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Abstract

Cell water permeability and cell wall properties are critical to survival of plant cells during
freezing, however the underlying molecular mechanisms remain elusive. Here, we report
that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1),
interacts with histones H3 and H4 and associates with chromatin containing a target gene,
BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-
anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced
BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene,
resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants
with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced
lignin accumulation and increased freezing tolerance. The pal7pal2 double mutant (lignin
content reduced by 30% compared with WT) also showed the freezing tolerant phenotype,
and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts
independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel
molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin
biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance.

Author Summary

Cold acclimation is a well-known adaptive process through which plants can dramatically
increase their tolerance to freezing temperature. Modifications of cell wall have been
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recognized as a key characteristic during plant acclimation to low temperature. However,
the molecular mechanism responsible for such cellular adaptation still remains a mystery.
Here, we report an unexpected regulatory role of TCFI on lignin content during cold accli-
mation in Arabidopsis. TCF1 is specifically induced by cold and is required for chromatin
based gene regulation of cold responsive genes such as BCB (a GAP) that regulates lignin
genes. Further evidence shows that reduction in lignin dramatically increases plant freezing
tolerance, while lignin maintenance required for cold acclimation is regulated by TCF-medi-
ated signaling. Thus, our study has revealed, for the first time, lignin remodeling as a key
function of cold acclimation and freezing tolerance. The findings provide the first direct
molecular evidence that freezing tolerance is directly related to cell wall properties during
cold acclimation and extra/intercellular freezing upon and freezing/thawing process.

Introduction

Freezing temperature is an important environmental factor that determines the natural geo-
graphical distribution of plants and limits crop productivity [1]. Sudden exposure to freezing
temperature causes intracellular freezing, membrane damage and cell death [1-3]. To better
survive freezing low temperature, plants have evolved coping mechanisms through initiating
cold acclimation when the temperature gradually drops lower in autumn in nature. Many sig-
nal transduction cascades are involved in this physiological adaptation process. In Arabidopsis,
expression profiling of cold-treated plants revealed that up to 20% of genes in the genome are
regulated by cold. Characterization of a group of cold-regulated (COR) genes which are highly
induced by cold stress using forward and reverse genetics has led to identification of a key CBF
(C-repeat binding factor, also known as dehydration-responsive element-binding protein 1 or
DREBI) signaling pathway. CBF transcription factors (CBF1, CBF2, CBF3) can activate
expression of the COR genes by binding to cis-elements in their promoters and induce cold
acclimation and freezing tolerance [4-6]. Several regulators of CBF genes have been identified,
such as Inducer of CBF expression 1 (ICE1), calmodulin binding transcription activator 3
(CAMTA3), MYB15 and Ethylene Insensitive 3 (EIN3) [7-10]. Most recently, it has been
shown that OPEN STOMATA 1 (OST1), a central component in ABA signaling pathway,
plays a crucial role in plant response to cold. OST1 is induced by cold and cold-activated OST1
can interact and phosphorylate ICE1 to enhance the stability of ICEL, resulting in increased
plant tolerance to freezing [11]. However, multiple studies have reported that the CBF signaling
pathway is not the sole mechanism modulating plant cold acclimation and cold tolerance,
because only 12% of the cold responsive genes are regulated by CBF transcription factors [12].
The prominent example is HOS15, which regulates freezing tolerance through modification

of histone acetylation [13,14]. In addition, SFR2 was found to modulate freezing tolerance
through lipid remodeling of the outer chloroplast membrane [15]. Most recently, it was found
that AtHAP5A modulates freezing stress resistance in Arabidopsis independent of the CBF
pathway [16]. Through these signaling pathways, a wide variety of antifreeze/stress-related
proteins and compounds are accumulated to minimize intracellular ice formation, to increase
tolerance to dehydration caused by water outflow, and to maintain cell membrane stability and
integrity that is considered central to the ability of plants to survive freezing [2,15,17-19].

The plant cell wall is the extracellular matrix consisting of cellulose, hemicellulose and
lignin. It plays essential roles in plant growth and adaptive responses to adverse environmental
conditions [20-22]. The cell wall integrity (CWI) and structures are dynamically regulated
during plant development and are capable of being remodeled in response to various
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environmental stresses [23-26]. Fine-tuning regulation of the proportions and the amounts of
each matrix component within the cell wall determines its nature and functions. Remarkably,
deposition of lignin, phenylpropanoid polymer, which is highly hydrophobic in the cell wall,
determines cell wall stiffness and permeability to water [27-29]. In yeast, the CWI signaling
pathway plays a vital role in adjusting the cell wall thickness and composition to environmental
cues, in particular freezing temperature and osmotic stress [30,31]. In plants, similar processes
are employed for controlling cell wall integrity and performance during development, drought
and defense [32], but the precise mechanisms remain unclear.

Previous studies have shown that the expression of genes related to cell wall biosynthesis
and remodeling is dramatically altered under cold treatment [33]. Using cryo-scanning elec-
tron microscopy (cryo-SEM), several studies have revealed that both cell membrane and cell
wall properties play equally important roles in cold acclimation and freezing tolerance [18].
Most strikingly, cell wall thickness and rigidity have been linked to dynamic water heterogene-
ities during cold acclimation and extra-/inter- or intracellular freezing upon freezing/thawing
process. Variations in cell wall rigidity and composition in different types of plant tissues and
cells (e.g. xylem, phloem, living fibers and mesophyll cells) showed altered intracellular freez-
ing, tension-induced cavitation and cell viability during freezing/thawing [34-36]. Thus, resis-
tance to freezing temperatures is dependent on the capacity for water outflow from the cells
during cold acclimation and freezing and water reabsorption during thawing, on the capacity
to accommodate growth of ice crystals in extra-/intercellular spaces, and on the ability of cell
wall elasticity to respond to cellular shrinkage.

Investigation of the roles of the cell wall in cold acclimation and freezing/thawing has been
limited to correlation of cellular changes in various plant species or different types of tissues
and cells using cryo-SEM; mechanistic analysis of the regulatory genes and signaling cascades
underlying cell wall mediated water movement and freezing tolerance is lacking. Lignin is a
major component of the plant secondary cell wall, and the amounts of lignin are altered after
cold treatment in various species [37,38]. In the past decades, some genes that regulate lignin
biosynthesis have been identified [39-43]. Among them, Phenylalanine ammonia-lyase 1-4
(PAL; EC 4.3.1.5) encoding the enzymes that catalyze the first step in the phenylpropanoid
pathway regulate biosynthesis of lignin and secondary metablites (e.g. flavonoids and salicylic
acid) in Arabidopsis thaliana [39,44-48]. Arabidopsis thaliana blue copper binding gene (BCB)
is another positive regulator of lignin synthesis, and AtBCB overexpression substantially
increases lignin content in Arabidopsis roots [49]. It has been shown that PAL1-PAL4 and
BCB genes are responsive to a variety of environmental stimuli, including pathogen infection,
wounding, nutrient depletion, UV irradiation, and extreme temperature, etc. [49,50], suggest-
ing their roles in plant stress resistance. However, it remains unknown how these genes medi-
ate plant responses to biotic and abiotic stresses.

Here we report that Tolerant to Chilling and Freezing 1 (TCFI), a gene encoding a RCC1
family protein, is required for chromatin based gene regulation of cold responsive genes in a
CBF-independent pathway. Importantly, we reveal that lignin content in leaves is directly
related to freezing tolerance, and that TCF1 plays a critical role in the adjustment of lignin
accumulation through modulation of expression of BCB and downstream effectors PAL1/3/4
genes during cold acclimation and freezing tolerance in Arabidopsis.

