also requires extracellular polysaccharide matrix (EPS) [10,11,12].

EPS is rich in glucosamine and N-acetylglucosamine and has been

proposed to serve as an anchor for pilus binding and retraction [13].

Isolated M. xanthus cells do not show S-motility on an agar surface;

however, cells regain S-motility at high cell density [14]. This

observation is the basis for the hypothesis that pili from one cell bind

to EPS on the surface of a close neighboring cell, propelling cell

movement [7,13,14]. However, distance may not be the only factor

inhibiting S-motility at low cell densities, as the cell density

requirement can be completely abolished by the addition of 1%

methylcellulose [15]. These results indicate that the Type IV pili are

synthesized and functional even at low cell densities.

A number of genetic loci have been identified that are required

for S-motility, including a 37 gene cluster homologous to known

eps biosynthesis genes [12,16,17]. Polysaccharide slime has also

been implicated in A-motility, but a causal connection between

polysaccharide production and A-motility has not been estab-

lished. Based on recent data, A-motility has been proposed to be

powered by proton motive force (PMF) and driven by distributed

motor proteins that move along a helical track, creating

differential drag forces that distort the cell surface and generate

surface waves that push cells forward [18].

To achieve directed motility, M. xanthus cells need to

periodically reverse. Cell reversals in M. xanthus involve the

inversion of cell polarity so that the lagging cell pole becomes the

new leading cell pole and the old leading cell pole becomes the

new lagging cell pole [19,20]. Since the pili required for S-motility

are found only at the leading cell pole, precursor and regulatory

proteins required for S-motility must either be transported from

pole-to-pole when cells reverse or be present at both cell poles, but

subject to periodic activation/inactivation by regulators [21]. For

example, monomers of the major pilin subunit, PilA are localized

throughout the membrane but are assembled only at the leading

cell pole [22]. By contrast, FrzS, an S-motility protein controlled

by the frizzy (Frz) chemosensory system, periodically translocates

from pole to pole during cellular reversals [23,24]. It is therefore of

interest to determine the role of FrzS in S-motility and the reason

for its periodic pole-to-pole translocation.

FrzS contains two principal domains: an N-terminal pseudo-

receiver domain that lacks the critical aspartyl residue that is

typically phosphorylated in two component signaling systems, and
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a C-terminal coiled-coil domain, predicted to be involved in the

dynamic assembly or disassembly of protein complexes [25]. The

coiled-coil domain of FrzS promotes oligomerization when

overexpressed in E. coli. [24]. Although FrzS lacks the canonical

sites for activation of the receiver domain by a cognate kinase, two

receiver domain point mutations result in mislocalization (Y102A,

H92F) of the protein and loss of function [26]. These domain

structures suggested that FrzS might function as an intermediary,

transducing signals from the Frz chemosensory system to activate

pilus assembly at the leading cell pole [23,24]. Unexpectedly, the

results presented in this study show that FrzS, rather than being a

regulator of pilus production, is actually a regulator of EPS

production.

Results

frzS mutant cells show restored S-motility when mixed
with wildtype cells

S-motility in wildtype M. xanthus strain DZ2 is best observed

when cells are incubated at high cell density on nutrient rich, 0.5%

agar CYE plates, as A-motility does not function under these

conditions. On this medium, M. xanthus cells glide away from the

initial inoculum in a cell density dependent manner, producing

thin spreading swarms. In most cases, capturing an image by 24 h

is sufficient to demonstrate normal S-motility or S-motility defects.

To quantify S-motile swarming, we prepared two-fold serial

dilutions of exponential phase cultures, and then spotted 3 ml

aliquots of cells onto 0.5% agar CYE plates at cell densities

ranging from 26106 to 26108 cells. We measured the size of the

initial spots and the swarm diameters after 24 h at 32uC to

determine swarm expansion as a function of initial cell density.

The results are shown in Fig. 1. In this assay, wildtype cells showed

cooperative swarming as cell densities were increased: (i) poor

swarming was observed at low cell densities; (ii) as cell densities

were increased, there was a sharp increase in the rate of swarm

expansion; (iii) at the highest cell densities, a maximum swarm

expansion rate was achieved (see Fig. 1). The maximum swarm

expansion rate for wildtype cells was 4.3 mm/day, and the cell

number at which half the maximum swarm expansion occurs was

26107 cells. We consider this number to be important for

quantifying cooperative social swarming as any decrease in

cooperation should shift the curve to the right increasing the

number of cells required for rapid swarm expansion.

