
sensors

Article

Using Embedded Feature Selection and CNN for Classification
on CCD-INID-V1—A New IoT Dataset

Zhipeng Liu, Niraj Thapa, Addison Shaver, Kaushik Roy *, Madhuri Siddula, Xiaohong Yuan and Anna Yu

����������
�������

Citation: Liu, Z.; Thapa, N.;

Shaver, A.; Roy, K.; Siddula, M.;

Yuan, X.; Yu, A. Using Embedded

Feature Selection and CNN for

Classification on CCD-INID-V1—A

New IoT Dataset. Sensors 2021, 21,

4834. https://doi.org/10.3390/

s21144834

Academic Editors: José L. Hernández

Ramos, Georgios Kambourakis,

Erol Gelenbe and Gianmarco Baldini

Received: 27 May 2021

Accepted: 12 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science Department, North Carolina Agricultural and Technical State University, 1601 E Market St,
Greensboro, NC 27411, USA; zliu2@aggies.ncat.edu (Z.L.); nthapa@aggies.ncat.edu (N.T.);
awshaver@aggies.ncat.edu (A.S.); msiddula@ncat.edu (M.S.); xhyuan@ncat.edu (X.Y.); cshmyu@ncat.edu (A.Y.)
* Correspondence: kroy@ncat.edu

Abstract: As Internet of Things (IoT) networks expand globally with an annual increase of active
devices, providing better safeguards to threats is becoming more prominent. An intrusion detection
system (IDS) is the most viable solution that mitigates the threats of cyberattacks. Given the many
constraints of the ever-changing network environment of IoT devices, an effective yet lightweight
IDS is required to detect cyber anomalies and categorize various cyberattacks. Additionally, most
publicly available datasets used for research do not reflect the recent network behaviors, nor are they
made from IoT networks. To address these issues, in this paper, we have the following contributions:
(1) we create a dataset from IoT networks, namely, the Center for Cyber Defense (CCD) IoT Network
Intrusion Dataset V1 (CCD-INID-V1); (2) we propose a hybrid lightweight form of IDS—an embedded
model (EM) for feature selection and a convolutional neural network (CNN) for attack detection and
classification. The proposed method has two models: (a) RCNN: Random Forest (RF) is combined
with CNN and (b) XCNN: eXtreme Gradient Boosting (XGBoost) is combined with CNN. RF and
XGBoost are the embedded models to reduce less impactful features. (3) We attempt anomaly (binary)
classifications and attack-based (multiclass) classifications on CCD-INID-V1 and two other IoT
datasets, the detection_of_IoT_botnet_attacks_N_BaIoT dataset (Balot) and the CIRA-CIC-DoHBrw-
2020 dataset (DoH20), to explore the effectiveness of these learning-based security models. Using
RCNN, we achieved an Area under the Receiver Characteristic Operator (ROC) Curve (AUC) score
of 0.956 with a runtime of 32.28 s on CCD-INID-V1, 0.999 with a runtime of 71.46 s on Balot, and 0.986
with a runtime of 35.45 s on DoH20. Using XCNN, we achieved an AUC score of 0.998 with a runtime
of 51.38 s for CCD-INID-V1, 0.999 with a runtime of 72.12 s for Balot, and 0.999 with a runtime of
72.91 s for DoH20. Compared to KNN, XCNN required 86.98% less computational time, and RCNN
required 91.74% less computational time to achieve equal or better accurate anomaly detections. We
find XCNN and RCNN are consistently efficient and handle scalability well; in particular, 1000 times
faster than KNN when dealing with a relatively larger dataset-Balot. Finally, we highlight RCNN
and XCNN’s ability to accurately detect anomalies with a significant reduction in computational
time. This advantage grants flexibility for the IDS placement strategy. Our IDS can be placed at a
central server as well as resource-constrained edge devices. Our lightweight IDS requires low train
time and hence decreases reaction time to zero-day attacks.

Keywords: IDS; IoT; deep learning; dataset; feature selection; dimension reduction; random forest;
XGBoost; feature engineering; hybrid models

1. Introduction

Not only has the number of smart devices connected significantly grown, the world
has also witnessed a sharp increase in IoT applications in numerous smart environments [1].
Echoing this growth is the escalating number of cyberattacks [2–4]. Developing counter-
measures to safeguard the security of these networks and the privacy of users cannot be
taken lightly [5,6]. The top choice of these countermeasures is an IDS [7,8].

Sensors 2021, 21, 4834. https://doi.org/10.3390/s21144834 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21144834
https://doi.org/10.3390/s21144834
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144834
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144834?type=check_update&version=3

Sensors 2021, 21, 4834 2 of 37

However, with the complexity of IoT network topology and the diversification of
intrusion behavior, the existing intrusion detection technologies have presented some
drawbacks:

(1) Dynamic and scalable environment—The first challenge is the vast variations in the
applications of IoT systems used in recent years [9–11]. The areas include home, campus,
transportation, manufacture, retail, and smart city infrastructures, with rapid develop-
ments in wireless communication, smartphone, healthcare, smart grid, home automation,
distributed pollution monitoring, smart lighting systems, and sensor network technologies.
Depending on the IoT scenario, the number of connected devices can range from several to
millions. These applications and the number of connected devices contribute to a larger
attack surface, which means higher difficulty detecting and mitigating the attacks.

(2) Big data to limited resource—Increased devices generate overhead traffic that
essentially becomes big data, which means higher-dimensional data. Since most IoT devices
have low computing power, the storage or capture of this data becomes challenging as well.
A malicious entity could generate a flood of messages to consume the limited resource on
IoT edge devices and create a denial of service (DoS) to legitimate users [12] or even hold
ransom for their rightful information [13].

(3) Shortages of public datasets—Another notable challenge is the unavailability of
publicly available training datasets [14]. Effective utilization of machine learning (ML) and
deep learning (DL) needs recently developed datasets that carry the latest cyberattacks [15].

Most of the current research has explored different publicly available datasets, in-
cluding DARPA/KDD99 [16], created in 1999. An extended version of KDD, namely
NSL-KDD [17], is available with new features. However, these datasets do not reflect the
modern-day networks filled with IoT devices. While widely accepted as benchmarks, these
datasets no longer represent contemporary zero-day attacks and the IoT ecosystem [18].
In [19], a new real-time packet-based dataset named IoT-DDoS is collected using multiple
protocols. However, the dataset only carries 12 features, far less than the 41 features in
KDDcup99. In [20], a holistic smart home framework combined with a multi-facet dataset
is introduced. But evaluation metrics are lacking from this work. In [21], researchers from
Stratosphere Laboratory produced a dataset to solely facilitate the detection of IoT-based
botnets. Even though there are some alternatives available, it is not close to enough [22].

(4) Limited and non-standardized features—Feature engineering for IoT data is an-
other challenge. The detection rate of an IDS is heavily dependent on the features used in
training. The performance of IDS often varies when different sets of features of network
data are used. Publicly available datasets do not have a standardized set of features [22].

Plenty of research work in recent years has been dedicated to secure IoT networks [23].
Detecting anomalies from benign traffic or identifying various attacks from typical network
datasets using only traditional ML approaches have seen great success [24–26]. However,
traditional ML approaches struggle when dealing with a large volume of IoT data [22,27,28].

DL is offered as a solution to overcome the shortcomings of ML approaches when
dealing with big data [29]. DL applies an artificial neural network (ANN) to analyze
improbable data for human minds to comprehend [30,31]. Given the amount of data at
the volatile speed of transmissions, DL is a definite choice for classifying attacks in IoT
networks. Unfortunately, DL has disadvantages as well. DL requires a large amount of
data with a sizeable number of features, which means data is usually high dimensional.
However, given the limited amount of computational power on edge devices, retraining
the models with new inputs proves challenging. DL does not perform well with limited
data, even with an optimized parameter set [22]. Optimally, lightweight IDS [32], which
is a powerful yet small and flexible form of IDS, is a preferable choice for edge and
fog networks. However, most DL-based IDSs are not lightweight. Another setback is
that even though DL can perform the feature selection, the selected features may lack
context and remain a black box myth that is hard to explain [33,34]. Alternatives to feature
selection using DL is the embedded methods. Given a dataset, the main objective of
feature selection is to identify the best set of features that generate the most optimal results

Sensors 2021, 21, 4834 3 of 37

from models. Taxonomically, feature selection methods are classified as: Filter, Wrapper,
and Embedded [35]. By analyzing univariate stats, Filter methods select the inherent
characteristics from features. Examples of Filter methods include linear discriminant
analysis (LDA), analysis of variance (ANOVA), and chi-square. Compared to wrapper
methods, which search for the spatial relationships between all feature subsets using a
greedy algorithm, the computational requirement is less. However, wrapper methods often
produce higher predictive results than filter methods [35]. Some wrapper methods include
forward selection, backward elimination, and recursive feature elimination. Embedded
methods encompass the benefits of both the wrapper and filter methods, by including
interactions of features but also maintaining reasonable computational cost. Embedded
methods, such as decision trees, RF, and XGBoost, iteratively pick the most meaningful
features for training in that iteration. Recently, RF and XGBoost have been shown promising
performances in selecting the most important features [36–38]. Given a dataset with
reduced features, producing a model that does not compromise detection rate while
utilizing the advantages of DL is significant. However, if the wrong features are selected,
the model can be flawed and underperform [39,40]. Finding the correct combination of
feature selection and the predictive model is the key.

Based on these facts, an efficient IDS method: (1) should be lightweight and handle
both the limited and large amount of data without demanding too much computational
power [41], (2) can detect zero-day and complex attacks, and (3) can extract useful fea-
tures [42].

In this research, we created a publicly available dataset using smart sensors in an IoT
network and propose a new lightweight IDS based on a hybrid model.

Our contributions are three-fold:

• To demonstrate a real-world attack scenario and evaluate the effectiveness of our pro-
posed IDS, we create an IoT network-based dataset, namely, Center for Cyber Defense
(CCD) IoT Network Intrusion Dataset V1 (CCD-INID-V1). The data is collected in the
smart lab and smart home environments using Rainbow HAT sensor boards installed
on Raspberry Pis.