Results
Identification and Characterization of the TCF1 Gene

To identify the genetic loci that regulate specifically plant cold acclimation and freezing toler-
ance through chromatin condensation and remodeling, we examined cold responses of the
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genes encoding Regulator of Chromatin Condensation 1 (RCC1) family proteins from AtGen-
Express Data [51]. The gene At3¢55580 which is specifically responsive to cold was identified
(S1A Fig), and designated Tolerant to Chilling and Freezingl (TCFI) based on the phenotypes
of its mutant. RT-PCR analysis and GUS assay of TCFIpro:GUS lines validated induction of
TCF1 expression in response to cold but not to osmotic stress or ABA (Fig 1A-1D).

The TCF1 gene encodes a protein containing six predicted tandem RCCI repeats that shows
similarity to RCCI1 in yeast and human [52,53] (S1B and S1C Fig). To determine whether
TCF1 is localized in the nucleus like RCC1 [54,55], we made translational fusions with GFP
and expressed them in tcfI-1 plants using the native promoters. Examination of independent
transgenic lines revealed that GFP-TCFI fluorescence was present in the nucleus (Fig 1E), and
the level of the fusion protein GFP-TCF1 was also induced by cold (Fig 1E).

TCF1 Interacts with Histones and Has Negligible GEF Activity in Vitro

RCCl1 is a guanine nucleotide exchange factor (GEF) for the small GTP-binding protein Ran.
RCC1 is constitutively localized in the nucleus, binds to chromatin, and generates a Ran-GTP/
Ran-GDP gradient across the nuclear envelope that is required both to drive nucleo-
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Fig 1. Analysis of TCF1 expression and nuclear localization of the TCF1 protein. (A) Three-week-old
Col-0 (WT) plants were subjected to low temperature (4°C) and the samples were harvested at the indicated
time points for semi-quantitative RT-PCR analysis of TCF1 transcripts. ACT2 (At3g18780) was used as a
loading control. (B) GUS staining of transgenic plants expressing TCF1pro::GUS under normal temperature
or treated at 4°C for 7 days. (C) Semi-quantitative RT-PCR for TCF1 in different tissues with or without cold
treatments for 7 days. R, root; Sh, shoot; L, leaves; F, flowers; Si, siliques. (D) Semi-quantitative RT-PCR
analysis for TCF1 of three-week-old Col-0 plants treated with 100 uM ABA, 400 mM mannitol, 20% PEG6000,
300 mM NaCl for 3 h and 4°C Cold treatment for 24 h. (E) Localization of fluorescence in tcf1-1 plants
expressing a TCF1pro::GFP-TCF1 fusion at 22°C (Upper) and 4°C for 7 days (Bottom). GFP: GFP-TCF1
fusion protein (tcf1-1TCF1-3), DAPI: DAPI staining, Merge: Merger of GFP and DAPI channels (Scale bars,
20 um).

doi:10.1371/journal.pgen.1005471.g001
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cytoplasmic transport and to regulate processes associated with progression of the cell cycle
and mitosis [54,55]. We then ask whether TCF1 has the similar roles of RCC1. To address
whether TCF1 interacts physically with chromatin, an in vitro assay was performed. The fusion
protein GST-TCF1 expressed in E. coli bound strongly to a histone agarose column (Fig 2A).
To further investigate which histone TCF1 interacts preferentially with, in vitro translated
Myc-tagged TCF1 was pre-incubated with each kind of purified core histone in 20-fold

excess followed by incubation with histone-agarose. As shown in Fig 2B, H3 and H4 were the
histones that can compete effectively to diminish the binding of Myc-TCF1 to histone-agarose,
suggesting high affinity binding between TCF1 and histones H3 and H4. Further yeast-two-
hybrid results confirmed that TCF1 can indeed interact with the specific histone H4 (HFO2,
at5g59690), but not other tested histone H3 and H4s (HTR9, At5g10400; HFO4, At1g07820)
(Fig 2C). To exam whether TCF1 has GEF activity, an in vitro assay was performed. The results
showed that TCF1 exhibited less than 1% of the GEF activity with human Ran as substrate of
that measured for RCC1 (Fig 2D). Also expression of TCF1 did not complement the phenotype
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Fig 2. GEF activity assay of TCF1 and analysis of TCF1-histone interactions. (A) Binding of E. coli-
expressed GST-TCF1 to a calf thymus histone-agarose column. Western blots with anti-GST antibody
showing GST-TCF1 (77 kDa) or control GST (26 kDa). Lane 1, protein applied to the columns; lane 2,
unbound material that flowed through; lane 3, protein bound after a 5 min incubation, eluted with 0.3 M NaCl.
(B) 0.3 pg of in vitro translated Myc-TCF1 was incubated with 20 g of the appropriate histone (20-fold
excess) for 30 min at room temperature. The samples were then incubated with histone-agarose overnight at
4°C. Myc-TCF1 binding to histone-agarose was analyzed by Western blot. The different histones used as
competitors are indicated at the top of each lane. ‘All’ indicates the mixture of histones and ‘None’ indicates
the control without competitors. (C) Yeast co-transformant strains carrying both TCF1 and vector control
(TCF1/BD), histone H3/H4 and vector control (HFO2/AD, HFO4/AD and HTR9/AD), TCF1 and H3/H4 (TCF1/
HFO2,TCF1/HFO4 and TCF1/HTR9), negative control (BD/AD) and positive control (BD-53/AD-T) were
streaked onto selective media. Activation of the lacZ reporter gene is indicated by the formation of blue or
blue-green colonies on plates containing X-Gal (left), the growth state of yeast co-transformant strains in YPD
medium is shown on the right (right). (D) Ran-GEF activity of E. coli-expressed GST-RCC1 and GST-TCF1 is
shown as the percentage of [°H]GDP remaining at the end of the GEF assay.

doi:10.1371/journal.pgen.1005471.g002
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of the yeast prp20 mutant lacking yeast RCC1 (S2 Fig). The results indicate that TCF1 is not
the ortholog of RCC1 in Arabidopsis, but it does associate with chromatin via its interaction
with histones.

TCF1 Mutant Plants Are Tolerant to Freezing

To verify the function of TCF1 in cold and/or freezing response, tcfI-1 and tcfI-2 were analyzed
(Fig 3A and 3B). tcf1-1 with T-DNA insertion at the first exon of TCFI showed no TCF1I tran-
script in response to cold treatment (Fig 3B), but tcfI-2 having a T-DNA insertion in the 3’-
UTR region of TCF1I (Fig 3A) exhibited similar TCF1I expression to that of the wild-type under
cold treatment (Fig 3B). Thus, the phenotypic analysis of tcfI-1 was shown thereafter. All of
the F1 plants from fcf1-Ixwild-type cross were resistant on MS medium containing 5 mg/L bia-
laphos. The F2 progeny of the selfed F1 plants segregated in a 3: 1 ratio (From 3130 plants,
2322 conferring resistant to bialaphos compared with 808 plants showing sensitive phenotype,
x> = 1.11 < 3.841; X” test with one degree of freedom). Analysis of the bialaphos resistance
revealed the presence of a single functional T-DNA that is inserted in the genome of the tcfI-1
mutant. The results indicated that the tcfI-1 mutation is recessive in a single nuclear gene.