In contrast, S-motility mutants like pilA (DZ4469) showed little

swarm expansion, even at high initial cell densities, and exhibited

smooth colony edges (see Fig. 1B). Interestingly, co-culturing

wildtype with pilA (1:1) showed an intermediate swarm expansion

rate of 3.0 mm/day, indicating that wildtype cells are not inhibited

Figure 1. Quantitative social motility assay. Serial dilutions of mid exponential-phase cultures ranging from 26106 to 26108 cells/assay were
prepared either in mono-cultures or co-cultures, then aliquoted onto 0.5% agar CYE plates. Swarm expansion was imaged and measured after 24 h
incubation at 32uC. (A) Cell density-dependent social motility was assayed in wildtype (black ¤), frzS (green m) and a wildtype+frzS co-culture (green
n), with the error bars representing one standard deviation. Corresponding images below show wildtype swarms, defective frzS swarms with small
abortive flares, and full recovery of motility in the co-culture. (B) Analysis of wildtype (black ¤), S-motility defective pilA (orange &) and partial
recovery of a wildtype+pilA co-culture (orange %) with corresponding images from the even number data points shown below. Scale bar is 1 mm.
doi:10.1371/journal.pone.0023920.g001
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by the presence of non-motile pilA cells in the swarm (see Fig. 1B).

The behavior of the wildtype-pilA co-culture indicates that pilA

cells are not counted as part of the functional swarming group, i.e.,

an initial cell population of 26107 cells in which 50% are wildtype

behaves the same as an initial cell population of 16107 cells that

are 100% wildtype. In contrast, frzS swarms (DZ4335) differed

from both wildtype cells and pilA cells. Instead of smooth colony

edges like the pilA mutants, frzS swarms showed wrinkled colony

edges, consisting of tiny flares emerging from the swarms (see

Fig. 1A, lower panel). After 24 h, the net swarm expansion was

extremely small, only about 1 mm. However, co-culturing of

wildtype and frzS cells (1:1) resulted in a swarm expansion rate

similar to wildtype levels, 4.3 mm/day. The result that wildtype-

frzS mixed swarms expand at the same rate as wildtype alone is

consistent with and suggestive of the possibility that wildtype fully

rescues the swarming defect of the frzS mutant. This complemen-

tation was not observed in other motility mutants, including pilT

(DK10409), tgl (DZ4191), cglB (DZ4477), mglA (TM12), frzF

(DZ4483), and difA (YZ601) strains (data not shown). All of these

mixtures showed a phenotype similar to wildtype cells mixed 1:1

with buffer, indicating that non-motile cells in this assay do not

inhibit wildtype swarming, and that the phenotype of wildtype-frzS

co-cultures can only be due to increased activity of one or both

strains.

The extracellular complementation by wildtype is robust as up

to a 4:1 frzS to wildtype cell ratio resulted in maximal swarm

expansion (see Fig. 2). Higher ratios of frzS to wildtype cells

reduced swarm expansion incrementally, with a 9:1 ratio yielding

a phenotype similar to a 1:1 pilA-wildtype mixture, and a 100:1

ratio required to yield a phenotype similar to frzS alone. To further

determine if frzS cells migrate with wildtype cells from the initial

inoculum through to the colony edge in the 0.5% agar S-motility

assay, we analyzed co-cultures of wildtype and frzS with DZ4538,

a frzSY102A::gfp mutant that expresses a C-terminal Green

Fluorescent Protein (GFP) tag [26]. We examined these co-

cultures with fluorescence stereo microscopy and imaged the

colonies after 24 h incubation (see Fig. 2B–E). The images show

that indeed the frzSY102A::GFP strain was motile in the co-culture

since fluorescence was visible from the colony center out to the

periphery in both mixtures.