• To provide a solution to devise resource constraints and utilize IDS placement, we pro-
pose a lightweight and hybrid technique for IoT intrusion detections. The placement
of IDS for IoT networks are primarily in: cloud [43,44], fog [45], and edge [46]. In this
work, we adopt a hybrid format [47], which is a combination of fog computing and
cloud computing. We monitor and generate features at the fog layer and compute de-
tection training and testing at the cloud layer. Our proposed hybrid method combines
an embedded model (EM) for feature selection and a CNN for attack classification.
The proposed intrusion detection method has two models: (a) RCNN, where RF is
combined with CNN, and (b) XCNN, where XGBoost is combined with CNN. The
EM selects the most influential features without compromising the detection rates.

• To compare the effectiveness of our proposed technique to traditional ML algorithms,
such as k-nearest neighbors (KNN), naïve bayes (NB), logistic regression (LR), and
support vector machine (SVM), we use two publicly available datasets, the detec-
tion_of_IoT_botnet_attacks_N_BaIoT dataset (Balot) [48], and the CIRA-CIC-DoHBrw-
2020 dataset (DoH20) [49], as benchmarks and provide the comparative results of
anomaly and multiclass classifications.

The rest of this paper is organized as follows. We briefly introduce the related research
work in Section 2, especially feature selections with traditional models and classifications
using DL techniques in intrusion detection. In Section 3, we discuss the proposed method-
ologies and introduce the three datasets. Section 4 describes the design and implementation
in details. Section 5 shows the experimental results. Section 6 concludes the paper and
provides future research directions.

Sensors 2021, 21, 4834 4 of 37

2. Related Work

Most IDSs classify attacks by analyzing network traffic generated from specialized
environments [50–55]. Nevertheless, in reality, network traffic may originate from a broad
range of traffic and include excessive data. A sound IDS should be able to extract mean-
ingful data and correctly classify malicious traffic from benign traffic. This section dis-
cusses the related work in the context of feature reduction and DL-based anomaly and
intrusion detection.

The embedded feature selection scheme has been preferred over the filter and wrapper
methods [56–58], and has seen success in fields such as bioinformatics [59,60], and medical
research [61–64], but remains relatively new in the field of IoT security.

Although many have used feature selection algorithms such as Principal Component
Analysis (PCA) [65,66], KNN [67,68], NB [69,70], LR [71,72], but recent works predomi-
nantly use RF [73–77] and XGBoost [78–82]. In particular, the authors in [83] provide a
detailed analysis of RF-based feature selection. They were able to select the meaningful
features and reduce the dimension from 41 to 25 based on a score metric. The RF-based
model maximized the rate of performance and minimized the false positive rate for IDS.
In [84], the authors proposed an anomaly-based IDS using traditional ML algorithms, in
particular SVM. The traditional ML-based scheme reported in [84] applies a fitness function
to reduce the feature dimension, increase true positive rate and simultaneously, decrease
the false positive rate. In [23], to compare the effectiveness of feature reduction, RF is
compared with PCA, NB and several filter methods. RF performed the best out of the
compared methods without significantly compromising model efficiency.

Jashuva et al. [85] stressed the importance of attribute or feature selection for perform-
ing accurate network intrusion detection through manual feature selection. They increased
accuracies by only selecting the top 20 features with a cutoff threshold value. However,
manually selecting features is time consuming and labor intensive.

In [86,87], the authors proposed to use auto encoders to extract features from datasets
and reduce feature dimensions. The proposed approach results in reduced memory us-
age and improved attack detections. However, the auto encoders were not used for
anomaly detection.

Sakurada et al. [88] proposed the utilization of a self-encoder in anomaly detection.
The auto encoder is applied to artificial and real data to reduce dimensions. The perfor-
mance was compared with linear and kernel PCA. But the method was not lightweight
and it was not applied to network intrusion detection. Here, we note that an appropriate
feature extraction framework is very helpful to speed up computational efficiency.

In [89], to reduce the feature size, a method called Jumping Gene adapted NSGA-
II multi-objective optimization was applied. CNN integrated long short-term memory
(LSTM) was used to classify the distributed denial-of-service attack (DDoS). However, the
work only examined a single attack from a single dataset, the CISIDS2017 dataset [85].

Zhong et al. [90] compared the results from two new DL methods, Gated Returning
Units (GRU) and Text-CNN, with traditional ML algorithms such as Decision Tree, NB and
SVM. The methods were applied on two datasets: KDD99 [17] and the ADFA-LD [91]. GPU
is set up to have two gates: rest gate r and update gate z. The reset gate is used to merge
new input with previous stored information, and the update gate manages the amount of
previous stored information on the current time step. Text-CNN is a neural network built
from trained word vectors. Text-CNN is applied as an embedding layer. Both methods
were designed as language models but were used to sequential analyze tcpdump packets
to collect features. The paper concluded that the two new DL methods outperform other
methods in terms of F-1 score.

Shurman et al. [92] proposed two models in an attempt to detect anomalies on the
CICDDoS2019 dataset [93]. The first model was a hybrid model that encompasses signature-
based method with an anomaly-based method. The second model is an LSTM model.
However, the work only attempted to detect a specific DoS attack and the methods were
not applied on various datasets.

Sensors 2021, 21, 4834 5 of 37

To the best of our knowledge, we are the first to combine the EM-based feature
selectors with deep neural networks (DNNs) in the field of IDS in an IoT setting. Table 1
shows a comparison of different IDS schemes.

Table 1. A comparison of related work.

Approach Dataset Dimension
Reduction

Anomaly/
Multiclass Lightweight IDS IoT IDS

LASSO [94] AWID [95] Yes N/A Yes Yes No
Auto-encoder [86] Image-based datasets Yes Multiclass No No No
Auto-encoder [87] Image-based datasets Yes Multiclass No No No
Auto-encoder [88] N/A Yes Anomaly No No No

JG NSGA-II, CNN + LSTM [89] CISIDS2017 [85] Yes Anomaly No Yes Yes

GRU, Text-CNN [90] KDD99 [17] and the
ADFA-LD [91] No Both Yes Yes Yes

Hybrid, LSTM [92] CICDDoS2019 [93] No Anomaly No Yes No
Our proposed work CCD-INID-V1, Balot [48], DoH20 [49] Yes Both Yes Yes Yes

3. Methods and Datasets

This section describes the architectures for the proposed models and introduces the
three datasets used to assess the models.

Both the proposed models, RCNN and XCNN, utilize EM to select the meaningful
features to reduce feature dimensions. The data with reduced dimension is then fed into
the DL-based CNN. The models were applied for binary classification to detect cyber
anomalies and multiclass classification to classify various types of cyber-attacks. Our
CCD-INID-V1 dataset contains five types of cyberattacks. The Balot contains ten types
of cyberattacks [48], and DoH20 contains three types of cyberattacks [49]. Each dataset
used in this research represents a non-overlapping and distinct set of attacks to show the
effectiveness of the proposed models. For comparative analysis, we apply the RCNN
and XCNN models on three datasets and compare the performances with the traditional
ML models.

3.1. Architectures for RCNN and XCNN

In this section, we will discuss the proposed RCNN and XCNN models. While RCNN
uses RF to select meaningful features, XCNN uses XGBoost.

The process begins when we train the pre-processed data using the EM-based feature
selectors. Feature selection, either manual or automatic, is used to select the most desired
features contributing to the predictive outcomes. The necessity of such an act can be
sourced to the curse of dimensionality. This refers to a group of phenomena where the
data has many dimensions but is sparse. By reducing the number of features to process,
fewer dimensions need to be examined by the models, making the data less sparse and
statistically significant for ML applications. Feature reduction through feature selection
leads to the need for fewer resources to complete the computations or tasks. Feature
reduction removes multicollinearity resulting in improvement of the ML model in use. The
irrelevant or less meaningful features for training may decrease the prediction accuracy of
the model and take huge computational effort. The benefit of selecting the most optimized
feature selector is a crucial component of an effective IDS. To minimize the IDS run time
and inaccurate detection rate, and develop a lightweight and accurate IDS scheme, we
applied RF as a feature selector for the RCNN model and XGBoost for the XCNN model.
Using the CCD-INID-V1 dataset, we were able to reduce the input from an original set of
83 features to an optimal subset of 41 features. Data input is significantly reduced, and the
most relevant features were retained. The remaining features were used to train the model
and validate the test data.

As mentioned, our RCNN model uses the RF algorithm to select impactful features.
The RF model is an ensemble tree-based learning algorithm and is a well-known feature
selection technique. RF generates possible trees against the target attribute to elicit the

Sensors 2021, 21, 4834 6 of 37

important features. Statistical usage of different attributes is calculated, and using the
same, the most informative subset of features is found. If an attribute is often selected
as best split, then it is retained. A tree-based model involves recursively partitioning the
given dataset into two groups based on a certain criterion until a predetermined stopping
condition is met. In a tree, we calculate how many times an attribute is selected as best
split and based on it the attribute is ranked. Attributes with higher rank are considered in
the dimensional space. Unlike decisions tress, which are prone to overfitting, RF utilizes
the technique of bootstrap aggregating to reduce the possibility of overfitting [96].

XCNN optimizes the selection of features with the help of XGBoost. XGBoost is a
library of gradient boosting algorithms optimized for modern data science problems and
tools [97]. First, XGBoost is one of the most popular boosting tree algorithms for gradient
boosting machine (GBM). It leverages the techniques mentioned with boosting. Some of
the major benefits of XGBoost are that it is highly scalable/parallelizable, quick to execute,
and typically outperforms other algorithms [98,99].

After feature selection, the reduced data is fed into CNN. Our CNN model has the
following configurations:

• An embedding layer of batch size 512
• A convolutional 2D layer of size 64 × 64 using RELU activation function
• A dropout layer with rate of 0.3
• A convolutional 2D layer of size 128 × 128 using RELU activation function
• A maxpooling layer
• A flatten layer
• A dense layer of size 128
• A dense layer of size 64
• A dropout layer with rate of 0.3
• A dense layer of size 16
• An output layer of 2 or n classes using Adam optimizer

As shown in Figures 1 and 2, the CNN is built in a sequential order. The embedding
layer enables us to convert each feature input into a fixed length vector of defined size. The
resultant vector contains real numbers instead of 0′s and 1′s. The vector represents data
relationships in another perspective without increasing the dimension at relatively low
computation cost. We selected 512 as our batch size.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 34

Figure 1. RCNN Model.

