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ABSTRACT

S pecification of mammary epithelial cell fate occurs
during embryogenesis as cells aggregate to form the
mammary anlage. Within the embryonic mammary

bud, a population of epithelial cells exists that will
subsequently proliferate to form a ductal tree filling the
stromal compartment, and which can produce milk upon
terminal differentiation after birth. Subsequently, these
structures can be remodelled and returned to a basal state
after weaning before regenerating in future pregnancies. The
plasticity of the mammary epithelial cell, and its
responsiveness to hormone receptors, facilitates this amazing
biological feat, but aberrant signalling may also result in
unintended consequences in the form of frequent
malignancies. Reflecting this intimate connection, a
considerable number of signalling pathways have been
implicated in both mammary gland morphogenesis and
carcinogenesis.

Introduction

Like many other organs, mammary glands are formed by an
exchange of signals between epithelia and mesenchyme [1–3].
However, the processes by which undifferentiated tissue is
directed to form the mammary epithelial bud during
embryogenesis have yet to be fully elucidated. It is unknown
precisely how the mammary phenotype is conferred, but it
appears that mesenchymal signals cause local migration of
epidermal cells to form the mammary anlage rather than via
localised proliferation [4–6]. As in the development of all
epithelial appendages, pluripotent epidermal cells are
directed along specific lineages so that a specialised structure,
in this case, the mammary gland, forms [7,8]. The
fundamental processes required for the inductive events of
mammary bud development (epithelial migration, changes in
cell adhesion, growth, death, and differentiation) are also
those that are perturbed in breast cancers [9,10].
Characterizing inductive signalling pathways involved in
mammary specification and patterning and the regulatory
molecules that modulate this process will define potential
targets of breast carcinogenesis. Here, we highlight the
earliest signals mediating mammary specification and
attempt to consolidate the current understanding of how
mesenchymal factors act to bring about the initial stages of
mammary anlage development. The relationship of the
signalling pathways involved with those dysregulated in
cancer will be discussed. Events during the later stages of
mammary morphogenesis have recently been extensively
reviewed [11–14].

Mouse Mammary Anlage Development

Mouse mammary epithelial buds normally form at distinct
positions along the body axis and are easily visualised by
staining for expression of mammary bud markers such as Lef1,
a downstream Wnt signalling component, or by light
microscopic analysis at E12.5. Histological analysis of sagittal
sections reveals the first appearance of the mouse mammary
anlage in late E10/early E11 embryos [6] (Figure 1A). At this
time, distinct elliptical aggregates of epithelial cells are visible
at the future site of mammary buds 3 and 4 as determined by
their positions relative to the somites (Figure 1B). However,
scanning electron microscopy reveals no overt indication of
mammary anlage formation [14] at this stage. By E11.5 (;48
somite stage), anlage 3 protrudes and is observed by scanning
electron microscopy as a slight elevation above the epidermal
surface [15]. This is the first mammary anlagen pair detectable
at the whole embryo level, with anlagen 4 becoming apparent
shortly after anlagen 3. Pseudostratified epithelium is visible
when cross sections through the future site of bud 3 are
analysed at similar stages [6,16]. Since little localised
proliferation occurs in the presumptive mammary region, it is
assumed that epithelial cells locally migrate or aggregate to
form the anlage, as is observed in rabbit embryos where a
raised ridge of epithelial cells is apparent which have
properties of motile cells such as lamellopodia [4–6,17]. After
the elliptical shaped anlage appears, the cells become
organised into a bud (Figure 2A–2E). The other anlagen (1,2,5)
become morphologically distinct slightly later, and by E12 (52
somites) all five pairs of mammary buds are distinct/visible.

Mammary Stem Cells

Within the anlage exists a population of epithelial cells,
stem cells, with a capacity to self-renew and to generate
daughter cells that can differentiate down distinct cell
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lineages such that all cell types of the mature mammary gland
can form. Mammary epithelial buds can be isolated and
transplanted into fat pads, which have been ‘‘cleared’’ of all
epithelial ductal elements [18]. This technique is used
experimentally to examine mammary ductal outgrowth in
mutant mouse models that exhibit embryonic lethality and
which would not otherwise be amenable to mammary gland

phenotype analysis [19,20]. Mammary buds explanted at E12.5
routinely produce a ductal tree with all normal features of the
mammary gland, except for the absence of a nipple. These
experiments support the existence of a defined mammary
stem cell population coincident with the appearance of the
mammary bud at E12.5.
In the adult, a mammary stem cell population has recently