Isolated frzS cells are motile in 1% methylcellulose
Previous studies of FrzS led to the hypothesis that FrzS regulates

S-motility by activating PilT ATPase retraction at the leading cell

pole [20,24]. However, the ability of frzS cells to show S-motility

swarming when co-cultured with wildtype cells indicates that they

may harbor a defect other than pili function. We used the 1%

methylcellulose assay developed by Sun et al. to analyze the

behavior of isolated frzS cells [15,27]. Cells were harvested from

exponential phase cultures, mixed with 1% methylcellulose and

observed immediately with phase contrast microscopy. By tracking

cells at 1 min intervals for 20 min, isolated frzS cells were observed

to show motility behavior similar to wildtype (see Fig. 3). Thus, frzS

cells produce functional Type IV pili that can propel cells forward.

Figure 2. Complementation of the frzS Social motility defect. (A)
Swarm expansion data for frzS-wildtype co-cultures at the ratios listed.
(B,C) Transmission and fluorescence stereomicroscopy of 1:1 co-cultures
of wildtype with frzSY102A::gfp and (D,E) DfrzS with frzSY102A::gfp showing
migration of the GFP-labeled cells corresponding to the colony edge.
Scale bar is 1 mm.
doi:10.1371/journal.pone.0023920.g002

Figure 3. Motility assay in methylcellulose. Mid-exponential phase
cells were resuspended in 1% methylcellulose on glass slides and S-
motility observed by time-lapse microscopy. Images show 7 cell tracks
for (A) frzS mutant; (B) wildtype strain DZ2: and (C) pilT mutant over
9 min (Top). Images at 0, 3, 6, and 9 min are shown below. Cells were
tracked in three independent experiments each with frzS, wildtype and
pilT, but movement was only observed with frzS and wildtype DZ2.
Scale bar is 5 mm.
doi:10.1371/journal.pone.0023920.g003
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In contrast, isolated pilT cells were completely non-motile in 1%

methylcellulose.

frzS cells are defective in EPS production and cell-cell
agglutination

Since examination of frzS cells showed evidence of functional

type IV pili, we hypothesized that frzS might be defective in EPS

production or secretion. We therefore examined the frzS mutant

for EPS production using Congo red dye, previously shown to

bind to M. xanthus EPS [28]. Cells were harvested from

exponentially growing cultures, mixed with Congo red dye and

centrifuged. Unbound dye was measured at 490 nm, and

polysaccharide content was determined relative to a cellulose

standard curve. Figure 4A shows that frzS cells bind Congo red dye

but only at 25% of wildtype levels. pilA mutants, which have a

more severe defect in EPS production, bound EPS at 10% of

wildtype levels. In contrast, a pilT mutant, defective at pili

retraction, overproduces EPS at a level 127% of wildtype. These

data indicate that frzS is defective in EPS production, but do not

indicate what distinguishes frzS from the other S-motility mutants.

EPS is also required for cell-cell agglutination, which is observed

when M. xanthus cells in suspension bind to each other and settle to

the bottom of a cuvette [29,30]. In wildtype cells, this is observed as

an exponential drop in absorbance at 600 nm (see Fig. 4B).

However, frzS cells were defective in agglutination (see Fig. 4B) and

remained suspended in liquid similar to EPS deficient mutants like

pilA. These results differ from previously published agglutination

data for a frzS insertion mutant (DZ4219) [8]. We therefore retested

Figure 4. EPS analysis and agglutination assay. (A) Congo red dye was added to mid-exponential phase cultures of the given strains, cells were
centrifuged and the resulting supernatants analyzed in a spectrophotometer at 490 nm. Values were normalized to wildtype binding. An increase is
indicative of more Congo red bound by the cells and increased EPS production, such as observed in pilT. pilA and frzS cells show reduced EPS
production. Data is from three independent trials. (B) Cells were also analyzed with agglutination assays performed on wildtype (black ¤), frzS (green
m), pilA (orange &), and pilT (red N), and a 1:1 mixture of wildtype with the mutant (open symbols). In wildtype, absorbance at OD600 at the top of a
cuvette decreases over time as cells agglutinate and settle to the bottom of the cuvette. pilA and frzS inhibit agglutination by wildtype, whereas pilT
was observed to behave similar to wildtype. Data shown is representative of three trials.
doi:10.1371/journal.pone.0023920.g004
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both mutant strains for agglutination, EPS production and social