Figure 2. XCNN Model.

The flatten layer reshapes the values from the previous layer into one-dimensional
before the values pass through two dense layers. Dense layers look the values in non-
linear views. Another dropout layer with 30% dropout rate is added before another dense
layer. In the final layer, adaptive moment estimation (Adam) optimizer is used to tune the
parameter values. The parameter of number classes is set to either 2 or n depending on
the expected outcomes is binary or multiclass in nature. The model is trained over 10
epochs.

3.2. Datasets Used
The following section discusses the three datasets used for evaluating our models in

detail.

3.2.1. CCD IoT Network Intrusion Dataset V1
We collected and developed the CCD-INID-V1 dataset at Center for Cyber Defense,

North Carolina A&T State University.
This section discusses the data collection process. In [100], Ullah et al. compare the

setup to various datasets. The compared datasets simulate traffic to mimic real-world net-
works. The data generations originate from both physical and virtual devices. Most of
these datasets are created in virtual environment, but they are used to provide network
security solution in use case scenarios ranging from smart home to smart cities.

In [101], authors provide a secure virtual framework that was built in a smart home
environment. The proposed framework is created to be further applied on all virtual smart
use cases, from smart cars to smart factories. Their research projects data in a similar man-
ner to our work: use Pis equipped with environmental sensors to collect direct readings,
such as temperature, pressure, and upload to cloud server via a high-level protocol. The
communications occur using a mixture of protocols: SSH combined with HTTP, which
essentially forms HTTPS.

In a smart home use case, smart fridge and smart thermostats, such as Nest, only
needs to collect temperature reading and upload the reading to the cloud server. In a smart
lab scenario, real-time temperature and pressure readings are constantly uploaded to

Figure 1. RCNN Model.

Sensors 2021, 21, 4834 7 of 37

Sensors 2021, 21, x FOR PEER REVIEW 7 of 34

Figure 1. RCNN Model.

Figure 2. XCNN Model.

The flatten layer reshapes the values from the previous layer into one-dimensional
before the values pass through two dense layers. Dense layers look the values in non-
linear views. Another dropout layer with 30% dropout rate is added before another dense
layer. In the final layer, adaptive moment estimation (Adam) optimizer is used to tune the
parameter values. The parameter of number classes is set to either 2 or n depending on
the expected outcomes is binary or multiclass in nature. The model is trained over 10
epochs.

3.2. Datasets Used
The following section discusses the three datasets used for evaluating our models in

detail.

3.2.1. CCD IoT Network Intrusion Dataset V1
We collected and developed the CCD-INID-V1 dataset at Center for Cyber Defense,

North Carolina A&T State University.
This section discusses the data collection process. In [100], Ullah et al. compare the

setup to various datasets. The compared datasets simulate traffic to mimic real-world net-
works. The data generations originate from both physical and virtual devices. Most of
these datasets are created in virtual environment, but they are used to provide network
security solution in use case scenarios ranging from smart home to smart cities.

In [101], authors provide a secure virtual framework that was built in a smart home
environment. The proposed framework is created to be further applied on all virtual smart
use cases, from smart cars to smart factories. Their research projects data in a similar man-
ner to our work: use Pis equipped with environmental sensors to collect direct readings,
such as temperature, pressure, and upload to cloud server via a high-level protocol. The
communications occur using a mixture of protocols: SSH combined with HTTP, which
essentially forms HTTPS.

In a smart home use case, smart fridge and smart thermostats, such as Nest, only
needs to collect temperature reading and upload the reading to the cloud server. In a smart
lab scenario, real-time temperature and pressure readings are constantly uploaded to

Figure 2. XCNN Model.

Two convolutional layers with respective sizes of 64 multiplied by 64 and 128 multi-
plied by 128 were added with the activation function of rectified linear unit (RELU). RELU
is a linear function that outputs the input directly if is positive, or else it will output zero. A
dropout layer of 30% dropout rate is added to avoid overfitting. A maxpooling layer is then
included to progressively reduce the spatial size of the representation. The layer reduces
the computational cost by reducing the number of parameters to learn and provides basic
translation invariance to the internal representation, otherwise known as the sample-based
discretization process.

The flatten layer reshapes the values from the previous layer into one-dimensional
before the values pass through two dense layers. Dense layers look the values in non-
linear views. Another dropout layer with 30% dropout rate is added before another dense
layer. In the final layer, adaptive moment estimation (Adam) optimizer is used to tune the
parameter values. The parameter of number classes is set to either 2 or n depending on the
expected outcomes is binary or multiclass in nature. The model is trained over 10 epochs.

3.2. Datasets Used

The following section discusses the three datasets used for evaluating our models in
detail.

3.2.1. CCD IoT Network Intrusion Dataset V1

We collected and developed the CCD-INID-V1 dataset at Center for Cyber Defense,
North Carolina A&T State University.

This section discusses the data collection process. In [100], Ullah et al. compare the
setup to various datasets. The compared datasets simulate traffic to mimic real-world
networks. The data generations originate from both physical and virtual devices. Most of
these datasets are created in virtual environment, but they are used to provide network
security solution in use case scenarios ranging from smart home to smart cities.

In [101], authors provide a secure virtual framework that was built in a smart home
environment. The proposed framework is created to be further applied on all virtual
smart use cases, from smart cars to smart factories. Their research projects data in a similar
manner to our work: use Pis equipped with environmental sensors to collect direct readings,
such as temperature, pressure, and upload to cloud server via a high-level protocol. The
communications occur using a mixture of protocols: SSH combined with HTTP, which
essentially forms HTTPS.

In a smart home use case, smart fridge and smart thermostats, such as Nest, only
needs to collect temperature reading and upload the reading to the cloud server. In a
smart lab scenario, real-time temperature and pressure readings are constantly uploaded
to cloud server. Researchers and lab administrators rely on these readings to preserve lab
environments. So even we used Pis, the usage of such a specific device can be generalized.
The behavior of the Rainbow HAT resembles the characteristics of those smart devices that
execute one-dimensional jobs. We collected our data in both smart home and smart lab
environments. Since most active smart devices network behavior can be dissected using

Sensors 2021, 21, 4834 8 of 37

NetFlow, which is designed by Cisco, we monitor the NetFlows of these devices and inject
real cyberattacks. We are applying a feature engineering solution in NFStream, which is a
flow-based feature generation tool.

As listed in Figure 3, we developed our application on an Android Studio, which is
the official integrated development environment (IDE) for the Google-owned Android
operating system [102]. We require the application to initiate smart sensors to capture
environmental data, and transmit to a cloud-based database, as shown in Figures 4 and 5.
The smart sensors originate from a smart-board, Rainbow HAT [103], which is equipped
directly on the mini-computer, Raspberry Pi version 3B [104], running on the open-sourced
Android Things operating system [105]. Every 2 s, the sensor board captures moisture
and temperature of the surroundings. A webserver installed with Wireshark is used to
listen to the network traffic in and out of the smart devices. The devices are connected
to the webserver through Android Debug Bridge (adb). At random time intervals and
using multiple source devices, which include both physical and virtual bots, we launched
multiple cyberattacks at the target device. Further details about the attacks are described
in Section 3.2.2. We used 4 Raspberry Pis and collected data in two smart environments:
smart home and smart lab. All web traffic in and out from the smart devices is exchanged
over WiFi connections. The raw captured data totals over 50 GB. The raw data is then
converted, and feature engineered using an open-source library, NFStream [106], which is
described in detail in Section 3.2.3. After feature engineering, we are able to get 83 features.
After labeling and concatenation, we produce the final data file for further experiments.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 34

cloud server. Researchers and lab administrators rely on these readings to preserve lab
environments. So even we used Pis, the usage of such a specific device can be generalized.
The behavior of the Rainbow HAT resembles the characteristics of those smart devices
that execute one-dimensional jobs. We collected our data in both smart home and smart
lab environments. Since most active smart devices network behavior can be dissected us-
ing NetFlow, which is designed by Cisco, we monitor the NetFlows of these devices and
inject real cyberattacks. We are applying a feature engineering solution in NFStream,
which is a flow-based feature generation tool.

As listed in Figure 3, we developed our application on an Android Studio, which is
the official integrated development environment (IDE) for the Google-owned Android
operating system [102]. We require the application to initiate smart sensors to capture en-
vironmental data, and transmit to a cloud-based database, as shown in Figures 4 and 5.
The smart sensors originate from a smart-board, Rainbow HAT [103], which is equipped
directly on the mini-computer, Raspberry Pi version 3B [104], running on the open-
sourced Android Things operating system [105]. Every 2 s, the sensor board captures
moisture and temperature of the surroundings. A webserver installed with Wireshark is
used to listen to the network traffic in and out of the smart devices. The devices are con-
nected to the webserver through Android Debug Bridge (adb). At random time intervals
and using multiple source devices, which include both physical and virtual bots, we
launched multiple cyberattacks at the target device. Further details about the attacks are
described in Section 3.2.2. We used 4 Raspberry Pis and collected data in two smart envi-
ronments: smart home and smart lab. All web traffic in and out from the smart devices is
exchanged over WiFi connections. The raw captured data totals over 50 GB. The raw data
is then converted, and feature engineered using an open-source library, NFStream [106],
which is described in detail in Section 3.2.3. After feature engineering, we are able to get
83 features. After labeling and concatenation, we produce the final data file for further
experiments.

Figure 3. Data collection process.