To evaluate the effect of the fcfI-1 mutation on freezing tolerance, we performed the whole-
plant freezing test. Without cold acclimation, tcfI-1 shows a slightly higher survival rate than
wild-type, but there was no significant difference between wild-type and tcfI-1 (S3A Fig).
When the plants were acclimated at 4°C for 7 days, 45.2% of the tcfI-1 plants survived freezing
temperature as low as -10°C, but only 17.4% of the wild-type plants survived the treatment
(Fig 3C and 3D). The electrolyte leakage assay confirmed the freezing tolerance of tcfI-1 plants
under cold acclimation (Fig 3E). To verify the role of TCFI in cold acclimation, we generated
TCF1 RNA interference (TCF1-RNA;i) lines and two TCF1-RNAi lines (TCF1-RNAi-2 and
TCFI1-RNAi-6) with reduced expression of TCFI were used in freezing response assay (S3B
Fig). Without cold acclimation, both TCF1-RNAi lines showed a similar survival rate to the
wild-type (S3C Fig). When the plants were acclimated at 4°C for 7 days, these TCF1-RNAi lines
also displayed significantly higher survival rates than the wild-type plants at -10°C (S3D and
S3E Fig). The percentages of electrolyte leakage of TCF1-RNAi lines were also decreased under
cold acclimation (S3F Fig), suggesting a role of TCFI during cold acclimation and freezing tol-
erance in Arabidopsis.

To further determine that freezing tolerance of tcf1-1 was due to loss of function in TCF1I,
we expressed the GFP-CDS of TCF1 under the control of its native promoter in the fcfI-1 back-
ground (Fig 1E). Three independent transgenic lines (tcfI-1TCF1-3, tcfl-1TCFI-12 and tcfI-
ITCFI-13) with increased levels of TCFI showed a cold-sensitive phenotype compared with
tcfl-1 mutant and had a similar response to the wild-type under freezing treatment with cold
acclimation (Figs 3F and S4), thereby confirming that expression of TCFI1 complemented the
freezing tolerance phenotype of the mutant.

TCF1 Regulates Freezing Tolerance through a CBF Independent
Pathway

Because TCF1 associates with chromatin, we questioned whether TCF1 regulates freezing
tolerance by modulating expression of CBFI-3 and the targeted genes. However, the expression
levels and patterns of CBFI-3 under cold treatment in tcfI-1 did not show any significant
difference from that in the wild-type (Fig 4A-4C and S5A). No significant changes in
transcript levels of TCF1I in cbf2 (S5B Fig) were detected under cold (Fig 4D). In addition, the
expression of the CBF regulon genes such as CORI5A and COR47 was also not changed in fcfI-
I under cold (Fig 4E and 4F). Notably, TCFI was not in the list of the CBF1, CBF2 and CBF3
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Fig 3. tcf1-1 plants are tolerant to freezing treatment. (A) Schematic presentation of the TCF1 gene structure and T-DNA insertions in the TCF1 gene
(arrowheads). The closed rectangles represent exons and lines between the exons denote introns. (B) tcf1-1 is a null mutation of TCF1. The levels of TCF1
transcripts were determined by RT-PCR using 3-week-old tcf1-1 seedlings subjected to low temperature (4°C) for the indicated time periods (h); the ACT2
gene was used as loading control. (C) Tolerance of 3-week-old tcf1-1 and wild-type (WT) plants at the indicated temperatures below freezing under long-day
photoperiod with cold acclimation for 7 days. The pictures were taken 7 days after treatments. (D) Quantification of survival rate of the treated plants in (C), (*,
P < 0.05, t-test). (E) Leakage of electrolytes in tcf1-1 and WT plants treated at indicated temperatures below freezing. WT (cold) and tcf1-7 (cold): 3-week-old
plants were cold-acclimated (4°C for 7 day), WT and tcf1-1: both plants were grown under normal conditions. Error bars are standard deviation (n = 8), (¥,

P < 0.05, t-test). (F) Tolerance of freezing treatments (-8°C for 2 h) of control and transgenic plants, which were cold-acclimated at 4°C for 7 days before the
treatment. The plants included WT, tcf7-1, representative homozygous lines of tcf1-1 transformed with an empty vector pEZR(K)LC (tcf1-1Vector-2 (#2-3))
or TCF1 gene (tcf1-1TCF1-3 (#3-8), tcf1-1TCF1-12 (#12—4) and tcf1-1TCF1-13 (#13-2)).

doi:10.1371/journal.pgen.1005471.9003

coregulated genes in the previous study [12]. These results indicate that TCFI may influence
cold/freezing tolerance through a mechanism different from the CBF-COR cascade.

Because TCFI reached the highest level of expression and loss of function in TCFI enhanced
freezing tolerance with a 7-day cold acclimation, the expression profiles of tcfI-1 and the wild-
type grown under normal condition with a 7-day cold acclimation and without cold acclima-
tion were compared by the GeneChip Array. Under normal conditions, only 20 genes up-
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Fig 4. Gene expression analyses of the CBFs and the CBF regulon in the tcf1-1 and wild-type plants. (A) to (C) The levels of CBF1, CBF2 and CBF3
transcripts, respectively, in tcf1-1 and wild-type plants. The plants were treated with cold (4°C) at the indicated time points. (D) The level of TCF1 transcripts
in the loss-of-function cbf2 mutant plants grown under normal conditions or given a 4°C treatment for 7 day. Transcript levels of the ACT2 gene were used as
a loading control. (E) to (G) Transcript levels of COR47 (E), COR15A (F) and RD29A (G) in tcf1-1 and wild-type plants. The plants were treated with cold (4°C)
for the indicated times. (H) Western blot analysis with anti-acetylated H4 antibody (Top) revealed that tcf1-1 and WT plants have similar levels of acetylated
H4. Histone H4 antibody for core histone H4 was used as the immunoblot control (Bottom).

doi:10.1371/journal.pgen.1005471.9004

regulated or down-regulated (> 1.5 fold) in tcfI-1 were identified and they are annotated to
encode proteins with diverse cellular functions (S1 Table). Five genes that should be repressed
during cold exposure were activated in tcfI-1, and 12 down-regulated genes are involved in
diverse stress response processes. After cold acclimation, expression of 36 genes was varied (13
genes up-regulated and 23 down-regulated) in fcfI-1 (S2 Table). Among them, nineteen genes
were cold responsive and are involved in different cell functions, but none of them appears to
involve the CBF regulon. The highest and lowest two expression genes in microarray data
under cold acclimation were validated by qRT-PCR (S6 Fig). The data supports that TCF1I
functions in a novel pathway independent of the CBF-COR cascade.
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TCF1 Does Not Affect Histone H4 Acetylation

HOS15 has been reported to function in a CBF-independent pathway to regulate cold acclima-
tion and freezing tolerance [14]. HOS15 interacts with H4 and represses RD29A expression by
facilitating H4 deacetylation through association with the RD29A promoter. To determine
whether TCFI functions in the same way as HOS15, RD29A expression was analyzed in tcfI-1
plants under cold treatments. However, there were no changes in RD29A transcript levels
detected in fcf1-1 plants under stress treatment (Fig 4G). Importantly, in contrast to hos15 the
level of nuclear tetra-acetylated histone H4 in fcfI-1 was similar to that in wild-type plants (Fig
4H). Together with the results of expression of RD29A, which is elevated in hos15 plants in
response to cold treatment [14] but not in tcfI-1 (Fig 4G), we conclude that TCFI functions dif-
terently from HOSI5.