DOI: 10.1371/journal.pgen.0020112.g001

Figure 1. Mammary Anlagen

(A) Mammary anlagen 3 and 4 are visible at E10.75/E11.0 (38–40 somites) in histological sagittal sections of mouse embryos stained with hematoxylin.
FL, forelimb bud; HL, hindlimb bud; MLM, mammary line mesenchyme; NT, neural tube
(B) Higher magnification of mammary region from (A). Anlagen 3 and 4 at higher magnification.
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been purified, but the relationship of this postnatal cell
population with the ‘‘embryonic’’ stem cells has yet to be
established [21,22]. Along with the potential for self-renewal,
mammary epithelial stem cells are thought to harbour
inherent tumourigenic potential as subsequent mammary
development proceeds and continues postnatally. As DNA
damage and mutations may accumulate throughout postnatal
development, those progenitor cells adversely affected by
genetic alterations can persist over the lifespan of an
individual. This effectively creates a population of cells that
harbour potentially deleterious genetic changes, instabilities,
and modifications—the putative breast cancer stem cells
[23,24]. How mammary progenitor cells attain the features
that allow them to consistently confer mammary identity to
their progeny and how the mammary phenotype is
maintained remain to be addressed, but these processes begin
during embryonic mammary morphogenesis.

Mammary Mesenchyme Can Confer Mammary
Epithelial Cell Fate

The exact time point at which the mammary epithelia
attain regenerative capacity has not yet been determined, but
it is likely to coincide with specification of the mammary
anlage. Epithelium isolated from mammary glands at all
subsequent stages retains the ability to generate ductal
outgrowth [25,26]. An ongoing requirement for the
maintenance of mammary cell fate beyond the formation of
the anlage and bud stages is indicated from investigation of
several mouse models that form mammary buds that do not
progress beyond the bud stage [27,28]. In addition, reversion
from the mammary phenotype can occur until E15.5, as
shown in studies of inducible PthrP mouse models [29]. By
E13, the embryonic mammary epithelium has been
determined, and by E17, this becomes committed to the
mammary fate as demonstrated by tissue recombination
studies [30,31]. It should also be noted that, in addition to the
promotion of mammary placode fate, there are likely to be
factors that inhibit mammary placode fate. The fate of
neighbouring cells is likely to be determined by the existence
of an adjacent mammary anlage.
Tissue recombination experiments have demonstrated the

inductive capability of the mammary mesenchyme [1,32,33].
In these experiments, epithelium from various nonmammary
locations (dorsal, ventral) were induced to form mammary
tissue when recombined with presumptive mammary
mesenchyme (from rabbit embryos which form a raised
epidermal ridge, the mammary line, prior to the formation of
the anlage [33]) and mammary mesenchyme (from mouse, rat,
or rabbit embryonic mesenchyme adjacent to the mammary
epithelial bud) [14,32,34]. These results indicate that the
mesenchymal cells along the mammary line have signalling/
inductive properties, as does the mammary mesenchyme

DOI: 10.1371/journal.pgen.0020112.g002

Figure 2. Histological Sections of Mammary Anlage 4 Stained with

Hematoxylin

(A) Late E10/E11 as cells initially aggregate into elliptical shape.
(B) E11.5 epidermal thickening.
(C) E12.0 at hillock stage.
(D) E13.0 at spherical bud stage.
(E) E14.5 at light bulb stage.
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associated with the mammary buds. The secondary mammary
mesenchyme (the future fat pad) does not have this inductive
ability. This suggests that a window exists in which inductive
properties exist within the mammary mesenchyme.
Hyperplastic growth occurs when embryonic mammary
mesenchyme is recombined with postnatal mammary
epithelia [31,35]. This demonstrates the potentially
detrimental influence of embryonic mammary regulators on
postnatal mammary epithelial populations.