Step 1: Develop an application in Android Studio
Step 2: Reformat and setup Android Things OS on Raspberry Pi equipped
with Rainbow HAT
Step 3: App starts, and Rainbow HAT starts sensing
Step 4: Sensor readings are sent live to Google cloud database Firebase
Step 5: Wireshark/tcpdump captures benign net traffic
Step 6: Inject various cyber attacks
Step 7: Wireshark/tcpdump captures malicious net traffic
Step 8: Captured packet files are feature engineered using NFStream
Step 9: Files are labeled and concatenated
Step 10: Data files exported

Figure 3. Data collection process.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 34

Figure 4. Flow of data in the collection process.

(a)

(b)

Figure 5. (a) The network architecture of CCD-INID-V1. (b) Flow of data in a typical IoT network architecture.

Figure 4. Flow of data in the collection process.

Sensors 2021, 21, 4834 9 of 37

Sensors 2021, 21, x FOR PEER REVIEW 9 of 34

Figure 4. Flow of data in the collection process.

(a)

(b)

Figure 5. (a) The network architecture of CCD-INID-V1. (b) Flow of data in a typical IoT network architecture. Figure 5. (a) The network architecture of CCD-INID-V1. (b) Flow of data in a typical IoT network architecture.

Sensor readings are encrypted and transmitted through an authenticated channel with
random-path-based routing to ensure data privacy. We established handshake and key
exchanges using a built-in application programming interface (API) in Android Studio
connected to Firebase. We organize data using the rules engine in Firebase to prevent
data-injection attacks. The flow of data can be seen in Figure 4.

Based on our security architecture, as shown in Figure 5a, we are mainly focusing on
the transmissions between edge devices with cloud servers, where the analysis computing
is conducted. At the edge Layer, which contains live sensors, data is originated from
the IoT things. By communicating through WiFi and adb port forwarding, we not only
monitor the data, but we manufacture features at the local server, hence computing at the
fog layer. In smart homes and smart labs, WiFi is one of the most widely used short-range
transmission protocols, which also include RFID, WLAN, 6LowWPAN, ZigBee, Bluetooth,

Sensors 2021, 21, 4834 10 of 37

NFC, and Z-Wave [107]. The sensors have a direct channel to communicate via HTTPS
with the cloud server, where the database is located. In this sense, we are using a hybrid
format of computing at both fog and cloud layers [47]. To show that our method is able
to identify patterns from traffic through information-hiding, we chose HTTPS as end-to-
end communication protocol over HTTP. We want to see how well our method is able to
perform without compromising the privacy of users.

As summarized by [108], long-range (higher level) transmission protocols include
MQTT, CoAP, AMQP and HTTP(S). In terms of messages size, MQTT can hold the least
amount and HTTP(S) can hold the largest. Since we are proposing a solution that is
applicable in any IoT environments, from smart home to smart cities, we considered the
various long-range protocols. Given the universal usage of HTTP(S), we selected HTTP(S)
as our choice of transmission protocol. HTTP(S) is a part of the IP suite of TCP/IP. As the
most widely used transmission protocol in the world, TCP/IP includes HTTP, HTTPS, FTP,
and MQTT. HTTPS offers the advantage of transmitting the largest message size along
with end-to-end information-hiding. With the advancement of technologies such as 5G, we
do not necessarily need to reduce message size. Furthermore, we want to show how we
are able to detect anomalies without the need to identify what is inside a packet. In other
words, we are able to identify threats while ensuring consumer privacy. Many users use
TCP/IP protocols to address problems that are found in IoT use cases [109–114].

In [109], Alavi et al. apply MQTT along with TCP/IP to transmit data in their data
collection process. In [110], the author uses WiFi and ZigBee to transmit data between
devices within LAN and uses TCP/IP protocols to transmit data between multiple data re-
lays across the internet. Moreover, a lot of smart devices rely on Application Programming
Interface (API) services, notably Representational State Transfer (REST) API, to communi-
cate [111–114]. REST API is mainly implemented on these protocols: HTTP(S), URI, JSON,
and XML.

Although we are applying our current method in smart home and smart labs, but our
goal is to extend our method and apply to smart campus, smart cities, smart factory, and
smart grid/infrastructures.

Even though we only used 4 Pis, as seen in Figure 6a, the usage of such specific devices
can be generalized. The behavior of the Rainbow HAT, as shown in Figure 6b resembles
the characteristics of those smart devices that execute one-dimensional jobs, such as smart
lights, smart thermometer, smart doorlocks without cameras.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 34

(a) (b)

Figure 6. Photo of Raspberry Pi and Rainbow HAT. (a) Shutdown status; (b) app running.

3.2.2. List of Attacks
We selected five frequently used attacks in the creation of our dataset. The five at-

tacks are Address Resolution Protocol (ARP) Poisoning, ARP Denial-of-Service (DoS),
UDP Flood, Hydra Bruteforce with Asterisk protocol, and SlowLoris. Table 2 describes
each attack in detail. Here are the reasonings behind the selection of each attack:
• ARP Poisoning—ARP Poisoning generates minimum web traffic. It is extremely chal-

lenging for IDS to pick up the signature of this type of attack. We wanted to see how
well our IDS can handle this attack signature with limited trace.

• ARP DoS—This attack leaves plenty of “breadcrumbs” for IDS to pick up. We sent
600,000 messages at our only available socket at a one-second interval continuously
for 12 h.

• UDP Flood—Similar to the previous attack, however this attack uses a different pro-
tocol. We wanted to test how our IDS handle network traffic with different protocols.

• Hydra Bruteforce with Asterisk protocol—This type of attack attempts to gain au-
thentication using commonly used password combinations. Hydra is a well-known
attack toolkit. The Asterisk protocol is an interesting choice for our attack selection
because it is a protocol that is standard for voice-over-IP, which relates to many users
that rely on communication tools such as Zoom, Skype, WeChat, WhatsApp during
the COVID-19 pandemic.

• SlowLoris—SlowLoris is a new representation for low-bandwidth Distributed De-
nial-of-Service attacks [115]. First developed by a hacker named Robert “RSnake”
Hansen, this attack can bring down high-bandwidth servers with a single botnet
computer, as evidenced in the 2009 Iranian presidential election [116].

Table 2. Attacks on CCD-INID-V1 Dataset.

Name of Attack Type of Attack Description

ARP Poisoning Man-in-the-Middle

ARP poisoning occurs when an attacker sends falsified ARP messages over a local area
network (LAN) to link an attacker’s MAC address with the IP address of a legitimate com-
puter or server on the network. Once the attacker’s MAC address is linked to an authentic
IP address, the attacker can receive any messages directed to the legitimate MAC address.

As a result, the attacker can intercept, modify or block communication to the legitimate
MAC address [117].

ARP DoS DoS

In ARP flooding, the affected system sends ARP replies to all systems connected in a net-
work, causing incorrect entries in the ARP cache. The result is that the affected system is
unable to resolve IP and MAC addresses because of the wrong entries in the ARP cache.

The affected system is unable to connect to any other system in the network [118].

UDP Flood DoS
A UDP flood is a type of DoS attack in which a large number of User Datagram Protocol
(UDP) packets are sent to a targeted server with the aim of overwhelming the device’s

Figure 6. Photo of Raspberry Pi and Rainbow HAT. (a) Shutdown status; (b) app running.

3.2.2. List of Attacks

We selected five frequently used attacks in the creation of our dataset. The five attacks
are Address Resolution Protocol (ARP) Poisoning, ARP Denial-of-Service (DoS), UDP
Flood, Hydra Bruteforce with Asterisk protocol, and SlowLoris. Table 2 describes each
attack in detail. Here are the reasonings behind the selection of each attack:

Sensors 2021, 21, 4834 11 of 37

• ARP Poisoning—ARP Poisoning generates minimum web traffic. It is extremely
challenging for IDS to pick up the signature of this type of attack. We wanted to see
how well our IDS can handle this attack signature with limited trace.

• ARP DoS—This attack leaves plenty of “breadcrumbs” for IDS to pick up. We sent
600,000 messages at our only available socket at a one-second interval continuously
for 12 h.

• UDP Flood—Similar to the previous attack, however this attack uses a different proto-
col. We wanted to test how our IDS handle network traffic with different protocols.

• Hydra Bruteforce with Asterisk protocol—This type of attack attempts to gain au-
thentication using commonly used password combinations. Hydra is a well-known
attack toolkit. The Asterisk protocol is an interesting choice for our attack selection
because it is a protocol that is standard for voice-over-IP, which relates to many users
that rely on communication tools such as Zoom, Skype, WeChat, WhatsApp during
the COVID-19 pandemic.

• SlowLoris—SlowLoris is a new representation for low-bandwidth Distributed Denial-
of-Service attacks [115]. First developed by a hacker named Robert “RSnake” Hansen,
this attack can bring down high-bandwidth servers with a single botnet computer, as
evidenced in the 2009 Iranian presidential election [116].

Table 2. Attacks on CCD-INID-V1 Dataset.

Name of Attack Type of Attack Description

ARP Poisoning Man-in-the-Middle

ARP poisoning occurs when an attacker sends falsified ARP messages over a local
area network (LAN) to link an attacker’s MAC address with the IP address of a

legitimate computer or server on the network. Once the attacker’s MAC address is
linked to an authentic IP address, the attacker can receive any messages directed
to the legitimate MAC address. As a result, the attacker can intercept, modify or

block communication to the legitimate MAC address [117].

ARP DoS DoS

In ARP flooding, the affected system sends ARP replies to all systems connected in
a network, causing incorrect entries in the ARP cache. The result is that the

affected system is unable to resolve IP and MAC addresses because of the wrong
entries in the ARP cache. The affected system is unable to connect to any other

system in the network [118].

UDP Flood DoS

A UDP flood is a type of DoS attack in which a large number of User Datagram
Protocol (UDP) packets are sent to a targeted server with the aim of overwhelming
the device’s ability to process and respond. The firewall protecting the targeted

server can also become exhausted due to UDP flooding, resulting in a DoS to
legitimate traffic [119].

Hydra Bruteforce
with Asterisk Bruteforce

Hydra is a parallelized network logon cracker built in various operating systems
such as Kali Linux, Parrot, and other penetration testing environments. Hydra

works by using different approaches to perform brute-force attacks to guess the
right username and password combination [120].