TCF1 Is Associated with Chromatin Containing the BCB Gene

To investigate whether TCF1 represses or activates the expression of target genes through
direct interaction with chromatin, we performed chromatin immunoprecipitation (ChIP)
assay using TCF1 complementational line (¢tcfI-1TCFI-3) that were cold-treated for 7 days.
Seven genes (At1g23150, At1g69120, At1g75040, At5¢50720, At5¢10760, At5g20230 and
At2¢22500), which were responsive to cold in tcfI-1 in the microarray dataset were selected
and three pairs of primers covering the entire genomic sequences of the candidate genes
were designed. Using ChIP assay with an anti-GFP antibody, we found that among the tested
genes, TCF1 was only associated with a chromatin fragment containing the coding region
(BCBcl1, CDS sequence +87 to +347) of the (BLUE-COPPER-BINDING PROTEIN) BCB gene
(At5¢20230), which is cold inducible (Fig 5A), whereas ACT2 whose expression level is not
changed in the mutant was not immunoprecipitated (Fig 5B). The results suggest that the asso-
ciation of TCF1 with chromatin at the BCB locus mediates cold-induced and TCF1-regulated
expression of BCB gene.

Histone Methylation May Be Involved in Cold Regulation of Transcription

To get a better understanding of the relationships between histone modifications and BCB
gene expression, we analyzed histone modifications across the BCB locus in non-stressed and
stressed wild-type, tcfI-1 and TCF1 complementational lines (Figs 5C and S7A). As histone
H3K4me2 has been demonstrated to play widespread roles in activation of gene expression, we
first analyzed the H3K4me?2 status of the BCB gene. In the wild-type and TCFI complementa-
tion lines, BCB was induced by cold treatment. Accordingly, the level of H3K4me?2 increased in
the transcribed region of BCB (BCBcl fragment) after cold treatment (Figs 5C and S7A).
Under normal condition, tcfI-1 had comparable level of H3K4me2 to that of the wild-type.
When exposed to cold for 7 days, tcf1-1 also exhibited an increase in H3K4me2, but the level of
H3K4me2 at the BCB locus was lower than that of the wild-type and TCF1 complementation
lines (Figs 5C and S7A).

Trimethylation of histone H3 at lysine 27 (H3K27me3) is a histone mark associated with
gene silencing. We then analyzed the status of H3K27me3 at the BCB locus (BCBcI fragment)
in non-stressed and stressed wild-type, tcfI-1 and tcf1-1TCFI seedlings. In the non-stressed
wild-type and tcf1-1TCF1 lines, the level of H3K27me3 was relatively high. However, the
level of H3K27me3 was significantly decreased when the seedlings were treated at low tempera-
ture for 7 days (Figs 5C and S7A). In sharp contrast, loss of TCF1I function caused an opposite
trend in H3K27me3. Under normal condition, the tcfI-1 mutant displayed a similar level of
H3K27me3 compared with that of the wild-type and TCFI complementational lines (Figs 5C
and S7A). As expected, the level of H3K27me3 at the BCBcI region of BCB was higher in
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Fig 5. Chromatin immunoprecipitation assay of chromatin loci associated with TCF1. (A) The levels of
BCB transcripts in tcf1-1 (Grey) and wild-type (Black) plants. The plants were treated with cold at 4°C for 7 days.
Data represent means of three replicates + SD. Different Letters (P < 0.05; One Way ANOVA) show significant
difference from WT. (B) ChIP assay for the association of TCF1 with BCB loci compared to the control ACT2.
Lane 1, DNA immunoprecipitated by using anti-GFP antibody; lane 2, no antibody control; lane 3, input DNA
before immunoprecipitation; lane 4, PCR without added DNA. TCF1pro::GFP-TCF1 (Complemental line tcf1-
1TCF1-3-8, Left) and TCF1pro::GFP (tcf1-1Vector-2-3, Right) transgenic plants treated at 4°C for 4 day were
used in the experiments. Below: schematic presentation of the gene structures and the positions of the PCR
fragments amplified from the ChlIP products. Three fragments covering the genomic sequences of BCB
(BCBp1, -664bp-301bp; BCBc2, 87bp-347bp; and BCBc3, 552bp-680bp) were used in the ChIP assay. The
experiments were repeated three times; each gave similar data and results from one experiment are shown. (C)
Levels of H3K4me2 and H3K27me3 by ChIP-qPCR analysis with WT, tcf1-1 and two TCF1 complementary
transgenic lines (tcf1-1TCF1-3 and tcf1-1TCF1-12) plants normalized to ACT2 or AGAMOUS in BCBc1
fragment with and without a 7-day cold treatment; data represent means of three biological replicates + SD.
Means with the same letter are not significantly different at P < 0.05 by One Way ANOVA analysis.

doi:10.1371/journal.pgen.1005471.g005

mutant compared with wild-type when exposed to low temperature for 7 days. We also tested
H3K36me3 and H3K9me2 (for gene repression), H3K14ac and H3K9ac (for gene activation)
and AcH4 (global histone H4 tetra-acetylation at K5/K8/K12/K16, which is also associated
with gene activation) levels in the BCBcI fragment and found there were no significant differ-
ences between WT and tcfl-1 plants (S7B-S7E Fig). The results indicate that TCF1 may regu-
late freezing tolerance of plants through modulation of histone modification and subsequent
expression of target genes.

Knock-down of the BCB Gene Results in Reduced Lignin Accumulation
and Increased Cold Tolerance

To test whether BCB is a functional target of TCF1 in plant response to cold, we used artificial
microRNA (amiRNA) method to generate the BCB knock-down transgenic plants. Two trans-
genic lines with similar reduction in BCB expression to tcfI-1 mutant (named amiR-BCB4-9
and amiR-BCB9-2) (S8 Fig) were used for phenotypic analysis. Three week-old seedlings of the
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BCB knock-down lines and the wild type control with cold acclimation were treated at -8°C
and -10°C for 2 h and were then grown under normal conditions for 7 days. The results showed
that the survival rates of the amiR-BCB transgenic lines were markedly increased compared
with that of the wild type (Figs 6A and 6B and S9A and S9B). The electrolyte leakage assay
revealed that knock-down of BCB significantly reduced the electrolyte leakage from the treated
plant cells (Fig 6C), confirming that BCB gene plays an important role in freezing tolerance of
Arabidopsis plants during cold acclimation. However, we noticed that the average survival rate
for the amRNAi-BCB lines (about 35%) is significantly lower than the tcfI1-1 (45.5%) under
-10°C treatment (Figs 3D and 6B), indicating that in addition to BCB, alteration of other genes
may also contribute to the freezing tolerance of tcfI-1.

The immediate question is how BCB regulates plant freezing tolerance. Since a previous
study has shown that overexpression of BCB results in increased lignin accumulation in Arabi-
dopsis [49], we attempted to test whether BCB regulates plant freezing tolerance through modi-
fication of lignin content of plants. To this end, we analyzed the lignin levels of 3-week-old
seedlings of the amiRBCB transgenic lines and the wild-type that were treated at 4°C for 7 days.
As shown in Fig 6D, the lignin content of the wild type seedlings was not affected by cold treat-
ment, by contrast, the lignin levels of the amiRBCB transgenic lines was significantly reduced
compared with WT under cold treatment (Fig 6D). The results suggest that BCB is responsible
for maintaining steady lignin content in Arabidopsis plants under cold stress conditions.
Taken together, these results indicate that TCF1 may modulate freezing tolerance through a
BCB-dependent mechanism that positively regulates lignin biosynthesis.

TCF1 and BCB Modulate PALs Genes Expression to Affect Lignin
Accumulation under Cold Acclimation

To investigated whether the genes responsible for lignin biosynthesis showed any differential
expression in fcf1 in response to cold treatment. The transcript levels of PAL genes, which
encode isoforms of a key enzyme Phe ammonia lyase involved in lignin biosynthesis were ana-
lyzed. In wild-type seedlings, the transcript levels of PALI and PAL3 remained not changed
after cold treatment, but the PAL2 and PAL4 gene was induced by cold treatment (Fig 7A and
7B). In the tcfI-1 mutant, expression of PALI1-4 was similar to that of wild type under normal
condition, but PALI, PAL3 and PAL4 exhibited significantly decreased transcript accumulation
after cold treatment. PAL2 showed a similar level of transcript in the non-stressed and stressed
tcf1-1 mutant to that of the wild-type (Fig 7A and 7B).