motility (see Fig. S1). In our hands, both frzS mutant strains were

found to be defective in these assays. Interestingly, when either frzS

or pilA were mixed in a 1:1 ratio with wildtype cells, the co-culture

showed significantly reduced agglutination relative to wildtype (see

Fig. 4B). This surprising result indicates that EPS defective cells

interfere with the ability of wildtype cells to form aggregates

necessary for agglutination. This was not a cell density effect since

wildtype cells by themselves did not show reduced agglutination

when cell densities were reduced by half (data not shown). The pilT

mutant, which overproduces EPS, agglutinates more rapidly than

wildtype and stimulates wildtype agglutination (see Fig. 4B). These

data indicate that frzS cells are not only defective in EPS-dependent

agglutination, but they are also not much better than pilA cells at

agglutination, even when mixed with wildtype.

Purified EPS can restore S-motility to frzS mutant cells
To determine whether exposure to EPS is sufficient for the

restoration of S-motility to frzS swarms, we purified EPS from

wildtype cells and pipetted this preparation as a linear streak

adjacent to spots of wildtype, frzS, or pilA cells on 0.5% agar plates

(Fig. 5). In this assay, wildtype cells increased their swarm

expansion as they contacted the zone containing EPS. Signifi-

cantly, the frzS cells, which were otherwise non-motile, also

showed a burst of swarming but only in the EPS zone. The pilA

mutant did not respond to the EPS nor did frzS cells exposed to a

control buffer (Fig. 5). This indicates that purified EPS is sufficient

to restore S-motility to frzS swarms, and that frzS is not required

for pili retraction during soft agar swarming.

Additionally, we purified EPS from wildtype, pilT, pilA and frzS

cells and tested these EPS preparations for their ability to stimulate

frzS, pilA, and difA mutant swarming (see Table 1). All of these strains

produced some EPS and they all stimulated S-motility in the frzS

mutant. However, none of the EPS preparations were able to

stimulate motility in the pilA or difA mutants. This is consistent with

previous observations that showed pilA and difA mutants have S-

motility defects in both pili function and EPS production [31,32].

Multicellular localization of EPS
To determine whether EPS production has an impact on

cellular organization, we examined wildtype M. xanthus cells

harvested from exponential phase cultures and cells 4 h after

incubation on a plastic surface in submerged culture with

Differential Interference Contrast (DIC) and fluorescence micros-

copy (see Fig. 6A–L). Liquid grown cells were dispersed and

stained poorly with wheat germ agglutinin conjugated to a Texas

red fluorophore (WGA-TR). However, after surface incubation,

wildtype cells were observed as both isolated cells and tightly

packed cell clusters organized around a central bundle that stains

brightly with WGA-TR (see Fig. 6E–H). Most cells were observed

in large clusters of up to 103 cells with a high intensity feature that

localized to the center of the cell clusters rather than to individual

cells. Interestingly, very small clusters of cells (for example, see

panel 5E) showed 4–5 cells radially organized around a small

WGA-TR binding feature (see panel 5F), reminiscent of rosette

structures observed in Caulobacter crescentus [33]. In contrast, the frzS

cells showed fewer clusters after surface incubation, and these

clusters were more disorganized than those of wildtype (see Fig. 6I–

L). WGA-TR staining of frzS clusters showed reduced and

decentralized staining, with the stain more likely to co-localize

with single cells, rather than at distinct multicellular foci.

Construction and analysis of EPS biosynthetic mutants
To compare the observed frzS phenotype to that of mutants in

EPS production, we constructed mutations in several of the genes

Figure 5. Complementation of S-motility with purified EPS. Washed cells of wildtype (A–D), frzS (E–H), and pilA (I–L) were spotted onto 0.5%
agar CYE plates adjacent to a thin line of either an aliquot of EPS purified from wildtype (left two columns) or a buffer control (right two columns).
Images were captured at 0 and 48 h, showing stimulation of motility in wildtype and frzS cells, but not pilA cells. Stimulation of motility can be
observed as downward outgrowth from the colony. Images show representative images from multiple trials.
doi:10.1371/journal.pone.0023920.g005
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predicted to be required for EPS production. We targeted

mxan_7415 (epsZ), and mxan_7422 (epsU), genes that are predicted

to catalyze glycosyl transferase reactions critical for EPS

biosynthesis and mxan_3227 and mxan_3229, genes predicted

to provide the same function in the production of capsular

polysaccharide (CPS) [12,34]. Insertion mutants were constructed

in theses strains as described previously [24]. Analysis of these

strains indicates that epsU (DZ4830) and epsZ (DZ4831) are

defective in EPS production (Fig. 7A), whereas no defect was

detectable in the mxan_3227 and mxan_3229 loci (data not

shown). Congo red dye-binding assays showed that epsZ and epsU

mutants contained polysaccharide less than or equal to that found

in pilA extracts.