Major Signalling Regulators of Mammary Anlage
Formation Also Have Roles in Breast Cancer

Several mesenchymal signals have recently been identified
that regulate the initial stages of mammary gland
development and bring about local migration and changes in
cell adhesion of epithelial cells (Figure 3). For example, Fgf10
signalling through Fgfr2b is required for mammary bud
initiation with the exception of mammary bud 4, which can
form in the absence of ligand or receptor [15]. MMTV-
mediated insertional mutagenesis identified Fgfs as frequent
mutational events in retrovirally induced mouse mammary
tumours; activation of Fgf3, Fgf4, and Fgf8 cooperates with
Wnt signals in mouse mammary mammary tumourigenesis
[36,37]. Moreover, Fgf10 can also act as an oncogene in mice
[38]. Increased levels of FGF10 are observed in ;10% of
human breast cancers [38], and amplification and
overexpression of several FGFRs, including FGFR1, FGFR2,
and FGFR4, have been observed in breast cancers [39–44].
FGFRs have well-characterised roles in angiogenesis and cell
migration [45,46], and FGFR signalling promotes
proliferation of breast cancer cells [47]. In addition to
promoting proliferation, Fgfr1 signalling contributes to loss
of cell polarity and the promotion of invasive properties such
as Mmp3 induction in a three-dimensional in vitro model of
mouse mammary epithelial HC11 cells [48]. In transgenic
mice, sustained FGFR1 activation induces alveolar
hyperplasia and invasive mammary lesions [49]. Moreover,

blocking FGFR signalling with a selective inhibitor of FGFR
tyrosine kinase activity inhibits breast cancer cell
proliferation through downregulation of several members of
the CyclinD family [47]. As high levels of CyclinD1 are
thought to contribute directly to tumourigenicity, inhibiting
FGFR signalling is likely to be a useful therapeutic approach
for some breast cancers.
Tbx3 is a transcriptional repressor that belongs to the

Tbx2/3/4/5 subfamily of T-box transcriptional regulators [50].
TBX3 is mutated in Ulnar Mammary Syndrome, a human
disorder that disrupts apocrine gland and limb development
[51]. The Tbx3 mouse knockout model demonstrates a
requirement for Tbx3 for mammary bud initiation, with the
minor caveat that occasionally one single mammary bud may
form in these mice [52]. Signalling through Fgfr1 has been
implicated in the induction of Tbx3 expression [53]. Another
intriguing role for Tbx3 has been demonstrated using Tbx3
retrovirally delivered to chick embryos [54]. These
experiments suggest that along with dHand and Gli3, Tbx3 can
modulate the position of the limb buds along the anterior–
posterior axis [54]. Although speculative, it is an attractive
idea that a similar mechanism might operate in genesis of the
mammary gland whereby Tbx3 and other factors determine
the future site of the mammary buds along the body axis.
TBX3 is overexpressed in some breast cancer cell lines [55],

and high levels of expression of a truncated form of TBX3 are
found in the plasma of early stage breast cancer patients [56].
Like Tbx3, Tbx2 is initially expressed in the mesenchyme along
the presumptive mammary line, prior to the formation of the
anlage. Tbx3 (but not Tbx2) is expressed in the epithelial
compartment of the nascent anlagen [57]. Along with Tbx2,
Tbx3 can repress senescence genes by inactivating the p53
response pathway [55]. The p19(ARF)-Mdm2-p53 pathway
regulates the cell cycle and protects cells against oncogenic
transformation, and Tbx3 strongly represses expression of
both mouse p19(ARF) and human p14(ARF) [58]. Although
Tbx2-null mice display no defects in the initiation of
mammary development, placode maintenance defects are
more severe in double heterozygotes for Tbx2 and Tbx3 than
in Tbx3 heterozygote mice [57]. This study also showed that
during early mammary bud development the interaction of
Tbx2 and Tbx3 is mediated via a p19Arf/p53-independent
pathway.
Wnt signals are critical for mammary gland induction, and

transgenic mice expressing the Wnt antagonist Dkk1, in
developing epithelia, produce no mammary buds [59]. Lef1 is
required for mammary anlagen 2 and 3 formation [60]. The
other anlagen, (1, 4, and 5) form in Lef1-null mice and then fail
to progress beyond the E13.5 bud stage. Aggregates of Wnt-
expressing epithelial and mesenchymal cells are apparent in
the presumptive mammary region in E10.5 embryos [17,61].
The mammary placodes appear to be formed from
aggregation of epithelial cells expressing at least one Wnt,
including Wnt10b, which appears to connect the forming
anlagen 2, 3, 4, and 5 along the milk line [16,17,62]. It seems
plausible that these Wnt-expressing/Lef1-responsive cells are
targets of the mesenchymal signals generated by Tbx3 and
Fgf10 along the presumptive mammary line or that these
signals induce Wnt expression in these epithelial cells along
the sites where the mammary anlage form. However, the
identity of the Wnt or Wnts involved in mammary inductive