We also checked the PALs expression in amiRNA-BCB transgenic lines, we found that PAL2
showed a similar level of transcript in the non-stressed and stressed amiRNB-BCB mutant to
that of the wild-type, but PALI, PAL3 and PAL4 exhibited significantly decreased transcript
accumulation after cold treatment in the amiRNB-BCB mutant (Fig 7C and 7D).These results
suggest that TCF1 and BCB positively regulates lignin content in rosettes under low tempera-
ture and that this may be due to regulation of genes involved in lignin biosynthesis.

Reduced Lignin Content in tcf1-1 Results in Freezing Tolerance
Phenotype

To test whether TCF1 regulates plant freezing tolerance through modulating lignin biosynthe-
sis, we measured the lignin contents in tcfI and wild-type plants with cold treatments. As
expected, at the end of a 7-day cold treatment, the tcfI rosettes accumulated a significantly
lower level of lignin compared with the wild-type (Fig 8A), suggesting a role of TCF1 in lignin
biosynthesis.
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Fig 6. amiRNA-BCB plants are tolerant to freezing treatment. (A) Freezing treatment of 3-week-old
amiRNA-BCB transgenic plants (#4—-9 and #9-2) and wild-type (WT) plants at the indicated temperature
below freezing under long-day photoperiod with cold acclimation. The pictures were taken 7 days after
treatments. (B) Quantification of survival of the plants in (A). Error bars are standard deviation (n = 80—100),
(*, P <0.05, t-test). (C) Leakage of electrolytes in amiRNA-BCB transgenic plants and WT plants treated at
indicated temperature below freezing. Error bars are standard deviation (n = 8). (¥, P < 0.05, t-test). (D)
Quantitative determination of lignin content from whole rosettes of three-week-old WT and amiRNA-BCB
transgenic plants grown in soil with (Grey) or without (Black) cold treatment (4°C for 7 days). Twelve
independent experiments were performed and the data are expressed as mean + S.E. Means with the same
letter are not significantly different at P < 0.05 by One Way ANOVA analysis.

doi:10.1371/journal.pgen.1005471.g006
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Fig 7. Expression analysis of PAL genes in tcf1 and amiRNA-BCB mutants. (A) to (D) Quantitative RT-PCR analysis of the expression of PALs in three-
week-old WT, tcf1-1 and amiRNA-BCB plants grown in soil with or without cold treatment (4°C for 7 days). Three independent experiments were performed
and the data are expressed as mean +.SE. (*, t-test, P < 0.05).

doi:10.1371/journal.pgen.1005471.g007

As the loss of function in TCFI causes reduced lignin content and increased freezing toler-
ance, we proposed that under freezing temperature, reduced lignin may protect plant cells
from freezing stress. To test this possibility, we analyzed the freezing tolerance of the pallpal2
(pall-2/pal2-2) double mutant with or without cold acclimation. Under normal condition, the
pallpal2 rosettes contained the lowest level of lignin reduction compared with the wild-type
and f¢fI-1 mutant (Fig 8A). The substantial low level of lignin in the pallpal2 double mutant
observed in this study is consistent with previous reports [56]. Based on our hypothesis, the
less lignin the plants accumulate, the higher freezing tolerance they have. Similar sized wild-
type and pallpal2 seedlings were subjected to freezing treatment with or without cold acclima-
tion. As expected, the pallpal2 mutant displayed the highest freezing tolerance (Fig 8B-8D and
S10A and S10B). The stronger effect of pallpal2 mutant on freezing tolerance than tcfI and
wild-type suggests that the reduced lignin level is correlated to plant freezing tolerance.
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Fig 8. Reduced lignin content increased freezing tolerance. (A) Quantitative determination of lignin
content from whole rosettes of three-week-old WT and tcf7-1 plants grown in soil with (Grey) or without
(Black) cold treatment (4°C for 7 days). Twelve independent experiments were performed and the data are
expressed as mean +S.E. Means with the same letter are not significantly different at P < 0.05 by One Way
ANOVA analysis. (B) Three week-old pal1pal2 and wild type (WT) plants with or without a 7-day cold
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treatment at 4°C were used for freezing treatments at indicated time point. The pictures were taken 7 days
after treatments. (C) Quantification of survival of the wild type (Black) and pal1pal2 plants (Grey) in (B); Error
bars represent standard deviation (n = 80-100). (*, t-test, P < 0.05). (D) Leakage of electrolytes in pal1pal2
and wild type plants treated (see experimental procedures) at indicated time point with and without cold
acclimation. The experiments were repeated 3 times. Error bars are standard deviation (n = 6). (*, t-test,

P <0.05).

doi:10.1371/journal.pgen.1005471.g008

Discussion

The present study reports isolation and functional characterization of a novel nuclear protein
TCF1I as a determinant of cold acclimation and freezing tolerance. We show that TCF1 specifi-
cally activated by cold associates with chromatin and regulates a specific set of genes that are
involved in cold acclimation and adaptation to freezing temperature. Importantly, TCF1 regu-
lates lignin accumulation during acclimation/freezing and affects plant freezing tolerance via a
CBF independent pathway. Thus, our study not only identifies a novel TCF1-mediated signal-
ing cascade that plays a key role in cold acclimation and freezing tolerance, but also reveals a
critical role of cell wall remodeling, in particular lignin homeostasis in cell wall in protecting
cells from freezing damage.

TCF1 specifically responded to cold stress via both transcript and protein accumulation
(Fig 1), and tcfI-1 plants displayed specific enhancement of freezing tolerance after cold accli-
mation (Fig 3C and 3D). These results suggest that TCF1 is functions as a negative regulator in
cold acclimation and freezing tolerance in Arabidopsis. Recently, extensive attention has been
paid to the CBF signaling pathway, however, several studies have shown that the CBF signaling
pathway is not the sole mechanism modulating plant cold acclimation and cold tolerance,
because at least 28% of the cold-responsive genes were not regulated by the CBFs [12]. TCF1
may act independently of the CBF-COR signaling pathway, because expression of the CBF
genes and CBF-regulated genes was unaltered in tcfI-1 (Fig 4A-4C, S1 and S2 Tables), and
TCF1 expression remained unchanged in cbf2 (Fig 4D) and in the CBFs-overexpression plants
[12]. The TCFI-mediated pathway is also distinct from HOS15, because in tcfI-1, cold induc-
tion of RD29A and the level of nuclear tetra-acetylated histone H4 were not affected (Fig 4G
and 4H). Thus, we conclude that TCF1 regulates plant cold acclimation and tolerance through
at least one additional regulatory pathway. Further genetic analysis will be necessary to deter-
mine the genetic relationship between TCF1 and CBFs under cold acclimation and freezing
tolerance.