The epsZ mutant was defective in S-motility, but showed no

defect in swarm expansion when incubated in a 1:1 co-culture with

wildtype strain DZ2 (Fig. 7B). Since frzS and epsZ mutants could

both be complemented by wildtype cells, we hypothesized that if

they were functioning within the same pathway, then they should

not be able to complement each other. Alternatively, if frzS and

epsZ effect different aspects of S-motility, then they should be able

to complement each other and restore S-motility. We therefore

analyzed S-motility in different combinations of mixed cultures to

determine the effect of co-culturing cells (Fig. 8). For example, a

1:1 frzS-epsZ mixture showed a slight elevation in S-motility

relative to each strain in mono-culture, but motility levels were still

low, at less than 30% of wildtype levels and therefore not

statistically significant (see Fig. 8A). We expanded this analysis to

include mixtures with wildtype DZ2, difA, epsZ, epsU, frzS, pilA and

pilT (see Fig. 8B). All strains were analyzed in mono-culture for

their maximum swarm expansion, ranging from 42% (difA) to 12%

(pilT) of wildtype levels. Next, we examined all 21 possible co-

culture combinations, to determine if it is possible to identify two

S-motility defective mutants that, when combined, show fully

functional S-motility. Our results are summarized as follows: (i)

Mixtures of wildtype with frzS, epsZ and espU showed wildtype

levels of swarming. (ii) All strains mixed with epsZ showed motility

levels equivalent to the most proficient of the two strains. (iii)

Strains with the lowest swarm expansions, pilA and pilT showed a

slight increase in swarm expansion when mixed. (iv) Most other

combinations showed swarm expansions that were intermediate to

the individual mono-culture phenotypes. This analysis indicates

that there are no clear complementation groups among these S-

motility defective strains, but that in certain cases the more

defective S-motility mutant can be partially complemented by the

more motile strain. The EPS+ phenotype alone is not enough for

complementation in this assay (e.g. frzS mixed with pilT), and the

EPS producing strain must also be capable of moving across the

surface. These results indicate that EPS2 cells are not able to bind

and glide away with EPS from donor EPS+ cells.

Discussion

The data presented here suggest a new model for the role of FrzS

and cell density in M. xanthus S-motility. We began with the

Table 1. EPS complementation.

Test strain EPS Source

DZ2 pilT frzS pilA Buffer

frzS ++ ++ ++ + 2

pilA 2 2 2 2 2

difA 2 2 2 2 2

EPS was purified from several strains and stimulation of motility assayed in frzS,
pilA and difA.
doi:10.1371/journal.pone.0023920.t001

Figure 6. Fluorescence microscopy analysis of EPS production. DIC and fluorescence analysis of (A–D) wildtype M. xanthus cells from a liquid
culture. (E–H) Wildtype M. xanthus cells after 4 h incubation with a solid surface in submerged culture, showing the formation of small and large
rosette structures with centralized WGA-TR staining. (I–L) frzS cells after 4 h incubation with a solid surface, showing disorganized clustering and
dispersed low levels of WGA-TR staining. Each data set depicts from left to right: DIC, red channel fluorescence, superimposed overlay, and surface
plot of signal intensity.
doi:10.1371/journal.pone.0023920.g006