DOI: 10.1371/journal.pgen.0020112.g003

Figure 3. Expression of the Major Regulators of Mammary Anlage

Formation

60-lm vibratome cross sections through the site where anlage 3 will
subsequently form. Fgf10 and Tbx3 expression is observed in the
dermamyotome along the mammary line of E10.5/32 somite stage B6
embryos. These expression patterns are maintained until the anlage
becomes morphologically distinct. Nrg3 is broadly expressed in the
lateral plate mesoderm adjacent to the somite of E10.75 37 somite stage
B6 embryos underlying the future site of anlage 3. Wnt expression
(visualized using the BAT-GAL line of Wnt reporter mice [124]) is
observed in the somite and by the future mammary anlage 3 site of
E10.75 37 somite stage embryo. Both epithelial (arrowheads) and
mesenchymal Wnt expression is observed along the mammary line. The
expression along the presumptive mammary line is boxed.
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events is unknown, as is whetherWnt expression is required in
either the epithelial or the mesenchymal cells or in both [17].

The Wnts that are likely to be involved in mammary
specification and early morphogenesis, such as Wnt3a, Wnt6,
and Wnt10b, are also genetically altered in MMTV-induced
mammary tumours [17,63]. WNT3A, WNT4, WNT6, WNT8B,
WNT9A, and WNT10B all are overexpressed in many breast
cancer cell lines [64]. These WNTs signal through the
canonical WNT/b-catenin signalling pathway. b-catenin and
CyclinD1 overexpression is observed in some breast cancer
cell lines and in a large percentage of breast cancers, but not
in human mammary epithelial cells, which suggests that
canonical WNT/b-catenin signalling is activated during
carcinogenesis [65]. WNT1, WNT4, and the Wnt pathway
components AXIN2 and LEF1 are upregulated in breast
cancers [66]. The Frizzled 1 and 2 receptors (FZD1 and FZD2)
are also overexpressed in breast cancer [67], and high b-
catenin activity is significantly correlated with poor prognosis
in breast cancer patients [65]. Increasing WNT1 signalling in
human breast epithelial cells triggers the DNA damage
response and promotes tumourigenic conversion through a
Notch-dependent process [66]. Although mutations in
upstream WNT signalling components have not been
observed in breast cancers, inactivating mutations of APC are
observed in some human breast tumours, and these likely
increase the stability of b-catenin [68]. Although no such
human mutations have been reported, mouse models that
express stabilised b-catenin (by mutating the N-terminal
domain) in either luminal or myoepithelial mammary cells
form mammary carcinomas [69,70].

WNT antagonists may act as tumour suppressors and cause
constitutive activation of WNT signalling when mutated;
reduced expression of the secreted WNT inhibitors SFRP1
and WIF1 have been observed in breast cancers [71–73]. A
recent study of 24 primary breast cancers showed that 67%
were aberrantly methylated in the WIF1 promoter; this
correlated with decreased expression in tumour samples
when compared with normal tissue [73]. Downregulation of
SFRP1 expression is also observed in a significant proportion
of invasive breast cancers and is frequently due to aberrant
promoter hypermethylation [74,75]. SFRP1 inactivation in
breast cancer is associated with poor prognosis [75,76].

Both the MMTV-Wnt1 and MMTV-Wnt10b mouse models
display precocious development of the lobular-alveoli so that
the ductal termini display phenotypes similar to those usually
observed during pregnancy in nonpregnant female and male
mice [77,78]. These mice develop hyperplasias and
adenocarcinomas at very high frequencies and with short
latency. Transgenic mice with the MMTV-LTR promoter
driving an activated form of b-catenin display a similar
phenotype and support the notion that oncogenic WNT
pathways operate via b-catenin [79]. One possible explanation
for the aggressive tumour phenotypes observed is that the
MMTV-Wnt tumours contain an expanded progenitor/stem
cell population [21,80]. It has been suggested that WNT-
induced progenitor amplification is likely to be key event in
tumour initiation [81]. Novel therapeutic strategies could be
developed by targeting pathways that modulate the
progenitor populations in the mammary gland.