TCF1 belongs to a family of RCC1-like proteins in Arabidopsis. RCC1 functions as the GEF
for the small G-protein Ran and is critical for maintaining the RanGTP/RanGDP gradient
across nuclear envelope [57]. Our data show that unlike RCC1, TCF1 had very low Ran-GEF
activity (Figs 2D and S2), indicating that TCF1 is not the ortholog of RCC1 in Arabidopsis.
However, TCF1 shares several important features with UVR8, another RCC1 family protein:
very low GEF activity, function in nucleus (Fig 1E) and histone/chromatin association (Fig
2A-2C), although UVR8 preferentially interacts with histone H2B [40,58]. UVRS8 regulates
plant responses specifically to UV-B through modifying expression of HY5 [40]. Thus, we
hypothesized that TCF1 may regulate cold acclimation and freezing tolerance through a similar
regulatory mechanism. Indeed, we found that TCF1 directly interacted with the coding regions
of BCB (Fig 5B). Further we show that activity of BCB correlates with the enrichment of the
positive mark H3K4me2 and reduction of the repressive mark H3K27me3 as cold acclimation
is initiated (Figs 5C and S7A). Most importantly, TCF1 is required to modulate levels of both
H3K4me2 and H3K27me3 at the BCB locus and regulate BCB transcription (Figs 5C and S7A).
Therefore, H3K4me2 and H3K27me3 appear to synergistically regulate transcription activation
of BCB, pointing to a critical role of active and repressive marks in cold acclimation.
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It is clear that cold activates TCFI to induce or repress a set of target genes through a chro-
matin based mechanism. Interestingly, BCB encodes a Blue Copper Binding protein, which is a
glycosylphosphatidylinositol-anchored protein (GAP) targeted to the cell surface [59,60] and
seems to be responsible for lignin accumulation and cell wall-based resistance to aluminum
and bacteria [49,61]. Therefore, our data support the hypothesis that TCFI regulates cold accli-
mation and freezing tolerance through modulating BCB to adjust lignin accumulation and con-
sequent cell wall remodeling (Fig 6). We observed a TCF1 dependent reduction in BCB
expression and lignin content in rosette leaves of tcfI-1 during cold acclimation (Fig 8A).
Importantly, we found that expression of PALI, PAL3 and PAL4 was reduced under cold in
tcf1-1 and BCB knock-down transgenic lines (Fig 7), suggesting that the transcriptional activity
of the genes in leaves is also influenced by TCFI and BCB. Our data reveals that TCFI directly
influences BCB activity and affects PALI, PAL3 and PAL4 expression and lignification,
although it is unclear whether BCB directly regulates PAL genes and lignification or whether
TCFI mediated alteration of chromatin state during cold acclimation indirectly affects PALs
expression. Therefore, our data define TCF1 as a key factor able to bind to chromatin and epi-
genetically regulate the cold-specific GAP leading to establishment of cold specific transcrip-
tional programs and consequently lignin and extracellular matrix remodeling. Although BCB
level was almost the same in tcfI-1 and amiRNA-BCB lines, tcf1-1 showed higher survival rate
than amRNAi-BCB lines under freezing treatments (Figs 3D and 6B), pointing out that BCB
was not the only gene to involve in TCF1-mediated freezing tolerance. Further identification of
the target gene(s) of TCF1 will help us to uncover the molecular mechanism underlying
TCF1-mediated plant cold acclimation and freezing tolerance. Since UVRS8 can also modulate
plant response to UV-B through direct interaction with COP1 [62]. We do not exclude the pos-
sibility that TCF1 regulates cold acclimation and freezing through association with the key reg-
ulator(s) in the cold signal transduction pathway.

It is well known that lignin fills the spaces in the cell wall to reduce water permeability and
increase the stiffness of the cell wall [45,50]. Extensive cellular studies have shown that freezing
tolerance is directly related to cell permeability and cell wall properties, in particular lignin
content, so that water outflows and ice forms in the extracellular spaces without damaging cel-
lular structures [18,35,63-65]. Although it is still technically difficult to measure the cell wall
permeability of plants during cold acclimation, the important role of lignin in plant cold accli-
mation and freezing tolerance has been well documented. For example, the freezing tolerant
Miscanthus contains lower lignin content and higher PAL gene expression than the freezing
sensitive ecotype [66]. Therefore, it is conceivable that lignin content is closely related to the
cell wall permeability and freezing tolerance. However, the molecular mechanism by which lig-
nin content is regulated during cellular adaptation to low temperature still remains a mystery.
Here we demonstrate that during cold acclimation tcfI-1, amiRNA-BCB and pallpal2 had
increased freezing tolerance which correlates with their reduced lignin contents (Figs 6 and 8).
Therefore, reduction of lignin deposition within the cell wall of the tcfI-1, amiRNA-BCB and
pallpal2 plants during acclimation and freezing may increase cell wall permeability and protect
the cells from freezing damage. Reduction of lignin may also enhance elasticity of the cell wall
to increase the capacity to accommodate growth of ice crystals with less damage to both the
dehydrated cell and cell wall. Together, our data reveal a novel regulatory mechanism in cold
acclimation and freezing tolerance in Arabidopsis that involves chromatin based regulation of
lignification and cell wall remodeling.

The immediate question is what the biological significance of TCF1 induction is because
absence of TCF1 confers freezing tolerance. It is known that cold hardy (freezing tolerant)
plants frequently employ extracellular freezing to cope with the freezing temperature. Arabi-
dopsis Col-0 is not hardy plant although it has moderate freezing tolerance compared with
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Fig 9. A proposed model for TCF1 in the Arabidopsis response to low temperature. Under normal
condition, PAL genes are modulated by the developmental signals to synthesize lignin that favor optimal
plant growth and water transport. During cold acclimation, TCF1 is rapidly induced to activate BCB
transcription and then stimulates expression of PAL1/3/4 genes to maintain lignin accumulation of the
stressed cells. However, when the plants are exposed to freezing temperature, reduction of lignin deposition
within the cell wall of the tcf1-7 plants may increase cell wall permeability and protect the cells from freezing
damage. Reduction of lignin may also enhance elasticity of the cell wall to increase the capacity to
accommaodate growth of ice crystals with less damage to both the dehydrated cell and cell wall which is
required for plant growth arrest. Lines with arrowheads denote direct regulation, and lines with blunt heads
represent indirect regulation.

doi:10.1371/journal.pgen.1005471.g009

other ecotypes [67]. It is possible that TCF1-mediated signaling is activated to maintain lignin
content of cells that can enhance cell rigidity and reduce cell expansion, which is required for
plant growth arrest under low temperature. Thus, it is conceivable that TCF1-mediated signal-
ing modulates plastic development of the plants during cold acclimation, but not freezing toler-
ance. A mechanistic working model is presented in Fig 9. The fact that absence of TCF1
enhances freezing tolerance of Col-0 plants suggests that low expression or TCF1 absence may
be related to plant freezing tolerance. Thus, our study also identifies a new gene that can be
used for genetic improvement of plant freezing tolerance. It will be interesting to see whether
TCF1 gene acts differently in cold hardy plants. Given that natural variation in TCF1 may con-
tribute substantially to cold acclimation and freezing tolerance among Arabidopsis accessions,
the role of TCFI expression and its mediated signaling in cold acclimation and freezing
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tolerance is worthy of special focus. Furthermore, further study will also help to differentiate
the molecular mechanisms in plant cold acclimation and freezing tolerance.

Materials and Methods
Plant Materials and Freezing Treatments

A. thaliana (L.) Heynh Col-0 and tcfI-1 (SAIL_97_DO05) and tcfI-2 (SAIL_749_A09) from
ABRC were germinated on MS medium containing 2% sucrose, pH 5.7. Three-week-old tcfl-1
and wild-type plants grown in soil with cold-acclimation (4°C for 7 days) and non-cold accli-
mation were used for whole plant freezing tolerance tests and an electrolyte leakage assay
(ELA) as previously described [13]. Briefly, the plants were grown in soil under a long-day pho-
toperiod (16 h light/8 h dark) for 3 weeks in a growth chamber (22°C), and then placed in a
temperature chamber (ZSP-A0160, ZHCHENG) at -6°C, -8°C or -10°C for 2 hours. Freezing
tolerance was determined as the capacity of plants to resume growth after 7 days under control
conditions. For ELA, the rosettes were placed in a temperature chamber starting at 0°C. The
temperature was reduced by 2°C after 30 min and maintained for 1 h. Then an identical timing
sequence was used for successive 2°C decreases until -10°C was reached. The percentage of

EL was calculated as the percentage of the conductivity before autoclaving over that after
autoclaving.