FrzS, EPS and Social Motility of M. xanthus
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development of a quantitative S-motility assay that allowed us to

analyze the contribution of different cell densities and S-motility

genes on multicellular swarming. These studies showed that frzS

cells are S-motile when mixed with wildtype cells, despite the

inability of frzS to function in mono-culture. This behavior

phenocopies the EPS mutants, epsZ and epsU. Additionally, isolated

frzS cells are S-motile in 1% methylcellulose. In contrast, mutants

defective in pili function do not show restored motility in co-cultures

with wildtype cells. These results show that, rather than regulating

extention/retraction of the Type IV pili, FrzS functions in the

regulation of EPS biosynthesis and/or secretion. frzS cells are able to

produce low levels of EPS, since we could purify EPS from frzS

cultures and, when concentrated, use this EPS to rescue S-motility

swarming in the same frzS mutant (Table 1). It is possible that FrzS

regulates secretion of EPS, but since EPS secretion, polymerization,

and translocation may be carried out by the same enzyme, all of

these functions may be affected [35]. Since FrzS was previously

shown to form polar clusters that move from pole-to pole when cells

reverse [20], it is possible that FrzS directly interacts with EPS

secretion channels along the cell membrane or at the cell poles,

activating them in response to a signal received, presumably

through the Frz pathway. Another possibility is that FrzS is involved

in sensing cell clusters. Cell clustering is weak and disorganized in a

frzS mutant, and it is not yet clear if this disorganized state causes the

defect in EPS production, or is the result of it.

The data presented here also suggest major revisions in our

understanding of S-motility in M. xanthus. Previously, it was shown

that S-motility has a cell density requirement, which was

interpreted to be a function of cell-cell distance [14]. Thus,

isolated cells showed no S-motility but cells that were making cell-

cell contact or in the immediate vicinity of another cell became S-

motile. It was suggested that the presence of neighboring cells

coated with EPS (within a 5 mm radius) provided an anchor for

pilus binding and retraction and therefore a basis for cell

movement. Our data support a different hypothesis. We suggest

that secreted EPS may be the usual anchor for the Type IV pili,

rather than the presence of neighboring cells per se. Our

conclusions are based on the following: (i) Cells showed full S-

motility in the absence of neighboring cells when immersed in 1%

methylcellulose; and (ii) Cells at high cell density showed maximal

S-motility swarming, while cells at a lower cell density, but still in

intimate contact, showed almost no S-motility. For example, we

examined S-motility at cell densities ranging from 0.25 to 25 cells/

mm2. Confluent cell coverage of the area was observed at all of

these cell densities; indeed the average M. xanthus cell size is 5 mm2,

Figure 7. EPS mutant analysis. (A) Congo red analysis of EPS
extracts from the given strains. (B) Quantitative social motility with
wildtype (black ¤), S-motility defective epsZ (purple m), and a 1:1 co-
culture of the two strains (purple n) showing increased swarming
relative to epsZ alone, with corresponding images shown below.
doi:10.1371/journal.pone.0023920.g007

Figure 8. Pathway analysis. (A) Quantitative S-motility assay
examining wildtype (black ¤), frzS (green m), wildtype+frzS (green n),
epsZ (purple &), wildtype+epsZ (purple % ) and epsZ+frzS (gray #). (B)
Combinatorial quantitative social motility analysis of DZ2, difA, epsZ,
epsU, frzS, pilA, and pilT strains. Mono-culture and co-culture
combinations of these strains are shown, indicating that frzS, epsZ,
and epsU are in the same functional pathway as they are both
complemented by the presence of wildtype, but are not able to
complement each other.
doi:10.1371/journal.pone.0023920.g008
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indicating that cells were tightly packed. At 0.25 cells/mm2, swarm

expansion was extremely low, even though cells were in contact; if

cell distance were the critical factor, then the minimum cell density

necessary for S-motility should have been much lower. The

observation of organized multicellular rosettes ranging from 101–

103 cells, containing a core of intense WGA-TR signal indicative

of EPS, suggests that the cell density requirement in S-motility

may reflect the point at which cells are able to successfully form

these higher order structures. The formation of higher order

structures in M. xanthus is not surprising, given that this organism is

distinctive for its ability to form fruiting bodies containing 106–107

cells [36,37].