Asterisk supports several standard voice-over-IP protocols, including the Session
Initiation Protocol (SIP), the Media Gateway Control Protocol (MGCP), and H. 323.
Asterisk supports most SIP telephones, acting both as registrar and back-to-back

user agent [121].

SlowLoris Distributed DoS

SlowLoris is a type of DoS attack tool which allows a single machine to take down
another machine’s web server with minimal bandwidth and side effects on

unrelated services and ports. SlowLoris tries to keep many connections to the
target web server open and hold them open as long as possible. It accomplishes

this by opening connections to the target web server and sending a partial request.
Periodically, it will send subsequent HTTP headers, adding to, but never

completing, the request. Affected servers will keep these connections open, filling
their maximum concurrent connection pool, eventually denying additional

connection attempts from clients [115].

Sensors 2021, 21, 4834 12 of 37

3.2.3. Feature Engineering Using NFStream

For our dataset, we used NFStream to engineer the features. NFStream is an open-
source Python API library that provides flexible and quick feature conversion to make
live or offline network data more intuitive. The designers have the broader goal of mak-
ing the library a common network data analytics framework for researchers providing
data reproducibility across experiments, hence standardization. NFStream offers the
following benefits:

• Statistical features extraction: NFStream provides the post-mortem statistical features
(e.g., min, mean, stddev and max of packet size and inter arrival time) and early flow
features (e.g., sequence of first n packets sizes, inter arrival times and directions).

• Flexibility: NFStream is easily extensible. The project is open-sourced and NFPlugins
can be used for feature engineering.

NFStream is built upon the concept of flow-based aggregation. Based on the shared
commonalities, such as flow key, transport protocol, VLAN identifier, source and desti-
nation IP address, the packets are aggregated into flows. From a flow’s entry until its
termination, a flow cache is used to keep trace (e.g., active timeout, inactive timeout). If
the entry is present in the flow cache, counters and several other metrics are updated
periodically. If flows are generated in both directions, the flow cache applies a bidirectional
flow definition, which includes adding counters and metrics for both directions.

In the above schema, NFStream overall architecture is depicted and could be summa-
rized as follows:

• NFStreamer is a driver process. The driver’s main responsibility involves setting the
overall workflow, which is mostly an orchestration of parallel metering processes.

• Meters make up the integral parts to the NFStream framework. Meters transform
information gathered through flow-aggregation into statistical features until flow
is terminated by expiration (active timeout, inactive timeout). After processing
(e.g., timestamped, decoded, truncated), raw packets are dispatched across meters.

After processed by Meters, a flow becomes NFlow, the lexicon used in NFStream. New
flow features are engineered based on the configurations set by NFStreamer. In Table 3, we
list features that are extracted.

Table 3. Features generated for CCD-INID-V1 dataset [106].

Features Data Type Description

id data Flow identifier

expiration_id data Identifier of flow expiration trigger. Can be 0 for idle_timeout, 1 for active_timeout
or −1 for custom expiration.

Src_ip str Source IP address string representation.

Src_mac str Source MAC address string representation.

Src_oui str Source Organizationally Unique Identifier string representation.

Src_port int Transport layer source port.

Dst_ip str Destination IP address string representation.

Dst_mac str Destination MAC address string representation.

Dst_oui str Destination Organizationally Unique Identifier string representation.

Dst_port int Transport layer destination port.

Protocol int Transport layer protocol.

Ip_version int IP version.

Vlan_id int Virtual LAN identifier.

Bidirectional_first_seen_ms int Timestamp in milliseconds on first flow bidirectional packet.

Sensors 2021, 21, 4834 13 of 37

Table 3. Cont.

Features Data Type Description

Bidirectional_last_seen_ms int Timestamp in milliseconds on last flow bidirectional packet.

Bidirectional_duration_ms int Flow bidirectional duration in milliseconds.

Bidirectional_packets int Flow bidirectional packets accumulator.

Bidirectional_bytes int Flow bidirectional bytes accumulator (depends on accounting_mode).

Src2dst_first_seen_ms int Timestamp in milliseconds on first flow src2dst packet.

Src2dst_last_seen_ms int Timestamp in milliseconds on last flow src2dst packet.

Src2dst_duration_ms int Flow src2dst duration in milliseconds.

Src2dst_packets int Flow src2dst packets accumulator.

Src2dst_bytes int Flow src2dst bytes accumulator (depends on accounting_mode).

Dst2src_first_seen_ms int Timestamp in milliseconds on first flow dst2src packet.

Dst2src_last_seen_ms int Timestamp in milliseconds on last flow dst2src packet.

Dst2src_duration_ms int Flow dst2src duration in milliseconds.

Dst2src_packets int Flow dst2src packets accumulator.

Dst2src_bytes int Flow dst2src bytes accumulator (depends on accounting_mode).

Application_name str nDPI detected application name.

application_category_name str nDPI detected application category name.

application_is_guessed int Indicates if detection result is based on pure dissection or on a port-based guess.

Requested_server_name str Requested server name (SSL/TLS, DNS, HTTP)

client_fingerprint str Client fingerprint (DHCP fingerprint for DHCP, JA3 for SSL/TLS and HASSH for
SSH).

Server_fingerprint str Extracted user agent for HTTP or User Agent Identifier for QUIC

content_type str Extracted HTTP content type

bidirectional_min_ps int Flow bidirectional minimum packet size (depends on accounting_mode).

Bidirectional_mean_ps float Flow bidirectional mean packet size (depends on accounting_mode).

Bidirectional_stdev_ps float Flow bidirectional packet size sample standard deviation (depends on
accounting_mode).

Bidirectional_max_ps int Flow bidirectional maximum packet size (depends on accounting_mode).

Src2dst_min_ps int Flow src2dst minimum packet size (depends on accounting_mode).

Src2dst_mean_ps float Flow src2dst mean packet size (depends on accounting_mode).

Src2dst_stdev_ps float Flow src2dst packet size sample standard deviation (depends on
accounting_mode).

Src2dst_max_ps int Flow src2dst maximum packet size (depends on accounting_mode).

Dst2src_min_ps int Flow dst2src minimum packet size (depends on accounting_mode).

Dst2src_mean_ps float Flow dst2src mean packet size (depends on accounting_mode).

Dst2src_stdev_ps float Flow dst2src packet size sample standard deviation (depends on
accounting_mode).

Dst2src_max_ps int Flow dst2src maximum packet size (depends on accounting_mode).

Bidirectional_min_piat_ms int Flow bidirectional minimum packet inter arrival time.

Bidirectional_mean_piat_ms float Flow bidirectional mean packet inter arrival time.

Bidirectional_stdev_piat_ms float Flow bidirectional packet inter arrival time sample standard deviation.

Bidirectional_max_piat_ms int Flow bidirectional maximum packet inter arrival time.

Src2dst_min_piat_ms int Flow src2dst minimum packet inter arrival time.

Sensors 2021, 21, 4834 14 of 37

Table 3. Cont.

Features Data Type Description

Src2dst_mean_piat_ms float Flow src2dst mean packet inter arrival time.

Src2dst_stdev_piat_ms float Flow src2dst packet inter arrival time sample standard deviation.

Src2dst_max_piat_ms int Flow src2dst maximum packet inter arrival time.

Dst2src_min_piat_ms int Flow dst2src minimum packet inter arrival time.

Dst2src_mean_piat_ms float Flow dst2src mean packet inter arrival time.

Dst2src_stdev_piat_ms float Flow dst2src packet inter arrival time sample standard deviation.

Dst2src_max_piat_ms int Flow dst2src maximum packet inter arrival time.

Bidirectional_syn_packets int Flow bidirectional syn packet accumulators.

Bidirectional_cwr_packets int Flow bidirectional cwr packet accumulators.

Bidirectional_ece_packets int Flow bidirectional ece packet accumulators.

Bidirectional_urg_packets int Flow bidirectional urg packet accumulators.

Bidirectional_ack_packets int Flow bidirectional ack packet accumulators.

Bidirectional_psh_packets int Flow bidirectional psh packet accumulators.

Bidirectional_rst_packets int Flow bidirectional rst packet accumulators.

Bidirectional_fin_packets int Flow bidirectional fin packet accumulators.

Src2dst_syn_packets int Flow src2dst syn packet accumulators.

Src2dst_cwr_packets int Flow src2dst cwr packet accumulators.

Src2dst_ece_packets int Flow src2dst ece packet accumulators.

Src2dst_urg_packets int Flow src2dst urg packet accumulators.

Src2dst_ack_packets int Flow src2dst ack packet accumulators.

Src2dst_psh_packets int Flow src2dst psh packet accumulators.

Src2dst_rst_packets int Flow src2dst rst packet accumulators.

Src2dst_fin_packets int Flow src2dst fin packet accumulators.

Dst2src_syn_packets int Flow dst2src syn packet accumulators.

Dst2src_cwr_packets int Flow dst2src cwr packet accumulators.

Dst2src_ece_packets int Flow dst2src ece packet accumulators.

Dst2src_urg_packets int Flow dst2src urg packet accumulators.

Dst2src_ack_packets int Flow dst2src ack packet accumulators.

Dst2src_psh_packets int Flow dst2src psh packet accumulators.

Dst2src_rst_packets int Flow dst2src rst packet accumulators.

Dst2src_fin_packets int Flow dst2src fin packet accumulators.

The dataset contains 83 features, including source and destination string represen-
tation of IP and MAC addresses, flow bidirectional packets accumulator, and multiple
timestamps.

3.3. Detection_of_IoT_botnet_attacks_N_BaIoT Dataset
Dataset Summary

This publicly available dataset is created by the researchers in [48]. The researchers
gathered the data from 9 commercial IoT devices infected by Mirai and BASHLITE. The
dataset contains 7,062,606 instances and 115 features. However, these features were ex-
tracted using an autoencoder extraction tool, Kitsune [122]. The base features before feature
extraction are listed in Table 4.

Sensors 2021, 21, 4834 15 of 37

Table 4. Base features of the detection_of_IoT_botnet_attacks_N_BaIoT Dataset [48].