The scaramanga (ska) mutation is a useful model for
elucidating the molecular mechanisms that govern
specification of the mammary phenotype. The ska mutation

impairs some of the earliest aspects of mammary gland
development [82,83]. Bud 3 often fails to form or is
hypoplastic, and ectopic mammary buds form adjacent to
bud 4 at a high frequency. More subtle defects in mammary
anlagen size, shape, and position are also observed so that the
stereotypic position of the five pairs of mammary buds is
rarely observed when mammary bud markers are used to
visualize the embryonic buds. The mammary phenotypes
observed in ska mutants are consistent with abnormal
inductive events occurring prior to the morphological
appearance of the mammary bud.
Positional cloning identified the gene affected in scaramanga

(ska) mutants as Neuregulin3 (Nrg3) [61]. Nrg3 is a poorly
characterised member of an important signalling network and
is expressed in some pre-invasive and invasive breast cancers
[84,85]. Nrg3 encodes a growth factor, which binds and
activates the Erbb4 tyrosine kinase receptor [86]. Erbb4
regulates both cell proliferation and terminal differentiation
in the mammary gland [87–89]. The preferred
heterodimerisation partner for the Erbbs (including Erbb4) is
Erbb2, which has profound links to breast cancer and which
has been therapeutically targeted with positive clinical results
[90]. Erbb4 also modulates cell migration in the developing
nervous system. Nrg3 is expressed in the rat forebrain along
withmany other Egf-related ligands, and neuroblast migration
and placement within the rat forebrain is mediated by Erbb4
[91]. Erbb4 signalling controls Nrg1b1-induced migration in
neural progenitor cells and alsomediates the organization and
proliferation of cells in the subventricular zone, the
neurogenic region of the adult forebrain [92,93]. Another
ligand for Erbb4, Nrg1, can induce migration of breast cancer
and melanoma and cells in vitro [94,95]. It is plausible,
therefore, that control of the migration of mammary
epithelial precursors is modulated by Nrg-Erbb signalling.
Localised Nrg3 expression in the presumptive mammary

region prior to morphological appearance of buds and the
expression of bud epithelial markers suggest an inductive
role. Mammary anlagen appear at sites where Fgf10, Tbx3, and
Wnt expression and Nrg3, Erbb4 co-localize (i.e., along
mammary line) in the lateral plate and overlying mesoderm
(Figure 3). This coincident expression of Tbx3, Fgf10, Nrg3,
and Wnts in the embryonic mesenchyme occurs just prior to
the determination of embryonic ectoderm to mammary
epithelial rather than remaining a simple epithelial fate.
Ectopic mammary placodes can be induced in explant
cultures by placing rNrg3-Egf–soaked beads adjacent to the
dense mesenchyme along the mammary line that is marked by
the expression of Fgf10, Tbx3, and Wnts. These results indicate
that Nrg3 is a specification signal for mammary glands [61].
It appears that the inductive mammary line mesenchyme

(which is the tissue from the presumptive mammary region
that expresses Tbx3, Fgf10, and Nrg3) instructs mammary
gland development when combined with other epithelia
(which express Fgfr2B and Erbb receptors). How signals from
Fgf10 and Tbx3 (and possibly mesenchymal Wnts) are
transmitted from the lateral plate mesoderm to the precursor
epithelial population is unknown, but Nrg3 is an attractive
candidate to mediate this signal (Figure 4). At stages prior to
the morphological appearance of the anlage, Nrg3 is localised
to the mesenchyme adjacent to the future site of the anlage
(35–47 somite stage). At the stage that placode 3 is initially
apparent by scanning electron microscopy (47 somite stage),
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Nrg3 is first expressed at the basal edge of the anlage
epithelia, and later all cells of the mammary epithelial bud
proper express Nrg3. Erbb4 and Erbb4 are expressed in a
similar pattern. Erbb2 expression is also expressed in the
early mammary anlage epithelia and mesenchyme before
becoming restricted to the bud. Fgf10-soaked beads
implanted into explanted mouse embryos had no effect on
Lef1 expression or epidermal morphology [15]. It is therefore
likely that other factors are needed to transmit the signals
generated by Fgf10. When Fgf8-soaked beads were implanted
into explanted mouse embryos, increased expression of both
Tbx3 and Lef1 were observed in the surrounding mesenchyme,
but there were no morphological changes in the epithelium
[53]. At the time the mammary anlagen are initially visible,
Tbx3 expression shifts from the mammary line mesenchyme
to the epithelial component [53]. An increase was observed in
both epithelial and mesenchymal Wnt signalling in Wnt
reporter mice when rNrg3-soaked beads were implanted into
explanted mouse embryos after 24 hours of culture [61]. In
addition, epithelial aggregates are often found adjacent to the
Nrg3-soaked beads, suggesting that ectopic Nrg3 expression
can effect initiation of mammary anlage formation. These
functional studies and the localization of Nrg3 expression
between the sites of Fgf10 and Tbx3 expression in the lateral
plate mesoderm and the overlying Wnt-expressing epithelial
cells support a model whereby Nrg3 transmits signals
downstream of Tbx3 and Fgf10 to the overlying epithelia to