The observed extracellular rescue of frzS Social swarming by

either S-motility+ cells or purified EPS, is reminiscent of previous

work demonstrating conditional, or stimulatable motility in M.

xanthus. Previously, it has been shown that some motility mutants

of M. xanthus can be rescued by the presence of motility proficient

cells [38,39]. In the case of stimulatable defects in A-motility, five

mutants cglA-E, form a single gene cluster on the M. xanthus

chromosome. One locus has been shown to have stimulatable S-

motility, the tgl locus. We examined several cgl and tgl strains

during the course of this study and were unable to detect any

evidence of stimulation of motility using the soft agar quantitative

S-motility assay (data not shown). These strains, both cgl and tgl,

were successfully stimulated in a cross streak assay on hard agar

with either wildtype DZ2 or a non-motile mglA mutant as the

donor strain in the cross-streak. In the case of cgl, this is not

surprising, as A-motility does not function efficiently on soft agar.

However, in the case of tgl it is surprising that motility rescue

occurs only under hard agar conditions. Tgl stimulation is thought

to occur through direct cell-cell transfer of protein, it is possible

then that increased production of EPS under Social swarming

conditions inhibits transfer between cells. Direct cell-cell transfer of

lipid and protein is still a new field of study; it will be important for

future studies to account for how regulation of other extracellular

structures (such as EPS or S layers) impact the ability of cells to

communicate with direct transfer mechanisms [40,41].

The exact molecular function of the FrzS protein remains

unresolved, specifically in terms of upstream and downstream

partners. These data also bring up the intriguing possibility that

EPS biosynthesis and secretion may be more complex than

previously thought, and one future question is to determine how

FrzS interacts with either the EPS biosynthesis proteins or other

regulatory pathways in M. xanthus. It is also unclear what the signal

input is for FrzS. Its dynamic change in localization during cellular

reversals implies some connection, either direct or indirect, to the

Frz pathway that regulates cell reversals. The output of the Frz

system likely involves FrzZ, but it is unclear if there is any FrzZ-

FrzS interaction. In addition, the impact of FrzS on the EPS

production of cells indicates that there may be an association

between the FrzS protein and the Dif signaling pathway [32,42].

However, the pleiotropic nature of dif mutants makes it difficult to

say for certain if these pathways are connected. Further

experiments are required to resolve these possibilities.

As a social organism, M. xanthus is susceptible to dynamic

population shifts, such as mutations that give rise to new

cooperative or cheater phenotypes [43,44]. One example of this

occurs in fruiting body formation, where certain sporulation

defective mutants reap the benefits of fruiting body formation

when co-cultured with sporulation proficient strains. When

subjected to cycles of nutrients and starvation, this can lead to a

population crash when the percentage of cheater cells rises above a

critical threshold that prevents community wide sporulation and

both cell lines lose viability [45]. In the case of social swarming,

future experiments will be required to determine if the frzS

phenotype is indicative of ‘‘cheating’’ and if this would lead to

dramatic changes in swarming capacity over time through

differential growth of frzS and the parent strain.

Methods

Strains and growth conditions
The strains we worked with are listed in Table 2. Each strain

was inoculated in a glass side-arm flask with 25 ml liquid CYE

with a loose cotton cap for oxygen exposure. Cultures were grown

with shaking at 32uC for 24–48 hours. When the cell densities

reached approximately 100–150 Klett units (KU) cultures were

harvested, and precise measurements of cell densities (via a Klett-

Summerson photoelectric colorimeter) recorded.

Methylcellulose assay
Methylcellulose-based motility assays were performed as

described previously [27]. 1 ml of cells was added to 6 ml of 1%

methylcellulose and cell movement monitored through time-lapse

microscopy, and images were captured every 60 sec for 20 min.

Cell tracking was performed with NIH ImageJ and graphed with

Microsoft Excel.

Quantitative social motility assay
After inoculation and growth to 100–150 KU, cultures were

centrifuged in a SorvallH RC-5B at 8000 rpm for 10 minutes. Cell

pellets were resuspended in 10 mM MOPS buffer to a final density

of 8000 KU. Eight serial dilutions were prepared in 1:1 steps with

buffer. For each strain, 3 ml of cells at each cell density was

aliquoted onto 0.5% CYE agar plates sequentially. To measure

social motility in co-cultures, resuspensions were mixed 1:1 to a

total cell density of 8000 KU, followed by serial dilution. For both

the mono-culture and co-culture assays, the swarming phenotypes

were examined under a Nikon SMZ1500 stereo microscope at

106 magnification. The initial diameter of each aliquot was

measured using imaging software NIS-Elements BR Version 3.1

and recorded onto a Microsoft Excel Spreadsheet. The plates were

incubated for 24 h at 32uC and the swarm diameter measured

again as an average of vertical, horizontal and diagonal transects.