Features Data Type Description

H Stream aggregation Stats summarizing the recent traffic from this packet’s host (IP)

HH Stream aggregation Stats summarizing the recent traffic going from this packet’s host (IP) to the packet’s
destination host.

HpHp Stream aggregation Stats summarizing the recent traffic going from this packet’s host+port (IP) to the
packet’s destination host+port. Example 192.168.4.2:1242→ 192.168.4.12:80

HH_jit Stream aggregation Stats summarizing the jitter of the traffic going from this packet’s host (IP) to the
packet’s destination host.

L5, L3, L1, . . . Time-frame The decay factor Lambda used in the damped window

Weight Statistics The weight of the stream (can be viewed as the number of items observed in recent
history)

Mean Statistics The weight of the stream (can be viewed as the number of items observed in recent
history)

Std Statistics The weight of the stream (can be viewed as the number of items observed in recent
history)

Radius Statistics The root squared sum of the two streams’ variances

Magnitude Statistics The root squared sum of the two streams’ means

Cov Statistics an approximated covariance between two streams

pcc Statistics an approximated covariance between two streams

The dataset contains 10 attacks. The first five attacks fall under the parent category of
BASHLITE:

(1) BL_Scan: Scanning the network for vulnerable devices
(2) BL_Junk: Sending spam data
(3) BL_UDP: UDP flooding
(4) BL_TCP: TCP flooding
(5) BL_COMBO: Sending spam data and opening a connection to a specified IP address

and port

The remaining five attacks are variations of Mirai:

(1) Mirai_Scan: Automatic scanning for vulnerable devices
(2) Mirai_Ack: Ack flooding
(3) Mirai_Syn: Syn flooding
(4) Mirai_UDP: UDP flooding
(5) Mirai_UDPplain: UDP flooding with fewer options, optimized for higher packet-per-

second (PPS).

3.4. CIRA-CIC-DoHBrw-2020 Dataset
Dataset Summary

The dataset has two layers. The traffic is segregated using a feature engineer tool called
DoHMeter. DoHMeter classifies traffic as DoH and non-DoH and generates statistical
features in the first layer. In the second layer, DoHMeter classifies traffic as either benign or
malicious based on time-series. The network traffic are collected in the formats of HTTPS
and DoH. To generate traffic, a variety of 10,000 Alexa websites were accessed. Tools
such as DNS tunneling and browsers (e.g., Google Chrome, Mozilla Firefox) were used to
generate benign data. Tools such as dns2tcp, DNSCat2, and Iodine, which make up the
attack classes, were used to generate malicious data.

The features for this dataset are listed in Table 5. The dataset contains 34 features, of
which 28 are statistically extracted.

Sensors 2021, 21, 4834 16 of 37

Table 5. Features of the CIRA-CIC-DoHBrw-2020 Dataset [49].

Features Data Type Description

SourceIP str IP of source
DestinationIP str IP of destination

SourcePort str Source port number
DestinationPort str Port number of destination

TimeStamp str Systime
Duration str Duration of packet in transit

FlowBytesSent str Number of flow bytes sent
FlowSentRate float64 Rate of flow bytes sent

FlowBytesReceived float64 Number of flow bytes received
FlowReceivedRate float64 Rate of flow bytes received

PacketLengthVariance float64 Variance of packet length
PacketLengthStandardDeviation float64 Standard deviation of packet length

PacketLengthMean float64 Mean packet length
PacketLengthMedian float64 Median packet length
PacketLengthMode float64 Mode packet length

PacketLengthSkewFromMedian float64 Skew from median packet length
PacketLengthSkewFromMode float64 Skew from mode packet length

PacketLengthCoefficientofVariation float64 Coefficient of variation of packet length
PacketTimeVariance float64 Variance of packet time

PacketTimeStandardDeviation float64 Standard deviation of packet time
PacketTimeMean float64 Mean packet time

PacketTimeMedian float64 Median packet time
PacketTimeMode float64 Mode packet time

PacketTimeSkewFromMedian float64 Skew from median packet time
PacketTimeSkewFromMode float64 Skew from mode packet time

PacketTimeCoefficientofVariation float64 Coefficient of variation of packet time

ResponseTimeTimeVariance float64 Variance of request/response time
difference

ResponseTimeTimeStandardDeviation float64 Standard deviation of request/response
time difference

ResponseTimeTimeMean float64 Mean request/response time difference
ResponseTimeTimeMedian float64 Median request/response time difference
ResponseTimeTimeMode float64 Mode request/response time difference

ResponseTimeTimeSkewFromMedian float64 Skew from median request/response
time difference

ResponseTimeTimeSkewFromMode float64 Skew from mode request/response time
difference

ResponseTimeTimeCoefficientofVariation float64 Coefficient of variation of
request/response time difference

4. Experimental Setup

The experiments were executed on a computer platform with specifications including
an Intel Xeon W-2195 2.30 GHz 36 cores processor, 251.4 GB of RAM, Quadro RTX8000
with disk space of 2.0 TB, and an operating system Ubuntu 18.04. The DL structure was
developed using the Python programming language and utilizing the TensorFlow-GPU
library with Keras neural network library. To balance the dataset for better performance,
the imbalanced-learn package [123], an open-sourced Python package, was used. To verify
the capabilities of the proposed models, we used three datasets: CCD-INID-V1, BaIoT [48],
and DoH20 [49].

4.1. Data Preparation and Pre-Processing

The data pre-processing begins with selecting a dataset and converting categorial
values into numerical data. To avoid data scrutiny, specific feature columns are dropped
because of substantial missing values. Since all three datasets have an imbalanced propor-
tion of data between each attack, we applied imbalanced-learn to balance the data. Data is

Sensors 2021, 21, 4834 17 of 37

then split into training and test sets using an 80–20 ratio. 80% of data is used for training
and the rest is used for testing.

The data preparation steps for the CCD-INID-V1 dataset are illustrated in Figure 7.
After capturing pcap files with Wireshark, for Step 1 we export the data into separate csv
files and add an extra column named ‘Attack’ to specify the nature of the file. Each pcap file
can be exported into csv format of which each line represents a packet. Since we captured
more than 50 GB of raw data, to avoid the workstation freezing up from heavy workload
from Wireshark captures, we applied automatic separation of files with a ceiling of 2 GB of
file size. From Step 2 onwards, we proceed with the process using a Jupyter Notebook file
with the assistance of the Pandas library. In Step 2, we combine attack labeled csv files with
csv files that carry benign traffic. We repeat this process for the 42 csv files in Step 3. In the
next step, we combine all the attacks with all the benign traffic by applying concatenation.
In Step 5, since we labeled all attacks, any missing value in the ‘Attack’ column is benign
traffic. Therefore, we load in the files as dataframes and label them as ‘Normal.’ From
Step 6 to Step 9, the procedures vary depending on whether we export an anomaly dataset
for binary classification or an attack-based dataset for multiclass classification. Starting
with Step 6, since in an anomaly dataset, the traffic is essentially grouped into either as
‘Normal’ traffic or an ‘Attack,’ therefore if we spot ‘Normal’ labels from the ‘Attack’ column,
we continue to apply ‘Normal’ labeling in the new column ‘Class.’ Otherwise, we label
the packet as ‘Attack.’ If we are exporting a multiclass dataset, we execute Step 8. If we
export a binary dataset, we proceed with Step 9. Eventually, we export the output file and
conclude the data preparation procedure.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 34

The data preparation steps for the CCD-INID-V1 dataset are illustrated in Figure 7.
After capturing pcap files with Wireshark, for Step 1 we export the data into separate csv
files and add an extra column named ‘Attack’ to specify the nature of the file. Each pcap
file can be exported into csv format of which each line represents a packet. Since we cap-
tured more than 50 GB of raw data, to avoid the workstation freezing up from heavy
workload from Wireshark captures, we applied automatic separation of files with a ceiling
of 2 GB of file size. From Step 2 onwards, we proceed with the process using a Jupyter
Notebook file with the assistance of the Pandas library. In Step 2, we combine attack la-
beled csv files with csv files that carry benign traffic. We repeat this process for the 42 csv
files in Step 3. In the next step, we combine all the attacks with all the benign traffic by
applying concatenation. In Step 5, since we labeled all attacks, any missing value in the
‘Attack’ column is benign traffic. Therefore, we load in the files as dataframes and label
them as ‘Normal.’ From Step 6 to Step 9, the procedures vary depending on whether we
export an anomaly dataset for binary classification or an attack-based dataset for mul-
ticlass classification. Starting with Step 6, since in an anomaly dataset, the traffic is essen-
tially grouped into either as ‘Normal’ traffic or an ‘Attack,’ therefore if we spot ‘Normal’
labels from the ‘Attack’ column, we continue to apply ‘Normal’ labeling in the new col-
umn ‘Class.’ Otherwise, we label the packet as ‘Attack.’ If we are exporting a multiclass
dataset, we execute Step 8. If we export a binary dataset, we proceed with Step 9. Eventu-
ally, we export the output file and conclude the data preparation procedure.

(a)

(b)

Figure 7. Data preparation for CCD IoT Network Intrusion Dataset V1. (a) Steps 1–5; (b) Steps 6–
10.

Figure 7. Data preparation for CCD IoT Network Intrusion Dataset V1. (a) Steps 1–5; (b) Steps 6–10.

Sensors 2021, 21, 4834 18 of 37

For pre-processing the CCD-INID-V1 dataset, the steps are quick. Since no missing
values are incurred from any feature columns, we need to convert the data into numerical
values. The target column is classified as either ‘0’ or ‘1’ for anomaly detection or a range
from ‘0’ to ‘5’ for multiclass attack-based detection.