Gene Expression and Microarray Analysis

Total RNA was extracted from plants’ leaves by using the TRizol Reagent. First-strand cDNA
synthesis was performed according to standard procedures using reverse transcriptase (Pro-
mega, 18064-014) following the manufacturer’s instructions. Semi-quantitative RT-PCR and
qRT-PCR were done as described previously [68]. A positive control was provided by a parallel
analysis based on the ACT2 gene, and three independent replicates were performed per experi-
ment. Gene-specific primers for CBF1, CBF2, CBF3 etc are shown in S3 Table.

For Microarray analysis, 3-week-old plants were treated with or without low temperature at
4°C for 7 day, 2 ug of total RNA was used to produce cyanine dye-tagged cRNA (cy5-WT, cy3-
tcfl) and was hybridized to JingXin Array (CapitalBio Company) containing 29K Arabidopsis
transcripts. Three biological replicates with 6 Microarray slides were used to check differential
expression genes. Data from the GeneChip arrays were scanned on a GeneChip Scanner 3000
and analyzed using GeneChip Operating software (GCOS 1.4). The Significant Analysis of
Microarray software (SAM) was used to identify significantly differentially expressed genes
between tcfl and WT groups. Different genes were determined to be significantly differentially
expressed with a selection threshold of false discovery rate, FDR = 5% and fold change > 1.5 in
the SAM output result. The Microarray data had submitted to GEO (Accession number:
GSE70682) at NCBI website.

Plasmid Constructs and Transformation

For histochemical analysis of TCF1 expression, a genomic fragment including 1,337 bp
upstream of the translation initiation codon was amplified by PCR and cloned into the binary
vector pPCAMBIA1391 between the HindIII and BamHI sites. f-glucuronidase (GUS) activity
was assayed as previously described [68]. To make the TCF1pro::GFP-TCF1I fusion, the TCFI
CDS was first amplified by PCR and cloned in-frame into the binary vector pEZR(K)-LC [40]
between the EcoRI and Sall sites, and then the 35S promoter was replaced by the 1,337 bp
TCF1 promoter between the HindlII and Sacl sites to generate TCFIpro::GFP-TCFI1. The con-
struct was introduced into wild-type and/or tcfI-1 plants through A. tumefaciens-mediated
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transformation. At least three independent homozygous T3 lines were tested for TCF1pro::
GUS expression, protein subcellular localization, and gene expression analysis.

Yeast Two-Hybrid Assays

The TCFI coding region was amplified by PCR and cloned in-frame between the EcoRI and
BamHI sites of pGBKT7. HTAI [histone H2A (AT5g54640)] and HTRY [histone H3
(AT5g10400)] coding regions were amplified and cloned in-frame into pPGADT?7 between the
Ndel and Xhol sites to generate prey constructs. pACT2-HTB1 (histone H2B) and
PACT2-HFOL1 (histone H4) were from Dr. R. A. Bressan at Purdue University. For analysis of
specific histone H4 interaction with TCF1, TCFI coding region was cloned in-frame between
the EcoRI and BamHI sites of pPGADT?7, another two histone H4 variants (At5g59690 and
At1g07820) with high expression in fcf1-1 were introduced into pGBKT?7 at EcoRI and Sall
sites. Plasmid DNA of bait and prey constructs was transformed into the S. cerevisiae strain
Y190. Individual transformants were streaked on plates containing a synthetic, minimal (SD)
medium lacking tryptophan and leucine and grown for 24 h. Yeast cells were transferred onto
a filter paper, and B-galactosidase (B-gal) filter assays were performed [14].

Determination of Histone Acetylation

Nuclei were isolated as described by [14]. Twenty micrograms of nuclear protein and 1 pg of
purified core histones from chicken (Upstate Biotechnology, 13-107) were separated by SDS/
PAGE and blotted onto a PVDF membrane (Millipore, GVPPEAC12). Anti-tetra-acetylated-
histone H4 (1:1,000) or anti-histone H4 (1:100,000) (Upstate Biotechnology) primary antibod-
ies were used to detect acetylated and unacetylated histone H4, bands were visualized by using
the BCIP/NBT Kit (Invitrogen). Data shown are representative of six independent
experiments.

GEF Activity Assays, Histone Interaction and Histone Competition

GEF activity assay was performed as described in [40]. Briefly, RCC1, TCF1, and human Ran
were expressed in Escherichia coli as fusions with GST. The Ran clone was provided by Dr.
Murray Stewart (Medical Research Council Laboratory for Molecular Biology, Cambridge, U.
K.). Assays of guanine nucleotide exchange activity were performed by using [’H]GDP to load
30 pmol GST-Ran and subsequent incubation with 0.5 nM recombinant RCC1 or TCF1 for 3
min. The exchange activity was calculated as In (C,/C,), where Cy and C; are radioactive counts
at the start and end of the reaction, respectively. The GEF assays were repeated four times.
Analysis of TCF1-histone interaction was performed as previously described [40]. Competition
assays between TCF1 and histones were conducted as previously described by Cloix and Jen-
kins [58].

Chromatin Association

Chromatin was isolated and the chromatin immunoprecipitation assay was carried out [40,69]
by using an anti-GFP antibody (Invitrogen A-11122). Before antibody treatment, the samples
were precleared with protein A Dynabeads (Dynal Biotech, Great Neck, NY, 100.02). The
immunoprecipitated DNA was used in PCR reactions to amplify fragments from the BCB and
ACT?2 genes, using primers shown in S3 Table. Data shown are representative of three indepen-
dent experiments.
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Lignin Analysis

Cell wall fractions were isolated as described by Tokunaga et al [70]. Briefly, three-week-old
plants at rosette stage were ground in liquid nitrogen, and then washed with 95% ethanol and
ethanol:hexane (1:2, v/v) in turn. The washed pellet was allowed to air-dry at 70°C overnight.
Lignin content was measured according to the method of Fukuda and Komamine [71] with
some modifications. Five mg of the air-dried samples suspended in a 1 ml aliquot of 25% acetyl
bromide in acetic acid were treated at 70°C for 30 min. After cooling down, 0.9 ml of 2 M
NaOH, 5 ml of acetic acid, 0.1 ml of 7.5 M hydroxylamine hydrochloride, and 3 ml of glacial
acetic acid were added. The 10 ml samples were centrifuged and the absorbance of the superna-
tant was measured at 280 nm to determine the lignin content.

Supporting Information

S1 Fig. TCF1 expression and computational analyses of TCF1 protein. (A) Arabidopsis eFP
Browser online software (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi) shows the
TCFI gene expression was induced by cold stress. (B) Clustal W2 analysis of identity between
RCC1 and TCF1 protein (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Arrows in different col-
ors with letter ABCD stands marked seven RCC1 repeat domains. (C) Expasy online software
(http://www.expasy.org/scanprosite) predicted that Homo sapiens RCC1 contains 7 RCC1
repeats. Using the same program, we found that the TCF1 protein contains six predicted RCC1
repeats that are located as follows: 83-135, 178-252, 253-329, 330-381, 382-435, and 436-
486.