Table 2. Strains used in this study.

Strain
Genotype or relevant
properties Source/Reference

DK10409 DK1622 DpilT Wu et al (1997) [46]

DZ2 Wild type Campos and Zusman (1975) [47]

DZ4191 DK1253 tgl-1 Hodgkin and Kaiser (1979) [48]

DZ4219 DZ2 frzS::pZOrf6 Ward et al (2000) [24]

DZ4335 DZ2 DfrzS Ward et al (2000) [24]

DZ4469 DZ2 DpilA::tet Vlamakis et al (2004) [49]

DZ4477 DZ1622 cglB::mariner Youderian et al (2003) [50]

DZ4483 DZ2 DfrzF Bustamante et al (2004) [51]

DZ4538 DZ2 frzS(Y102A)-gfp Mignot et al (2005) [20]

DZ4830 DZ2 epsU::pGEM this study

DZ4831 DZ2 epsZ::pGEM this study

TM12 DZ2 DmglA Mauriello et al (2010) [7]

YZ601 DK1622 DdifA Xu et al (2005) [52]

doi:10.1371/journal.pone.0023920.t002
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The total cell movement was given as the change from the final

diameter minus the initial diameter. This assay was repeated a

minimum of three times for each mono- or co-culture.

EPS purification
M. xanthus cultures were inoculated in 25 ml CYE broth and

incubated until they reached cell densities of 150–200 KU. The

cultures were then harvested and the cell pellet resuspended in

25 ml of TNE buffer (100 mM Tris pH 7.5, 100 mM NaCl,

5 mM EDTA). The cell suspensions were sonicated in four 15 s

pulses. Sodium Dodecyl Sulphate (SDS) was added to a final

concentration of 0.1% and the cell extracts agitated for 15 min.

The extracts were centrifuged for 10 min at 8,000 rpm and the

pellets washed twice with 25 ml TNE+SDS. The pellets were then

washed twice with 10 ml of TNE to remove any remaining SDS.

The pellets were resuspended in 1 ml of 10 mM MOPS buffer and

stored at 280uC until used.

EPS complementation assay
Cultures were prepared as before to a final cell density of 500

KU. 0.5% agar CYE plates were prepared and 6 ml aliquots of the

500 KU cell suspension were spotted onto the agar using a

micropipette., A 6 mm line of EPS extract or buffer control was

added 4 mm below this spot using 4 ml of extract. Plates were

incubated at 32uC for 48 h. They were examined under a Nikon

SMZ1500 stereo microscope at 1006magnification. Images were

captured at 0, 24 and 48 h and analyzed as before.

Mutant construction
Insertion mutants in epsZ and epsU were made, as described

previously, using primers to amplify a 600 bp internal region of

the gene of interest, followed by cloning into pGEM vector, and

selecting for integration into the M. xanthus chromosome using

kanamycin resistance on appropriate selective media [24].

Fluorescence microscopy
A Wheat Germ Agglutinin-Texas Red (WGA-TR) conjugate

was used to detect the presence of M. xanthus polysaccharides.

Exponential phase cultures were harvested and washed in fresh

CYE. 100 ml aliquots were added to plastic 96 well plates and

incubated at 32uC for 4 h. Aliquots of liquid phase cells and

surface-exposed cells were mixed with WGA-TR and incubated

with cells for 30 min prior to imaging. Colonies were imaged with

a Nikon SMZ1500 for stereomicroscopy and cells were imaged

with a Nikon Eclipse 80i using differential interference contrast

(DIC) or fluorescence microscopy. Image analysis was performed

with NIS Elements and NIH ImageJ.

Supporting Information

Figure S1 Comparison of frzS mutants. (A) From left to

right, images show swarm expansion on 0.5% agar for strains

wildtype DZ2 , DZ4219 (frzS insertion mutant) and DZ4335 (frzS

deletion mutant). (B) Congo Red assay for EPS production shows a

defect in both frzS backgrounds. (C) Agglutination assay in which

both DZ4219 (dark green) and DZ4335 (light green) show a defect.

(TIF)
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