In the process of preparing the Balot dataset, we encountered a problem. Since the
dataset contains traffic from 9 different devices and half of the attacks were missing for
several devices. To ensure we could experiment on as many attacks as possible, we chose
the data from Danmini Doorbell, which carries all 10 attack types. However, since each
attack is separated by folders and benign traffic is a generic csv file for all of the devices,
we had to combine the attack files with the benign traffic using Pandas as well. Since the
dataset is originated from 12 base features, listed in Table 3, and converted into 115 features
with the help of an autoencoder, there are no missing values in the dataset and we only
needed to drop the first sequential column before wrapping up the preparation process.
For pre-processing, we converted any non-numeric values into categorical values before
converting them to numeric values. We applied this dictionary pairing for the multiclass
labeling: {‘Normal’: 10, ‘BL_combo’: 0, ‘BL_junk’: 1, ‘BL_scan’: 2, ‘BL_tcp’: 3, BL_udp: 4,
‘Miral_ack’: 5, ‘Mirai_scan’: 6, ‘Mirai_syn’: 7, ‘Mirai_udp’: 8, ‘Mirai_ack’: 9}.

For the DoH20 Dataset, we apply different procedures for the anomaly dataset and
the multiclass dataset. The DoH20 dataset contains 4 main files for binary classification:
l1doh, l1nondoh, l2benign and l2malicious. The research group that created this dataset
also produced a feature engineering toolkit named DoHMeter, which produces 28 features
on any pcap file. The second file contains data before applying the toolkit whereas the
first file is the end result after application. The files ‘l2benign’ and ‘l2malicious’ contain
the features generated from the toolkit as well. We only needed to combine the malicious
and benign files before training and testing. However, we had to drop the feature columns
of ‘Standard Deviation of Request/response time difference’ and ‘Standard Deviation of
Request/response time difference’ due to missing values. For the multiclass dataset, there
were three malicious files given, named ‘dns2tcp,’ ‘DNSCat2,’ and ‘Iodine.’ All three names
specify the tools used for attacks. The attacks were carried out on 4 servers: AdGuard,
Cloudfare, GoogleDNS and Quad9. We treat each of these tools as a type of attack. The
three attacks are combined with benign traffic into a group of 4 classes.

4.2. Metrics Used for Evaluations

In this research, two types of classifications were conducted: binary and multi-class.
Normal and anomaly are the two classes in binary classification. For the CCD-INID-V1
dataset, the classes include the 5 attacks and the normal traffic. A total of 11 classes are
available for multiclass classification for the Balot dataset. The DoH20 dataset contains
4 class: 3 attacks and 1 normal.

We apply the confusion matrix to analyze the performance ontology, which is based
on truly or falsely classified values. If a value is classified as true positive (TP), it means
the attack packets has been correctly detected. If a benign packet has been falsely classified,
then the packet is labeled as false positive (FP). Packet classified as true negative (TN)
means that benign traffic has been recognized as normal by the detector. If a value is
categorized as false negative (FN), it means the attack has not been spotted by the detector
and the value is classified as benign traffic. If all values fall into TP and TN categories, then
the IDS reaches the most optimal state. However, if an IDS has substantial FP and FN, then
we would rather have more FP than FN.

For performance testing, we use metrics such as accuracy, detection rate, precision,
recall, F1-score, and AUC. But we also consider the CPU/GPU memory consumed, training
and testing losses over epochs, and computation runtimes.

Sensors 2021, 21, 4834 19 of 37

5. Results

In this section, we compare the performances of our models with the traditional
ML algorithms when applied on the three datasets. We refer to the three datasets as
CCD-INID-V1, Balot, and DoH20, respectively.

5.1. Feature Importance

Figures 8–10 show the feature importance using the RF and XGboost on three datasets.
After dimensionality reduction, we were able to reduce feature size to 41 when using RF
and to 7 when using XGBoost without compromising the detection accuracies on CCD-
INID-V1 dataset. As for the Balot dataset, we reduced feature size from 115 to 102 using RF.
We reduced feature size to just 24 using XGBoost. On DoH20 dataset, we reduced feature
size from 29 to 15 using RF whereas with XGBoost, we reduced feature size to just 11.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 34

5. Results
In this section, we compare the performances of our models with the traditional ML

algorithms when applied on the three datasets. We refer to the three datasets as CCD-
INID-V1, Balot, and DoH20, respectively.

5.1. Feature Importance
Figures 8–10 show the feature importance using the RF and XGboost on three da-

tasets. After dimensionality reduction, we were able to reduce feature size to 41 when
using RF and to 7 when using XGBoost without compromising the detection accuracies
on CCD-INID-V1 dataset. As for the Balot dataset, we reduced feature size from 115 to
102 using RF. We reduced feature size to just 24 using XGBoost. On DoH20 dataset, we
reduced feature size from 29 to 15 using RF whereas with XGBoost, we reduced feature
size to just 11.

(a) (b)

Figure 8. Feature importance on CCD-INID-V1 dataset. (a) RF and (b) XGBoost.

(a) (b)

Figure 9. Feature importance on Balot dataset. (a) RF and (b) XGBoost.

(a) (b)

Figure 10. Feature importance on DoH20 dataset. (a) RF and (b) XGBoost es.

Figure 8. Feature importance on CCD-INID-V1 dataset. (a) RF and (b) XGBoost.

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

(a) (b)

Figure 9. Feature importance on Balot dataset. (a) RF and (b) XGBoost.

Figure 9. Feature importance on Balot dataset. (a) RF and (b) XGBoost.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 34

5. Results
In this section, we compare the performances of our models with the traditional ML

algorithms when applied on the three datasets. We refer to the three datasets as CCD-
INID-V1, Balot, and DoH20, respectively.

5.1. Feature Importance
Figures 8–10 show the feature importance using the RF and XGboost on three da-

tasets. After dimensionality reduction, we were able to reduce feature size to 41 when
using RF and to 7 when using XGBoost without compromising the detection accuracies
on CCD-INID-V1 dataset. As for the Balot dataset, we reduced feature size from 115 to
102 using RF. We reduced feature size to just 24 using XGBoost. On DoH20 dataset, we
reduced feature size from 29 to 15 using RF whereas with XGBoost, we reduced feature
size to just 11.

(a) (b)

Figure 8. Feature importance on CCD-INID-V1 dataset. (a) RF and (b) XGBoost.

(a) (b)

Figure 9. Feature importance on Balot dataset. (a) RF and (b) XGBoost.

(a) (b)

Figure 10. Feature importance on DoH20 dataset. (a) RF and (b) XGBoost es. Figure 10. Feature importance on DoH20 dataset. (a) RF and (b) XGBoost es.

Sensors 2021, 21, 4834 20 of 37

5.2. Training, Testing Loss and Accuracy over Epochs

As we see in Table 6, for 10 epochs of training and testing, RCNN was able to achieve
the highest predicting accuracy of 0.9563 with the lowest loss of 0.7005 on CCD-INID-V1 in
the 5th epoch. Prediction accuracy of 0.9996 is reached in 6th epoch with a low testing loss
of 0.0064 when experimenting on the Balot dataset. On the DoH20 dataset, RCNN achieved
a testing accuracy of 0.9818 in epoch 3 even though it only gained a training accuracy of
0.7117 in the same epoch. RCNN reached the best training and testing accuracy in epoch 4
while keeping the losses low.

Table 6. Training, testing loss and accuracy over epochs using RCNN for binary classification.

Datasets Epochs Training
Accuracy

Training
Loss

Testing
Accuracy Testing Loss

CCD-INID-
V1

1 0.8883 1.3042 0.9380 0.9850
2 0.9428 0.9088 0.9500 0.7976
3 0.9389 0.9761 0.9505 0.7937
4 0.9376 0.9980 0.9492 0.8128
5 0.9378 0.9959 0.9563 0.7005
6 0.9410 0.9443 0.9514 0.7790
7 0.9452 0.8758 0.9484 0.8259
8 0.9435 0.9046 0.9504 0.7951
9 0.9446 0.8881 0.9515 0.7772

10 0.9456 0.8713 0.9515 0.7773

Balot

1 0.9748 0.0927 0.9981 0.0257
2 0.9980 0.0202 0.9986 0.0207
3 0.9985 0.0182 0.9992 0.0114
4 0.9980 0.0266 0.9986 0.0139
5 0.9989 0.0153 0.9994 0.0104
6 0.9989 0.0158 0.9996 0.0064
7 0.9994 0.0088 0.9990 0.0149
8 0.9992 0.0125 0.9990 0.0125
9 0.9993 0.0102 0.9990 0.0165

10 0.9994 0.0097 0.9989 0.0176

DoH20

1 0.8684 0.5958 0.5002 5.6470
2 0.5001 7.9952 0.5000 8.0151
3 0.7117 4.5212 0.9818 0.1519
4 0.9766 0.1375 0.9863 0.0601
5 0.5709 6.8518 0.5000 8.0151
6 0.4998 8.0176 0.5000 8.0151
7 0.4999 8.0165 0.5000 8.0151
8 0.5000 8.0158 0.5000 8.0151
9 0.5002 8.0122 0.5000 8.0151

10 0.4999 8.0159 0.5000 8.0151

As we can see from Table 7, the training and testing accuracies of XCNN are identical
to that of RCNN. However, when taking the feature reduction into consideration, XCNN
was able to achieve this with reduced features on all three datasets.

5.3. Confusion Matrix Comparisons

Tables 8 and 9 show the confusion matrices for binary classification. Tables 10–12 carry
the confusion matrices for the multiclass classification. For the binary classifications, ‘0’
stands for normal traffic and ‘1’ stands for an anomaly. As for the multiclass classifications,
‘0’ denotes the normal traffic while other integer labels denote various types of attacks.

Sensors 2021, 21, 4834 21 of 37

Table 7. Training, testing loss and accuracy over epochs using XCNN for binary classification.