effect their local aggregation [61] (Figure 4). Although useful
as a hypothesis, this model is obviously simplistic, as other
factors are clearly involved. Tbx3 and Fgf10 may affect Wnt
signalling independently of Nrg3. The genetic hierarchies and
precise relationships between Fgf10, Nrg3, Tbx3, and Wnts
have yet to be fully elucidated, as is the role of each in the
epithelial and mesenchymal compartments.
The differential effects of Fgf10, Lef1, and Tbx3 deficiencies

on both mammary anlage and ductal development of specific
anlagen has been demonstrated [15,57,60]. How these and
other genes contribute to the formation of specific anlagen
along the body axis is not fully understood, but it is
increasingly apparent that different genes regulate the initial
formation of distinct anlagen [16]. The site between anlagen 3
and 4 appears to be very sensitive to growth factor levels, as
demonstrated by studies of Nrg3 and Eda-A1 mouse models
[96]. The temporal sequence of the initial expression of
different genes in each mammary epithelia anlage is not
identical, also suggesting that each may contribute to the
initial formation of the anlagen along the body axis in
different ways [15,53,57]. It is also not known how axial cues
are transmitted to the future sites of the mammary anlagen.
The expression of the major regulators of the very early
stages of mammary morphogenesis is dynamic, and in the
case of Tbx3 and Nrg3, switch from the mesenchyme to the
epidermis at the time the anlage is initially apparent. The

DOI: 10.1371/journal.pgen.0020112.g004

Figure 4. Model for Mammary Anlage Formation and Cell Fate Determination

This model is based on functional studies as well as the expression patterns of Fgf10, Nrg3, Tbx3, and Wnts in the presumptive mammary region
between E10 and E11 when initiating processes are likely to occur. Unknown axial cues are generated so that mammary anlagen arise at specific
locations along the anterior–posterior, dorsal–ventral axis. Other factors are involved, and genetic requirements are likely to vary for each of the five
pairs of anlagen. For example, Fgf10 is not required for the initial formation of anlagen 4, so this simplified model applies to anlagen 1, 2, 3, and 5.
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change in expression may reflect a shift to distinct functions
of these genes at later stages of mammary morphogenesis.

Eda and Edar

Mutations in ectodysplasin pathway components result in
ectodermal dysplasias in both humans and mice [97]. In
addition to skin, hair, teeth, and sweat gland abnormalities,
Hypohidrotic ectodermal dysplasia is sometimes associated
with absent nipples [98]. Tabby and downless are mouse models
with mutations in Eda and Edar, respectively. The initial
formation of mammary anlagen appears to proceed normally
in these models, although neither has yet been thoroughly
analysed (Marja Mikkola, personal communication). The K14-
Eda-A1mouse model displays ectopic mammary epithelial bud
development and is likely to provide a molecular link between
the results observed in the various mouse models described
above, which display abnormal mammary induction [96,99]. In
K14-Eda-A1mice, the five endogenous pairs of mammary buds
develop in their stereotypic positions. Extra mammary buds
and nipples also develop along the ‘‘mammary line’’ and
mainly between the sites of buds 3 and 4. Eda is a target of Wnt
signaling and Lef1 binds to a site within the Eda promoter,
increasing the transcription of the gene [100]. Eda-A1, a splice
variant whose product binds Edar, is thought to promote
placodal fate as extra teeth and enlarged hair follicles are also
observed in this mouse model. Signalling through Eda-A1 and
Edar is mediated by NF-jB, which is frequently aberrantly
activated in breast cancers [101].