(TTF)

S2 Fig. TCF1 protein does not complement the temperature-sensitive phenotype of prp20
mutants. Yeast prp20 mutant was transformed with the indicated vector. Individual colonies
of transformants were streaked on SD plates lacking Ura with galactose as carbon source and
put in 23°C /37°C for 24 h simultaneously. prp20+RCC1, prp20 transformed with human

RCCI gene. prp20+Vector, prp20 transformed with empty vector pMB150. prp20+TCF1, prp20
transformed with TCFI gene.

(TTF)

S3 Fig. tcfl-1 plants show the same phenotype with WT without cold acclimation. (A)
Freezing analysis of 3-week-old tcfI-1 and wild-type (WT) plants at the indicated temperatures
below freezing under long-day photoperiod without cold acclimation. Quantification of sur-
vival rate was taken at 7th days after treatments. (B) RT-PCR analysis of TCFI expression in
two TCF1-RNAi lines (TCFI-RNAi-2 and TCF1-RNAi-6) at 4°C for 7 day. (C) Freezing analysis
of 3-week-old TCF1-RNAi lines and wild-type (WT) plants at the indicated temperatures
below freezing under long-day photoperiod without cold acclimation. Quantification of sur-
vival rate was taken at 7th days after treatments. (D) Tolerance of 3-week-old TCFI-RNAi lines
(TCF1-RNAi-2 and TCFI1-RNAi-6) and wild-type (WT) plants at the indicated temperatures
below freezing under long-day photoperiod with cold acclimation for 7 days. The pictures were
taken 7 days after treatments. (E) Quantification of survival rate of the treated plants in (C), (*,
P < 0.05, t-test). (F) Leakage of electrolytes in TCF1-RNAi lines and WT plants treated at indi-
cated temperatures below freezing. Error bars are standard deviation (n = 8), (*, P < 0.05, ¢-
test).

(TTF)

S4 Fig. TCF1 gene complements the tcfI-1 freezing tolerant phenotype. (A) The three week-
old non-acclimated plants were treated at -8°C for 2 h followed by a seven day recovery. These
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include tcfI-1, WT, a representative line of ¢cfI-1 transformed with an empty vector pEZR(K)
LC (tcfI-1Vector-2), and three independent homozygous lines of tcfI-1 transformed with TCF]I
gene (tcf1-1TCFI-3, tcfl-1TCFI1-12 and tcfI-1TCFI-13) without cold acclimation. (B) Semi-
quantitative RT-PCR for TCFI expression in the wild type and transgenic plants. The three-
week-old plants were treated with or without a seven-day cold acclimation at 4°C, respectively.
Lane 1: WT, lane 2: tcfI-1, lane 3: tcfI-1Vector-2, lane 4: tcfI-1TCF1-3, lane 5: tcfI-1TCF1-12,
lane 6: tcf1-1TCFI1-13. (C) Quantification of survival rate of cold acclimated (black) and non-
acclimated (grey) plants after freezing treatment at -8°C for 2 h and a seven day period of
recovery. 1: WT, 2: tcfl-1, 3: tcfl-1Vector-2, 4: tcf1-1TCF1-3, 5: tcf1-1TCF1-12, 6: tcfl-1TCF1-
13. Error bars are standard deviation (n = 80-100). Three biological experiments were per-
formed and the data are expressed as mean *S.E. Means with the same letter are not signifi-
cantly different at P < 0.05 by One Way ANOVA analysis. (D) Leakage of electrolytes in WT,
tcfl-1 and TCF1 complementary lines (tcf1-1TCF1-3, tcfl-1TCF1-12 and tcfI-1TCF1-13)
treated at indicated temperatures below freezing. 3-week-old plants were cold-acclimated at
4°C for 7 day (Cold) or without treatment. Error bars are standard deviation (n = 10), (*,

P < 0.05, t-test).

(TTF)

S5 Fig. Expression of CBFs in the wild-type and tcfI-1 plants under treatment. (A) The
three week-old tcfI-1 and wild type plants were treated with cold at 4°C and rosettes were har-
vested at the indicated time points for RNA extraction and semi-quantitative RT-PCR. Rosettes
of the plants treated with 100 uM ABA, 400 mM mannitol or 300 mM NaCl for 3 h were also
collected for gene expression analysis. Transcript levels were assayed for CBF genes and loading
control ACTIN2. (B) Semi-quantitative RT-PCR for CBF2 expression in a T-DNA insertion
line. Three-week-old SALK_025203 and Col-0 seedlings grown on soil were subjected to low
temperature (4°C) for 3 h, and the shoots were collected for the expression analysis. ACT2 gene
was used as a loading control. The result showed that the mutant is a null mutation for the
CBF?2 gene, and was named as cbf2.

(TTF)

S6 Fig. Quantitative RT-PCR analysis of the AT2G33810, AT1G23150, AT3G57260 and
AT3G51330 genes expression. Three-week-old WT and tcfI-1 grown on MS medium plates
were treated with cold stress for 7 day, and the levels of four genes’ transcripts were analyzed.
The genes showed altered transcript levels in ¢cfI-1 in the microarray analysis were selected.
ACT2 gene was used as a loading control. CA: Cold acclimation, NA: None cold acclimation.
(TTF)

S7 Fig. Level of histone markers in wild-type, tcfI-1 and two TCF1 complementary lines
(tcf1-1TCF1-3 and tcfl1-1TCF1-12) with or without cold acclimation. (A) Levels of
H3K4me2 and H3K27me3 by ChIP-PCR analysis with wild-type (WT), tcfI-1, tcf1-1TCF1-3
and tcfI1-1TCF1-12 plants normalized to ACT2 or AGAMOUS in BCBcl fragment with and
without a 7-day cold treatment. (B) to (E) Levels of H3K9me2, H3K9ac, H4Ac (The level of
global histone H4 tetra-acetylation at K5/K8/K12/K16), H3K14ac and H3K36me3 by
ChIP-PCR analysis normalized to indicated control in BCBcI fragment in wild type and tcfI-1
plants with a seven-day cold acclimation.

(TIF)

S8 Fig. Reduced BCB expression in amiRNA-BCB plants under cold acclimation. The levels
of BCB transcripts in wild-type (Black) and amiRNA-BCB (Grey) plants. The plants were
treated with cold at 4°C for 7 days. Three biological experiments were performed and the data
are expressed as mean +S.E. Means with the same letter are not significantly different at
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P < 0.05 by One Way ANOVA analysis.
(TIF)

S9 Fig. amiRNA-BCB plants show similar freezing phenotype with WT without cold accli-
mation. (A) Freezing treatment of three-week-old amiRNA-BCB transgenic plants (#4-9 and
#9-2) and wild-type (WT) plants at the indicated temperature without cold acclimation. The
pictures were taken 7-days after treatments. (B) Quantification of survival of the plants in (A).
Error bars are standard deviation (1 = 80-100).

(TIF)

S10 Fig. pallpal2 is freezing tolerant compared with WT. (A) Three week-old pallpal2 and
wild type (WT) plants without a 7-day cold treatment were used for freezing treatments at indi-
cated time. The pictures were taken 7 days after treatments. (B) Quantification of survival of
the wild type (Black) and pallpal2 plants (Grey) in (A). Error bars represent standard deviation
(n =80-100).

(TIF)

S§1 Table. Genes with increased and decreased expression levels by 1.5-fold in tcfI-1 without
cold acclimation determined by Biocapital Jingxin microarray.
(DOC)

S2 Table. Genes with increased and decreased expression levels by 1.5-fold in tcfI-1 with
cold acclimation determined by Biocapital Jingxin microarray.
(DOC)

§3 Table. List of primers.
(DOC)
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