Other Genetic Pathways

Many other genetic pathways contribute to early mammary
anlage development. The epithelium fails to stratify and no
mammary buds or other epidermal appendages form in p63-
null mice [102,103]. p63 regulates several signalling pathways
required for epidermal development. b-catenin and Fgr2b are
downregulated in p63-null epithelium, which could account
for impeded mammary morphogenesis [104]. A slight
epithelial thickening occurs in mice in which both Msx1 and
Msx2 are inactivated, but no distinct mammary anlage forms.
Inactivation of either Msx1 or Msx2 alone does not affect
anlage formation [105]. Both Msx1 and Msx2 can upregulate
the expression of CyclinD1 [106]. Notch signaling acts on
mammary progenitor cells and promotes self-renewal and
lineage-specific differentiation of myoepithelial fate [107].
Hedgehogs have also been implicated in self-renewal and
maintenance of the mammary progenitor population [108].
Investigations of the roles of Ihh and Shh in mammary anlage
development suggest that they are not required or that
genetic redundancy may obscure the effects of loss of either
[20,109]. Gli3xt mice, a null allele of Gli3 (a transcription
factor that forms a component of the Hh pathway), fail to
form anlagen 3 and 5 [110]. Hh signaling appears to be
blocked in Lef1-null mice as the expression of Ptch1 (which is
both an Hh receptor and a transcriptional target of Hh) is
reduced in the mammary mesenchyme of Lef1-null mice [60].
A recent study of expression of SHH, PTCH1, and GLI1 in 52
breast cancers found that these Hh pathway components are
frequently activated, when compared with adjacent normal
tissue [111].

Nodal signaling regulates many developmental processes
including differentiation, formation of the germ layers, and

specification of the anteroposterior and left–right axes and of
the embryonic midline [112]. Nodal acts through the TGF-b/
activin pathway by binding to Acvr2b, a type II activin
receptor. Cripto acts as an essential cofactor for the Nodal
pathway. Cripto-null mice lack a primitive streak and fail to
form mesoderm [113], a phenotype shared by mice lacking
Acvr1b, Acvr2a, Acvr2b, or Nodal. CRIPTO is overexpressed in
breast, ovarian, gastric, lung, and pancreatic carcinomas
[114]. Both Cripto and Nodal are expressed in undifferentiated
human and mouse ES cells and are thought to promote
maintenance of pluripotency [115,116]. Cripto and Nodal are
both candidate mammary morphogens, although early
embryonic lethal phenotypes have prohibited the
examination of mammary anlage phenotypes [117].
It appears that a developmental window exists when the

mesenchyme expresses the factors that are necessary to
confer mammary epithelial fate on a select group of
undifferentiated epithelia. It is unclear precisely how
signalling pathways converge to elicit the mammary epithelia
developmental program. Elucidation of the genetic hierarchy
and mode of interaction of the various signalling molecules in
the context of mammary specification will allow the
integration of pathways known to be deregulated in human
breast cancers [4,12,33,38,54,56,77,111,118–123].

Conclusion

A better understanding of genetic pathways involved in
early mammary gland morphogenesis is likely to have
profound implications for breast cancer. Further delineation
of the signals that initiate mammary differentiation should
pave the way for the development of new therapeutic and
preventative strategies. As more mammary stem cell markers
are discovered and genetic models for early mammary gland
morphogenesis are analysed, the question of how an
undifferentiated epidermal cell can be selected to become the
building block for one of the most fascinating organs will
become closer to being answered.
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CyclinD1 (12443), dHand (15111), Dkk1 (13380), Eda (13607), Edar
(13608), Erbb2 (13866), Erbb4 (13869), Fgf3 (14174), Fgf4 (14175), Fgf8
(14179), FGF10 (2255), Fgf10 (14165), FGFR1 (2260), Fgfr1 (14182),
Fgfr2b (14183), FGFR2 (2263), FGFR4 (2264), FZD1 (8321), FZD2
(2535), GLI1 (2735), Gli3 (14634), Ihh (16147), LEF1 (51176), Lef1
(16842), Mdm2 (17246), Mmp3 (17392), Msx1 (17701), Msx2 (17702),
NF-jB (4790), Nodal (18119), NRG1 (3084), Nrg1(112400),
Nrg3(18183), p14(ARF) (1029), p19Arf (12578), p53 (22059), p63
(22061), Ptch1 (19206), PTCH1 (5727), PthrP (19227), SFRP1 (6422),
SHH (6469), Shh (20423), TBX3 (6926), Tbx3 (21386), WIF1 (11197),
WNT1 (7471), Wnt1 (22408), WNT3A (89780), Wnt3a (22416), WNT4,
(54361), WNT6 (7475), Wnt6 (22420), WNT8B (7479), WNT9A (7483),
WNT10B (7480), and Wnt10b (22410). “
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