Datasets Epochs Training
Accuracy

Training
Loss

Testing
Accuracy Testing Loss

CCD-INID-
V1

1 0.8883 1.3042 0.9380 0.9850
2 0.9428 0.9088 0.9500 0.7976
3 0.9389 0.9761 0.9505 0.7937
4 0.9376 0.9980 0.9492 0.8128
5 0.9378 0.9959 0.9563 0.7005
6 0.9410 0.9443 0.9514 0.7790
7 0.9452 0.8758 0.9484 0.8259
8 0.9435 0.9046 0.9504 0.7951
9 0.9446 0.8881 0.9515 0.7772

10 0.9456 0.8713 0.9515 0.7773

Balot

1 0.9748 0.0927 0.9981 0.0257
2 0.9980 0.0202 0.9986 0.0207
3 0.9985 0.0182 0.9992 0.0114
4 0.9980 0.0266 0.9986 0.0139
5 0.9989 0.0153 0.9994 0.0104
6 0.9989 0.0158 0.9996 0.0064
7 0.9994 0.0088 0.9990 0.0149
8 0.9992 0.0125 0.9990 0.0125
9 0.9993 0.0102 0.9990 0.0165

10 0.9994 0.0097 0.9989 0.0176

DoH20

1 0.8684 0.5958 0.5002 5.6470
2 0.5001 7.9952 0.5000 8.0151
3 0.7117 4.5212 0.9818 0.1519
4 0.9766 0.1375 0.9863 0.0601
5 0.5709 6.8518 0.5000 8.0151
6 0.4998 8.0176 0.5000 8.0151
7 0.4999 8.0165 0.5000 8.0151
8 0.5000 8.0158 0.5000 8.0151
9 0.5002 8.0122 0.5000 8.0151

10 0.4999 8.0159 0.5000 8.0151

Table 8. Confusion matrices of RCNN and XCNN with binary classification.

Datasets Predictions Actual Results Predictions Actual Results

CCD-INID-
V1

RCNN
Actual

XCNN
Actual

0 1 0 1

Predicted
0 8558 424

Predicted
0 8977 5

1 361 8621 1 29 8953

Balot

RCNN
Actual

XCNN
Actual

0 1 0 1

Predicted
0 306,212 0

Predicted
0 306,202 12

1 0 440,287 1 10 440,275

DoH20

RCNN
Actual

XCNN
Actual

0 1 0 1

Predicted
0 8912 70

Predicted
0 9985 16

1 177 8805 1 8 9993

Sensors 2021, 21, 4834 22 of 37

Table 9. Confusion matrices of generic algorithms with binary classification.

Datasets Predictions Actual Results Predictions Actual Results Predictions Actual Results Predictions Actual Results

CCD-
INID-

V1

KNN
Actual

NB
Actual

LR
Actual

SVM
Actual

0 1 0 1 0 1 0 1

Predicted
0 11,088 0

Predicted
0 7897 3191

Predicted
0 7897 3191

Predicted
0 7897 3191

1 0 11,829 1 5374 6455 1 5374 6455 1 5374 6455

Balot

KNN
Actual

NB
Actual

LR
Actual

SVM
Actual

0 1 0 1 0 1 0 1

Predicted
0 303,123 2313

Predicted
0 183,728 145,294

Predicted
0 228,758 76,678

Predicted
0 172,832 132,604

1 3089 437,974 1 122,484 294,993 1 36,060 405,003 1 32,023 409,040

DoH20

KNN
Actual

NB
Actual

LR
Actual

SVM
Actual

0 1 0 1 0 1 0 1

Predicted
0 4038 808

Predicted
0 4038 808

Predicted
0 3415 1431

Predicted
0 3225 1621

1 319 62,246 1 319 62,246 1 523 62,042 1 3941 58,624

Sensors 2021, 21, 4834 23 of 37

Table 10. Confusion matrices for CCD-INID-V1 dataset with multiclass classification.

Approach 0 1 2 3 4 5

RCNN

0 409 0 575 0 0 0

1 263 0 721 0 0 0

2 134 0 850 0 0 0

3 124 0 860 0 0 0

4 171 0 813 0 0 0

5 72 0 912 0 0 0

XCNN

0 978 0 0 5 1 0

1 839 135 3 2 0 5

2 956 0 19 2 6 1

3 146 0 0 838 0 0

4 963 0 1 1 16 3

5 883 0 0 0 1 100

KNN

0 2867 0 0 0 0 0

1 0 2674 0 0 0 0

2 0 0 1958 0 0 0

3 0 0 0 11,829 0 0

4 0 0 0 0 2384 0

5 0 0 0 0 0 1205

NB

0 2867 0 0 0 0 0

1 0 2674 0 0 0 0

2 0 0 1958 0 0 0

3 0 0 0 11,829 0 0

4 0 0 0 0 2384 0

5 0 0 0 0 0 1205

LR

0 2867 0 0 0 0 0

1 0 2674 0 0 0 0

2 0 0 1958 0 0 0

3 0 0 0 11,829 0 0

4 0 0 0 0 2384 0

5 0 0 0 0 0 1205

Sensors 2021, 21, 4834 24 of 37

Table 11. Confusion matrices for Balot dataset with multiclass classification.

Approach 0 1 2 3 4 5 6 7 8 9 10

RCNN

0 0 0 0 0 0 0 9762 0 0 0 0

1 0 0 0 0 0 0 11,892 0 0 0 0

2 0 0 0 0 0 0 5740 0 0 0 0

3 0 0 0 0 0 0 5864 0 0 0 0

4 0 0 0 0 0 0 18,436 0 0 0 0

5 0 0 0 0 0 0 21,404 0 0 0 0

6 0 0 0 0 0 0 20,460 0 0 0 0

7 0 0 0 0 0 0 21,640 0 0 0 0

8 0 0 0 0 0 0 24,461 0 0 0 0

9 0 0 0 0 0 0 47,605 0 0 0 0

10 0 0 0 0 0 0 20,439 0 0 0 0

XCNN

0 0 0 0 0 0 0 0 0 0 9762 0

1 0 0 0 0 0 0 0 0 0 11,892 0

2 0 0 0 0 0 0 0 0 0 5740 0

3 0 0 0 0 0 0 0 0 0 5864 0

4 0 0 0 0 0 0 0 0 0 18,436 0

5 0 0 0 0 0 0 0 0 0 21,404 0

6 0 0 0 0 0 0 0 0 0 20,460 0

7 0 0 0 0 0 0 0 0 0 21,640 0

8 0 0 0 0 0 0 0 0 0 24,461 0

9 0 0 0 0 0 0 0 0 0 47,605 0

10 0 0 0 0 0 0 0 0 0 20,439 0

KNN

0 15,071 40 13 2 0 0 0 0 1 1 6

1 34 7113 2 5 0 1 0 0 0 0 0

2 15 6 7419 0 0 0 2 1 0 1 64

3 15 8 5 22,916 1 0 0 0 0 0 1

4 6 4 1 1 26,342 0 0 0 0 0 1

5 1 0 0 0 0 4644 1 222 2350 11,663 10

6 0 0 18 0 0 0 26,917 0 0 0 18

7 1 2 5 0 0 918 1 23,125 4508 1760 27

8 1 0 12 0 0 3402 1 4980 47,988 3291 62

9 0 0 0 0 0 13,108 1 2693 3285 6428 15

10 3 5 58 0 0 13 0 8 39 12 12,303

NB

0 15,071 40 13 2 0 0 0 0 1 1 6

1 34 7113 2 5 0 1 0 0 0 0 0

2 15 6 7419 0 0 0 2 1 0 1 64

3 15 8 5 22,916 1 0 0 0 0 0 1

4 6 4 1 1 26,342 0 0 0 0 0 1

5 1 0 0 0 0 4644 1 222 2350 11,663 10

6 0 0 18 0 0 0 26,917 0 0 0 18

7 1 2 5 0 0 918 1 23,125 4508 1760 27

Sensors 2021, 21, 4834 25 of 37

Table 11. Cont.

Approach 0 1 2 3 4 5 6 7 8 9 10

8 1 0 12 0 0 3402 1 4980 47,988 3291 62

9 0 0 0 0 0 13,108 1 2693 3285 6428 15

10 3 5 58 0 0 13 0 8 39 12 12,303

LR

0 15,071 40 13 2 0 0 0 0 1 1 6

1 34 7113 2 5 0 1 0 0 0 0 0

2 15 6 7419 0 0 0 2 1 0 1 64

3 15 8 5 22,916 1 0 0 0 0 0 1

4 6 4 1 1 26,342 0 0 0 0 0 1

5 1 0 0 0 0 4644 1 222 2350 11,663 10

6 0 0 18 0 0 0 26,917 0 0 0 18

7 1 2 5 0 0 918 1 23,125 4508 1760 27

8 1 0 12 0 0 3402 1 4980 47,988 3291 62

9 0 0 0 0 0 13,108 1 2693 3285 6428 15

10 3 5 58 0 0 13 0 8 39 12 12,303

Table 12. Confusion matrices for DoH20 dataset with multiclass classification.

Approach 0 1 2 3

RCNN

0 0 3942 0 0

1 0 33,542 0 0

2 0 7229 0 0

3 0 9243 0 0

XCNN

0 801 2325 567 249

1 72 31,865 992 613

2 70 3161 2317 1681

3 70 3941 1373 3859

KNN

0 4366 334 75 93

1 130 40,769 423 594

2 32 182 8643 135

3 14 249 253 11,152

NB

0 4366 334 75 93

1 130 40,769 423 594

2 32 182 8643 135

3 14 249 253 11,152

LR

0 4366 334 75 93

1 130 40,769 423 594

2 32 182 8643 135

3 14 249 253 11,152

As we find from Table 8, RCNN and XCNN performed quite well on all three datasets.
We obtained reasonably low FP and FN. XCNN performed better than RCNN on the

Sensors 2021, 21, 4834 26 of 37

CCD-INID-V1 and DoH20 datasets while RCNN outperforms XCNN slightly on the Balot
dataset.

For binary classifications, we compared the results with 4 traditional ML algorithms:
KNN, NB, LR and SVM. From Table 9, we can identify that KNN consistently performed
well across the three datasets. NB achieved same detection rate as KNN on the DoH20
dataset but struggled with CCD-INID-V1 and Balot. For both CCD-INID-V1 and Balot
dataset, NB were unable to detect many attack packets and raised a lot of false alarms.
LR didn’t perform well for all datasets as compared with the other algorithms with the
exception of SVM. SVM achieved the worst results on all the datasets. Looking at the
confusion matrixes, RCNN and XCNN detected more anomalies and raised lesser false
alarms than the other generic algorithms over the three datasets; except for the fact that
KNN performed better on the CCD-INID-V1 dataset.

For multiclass classifications, we compared the results with 3 traditional ML algo-
rithms: KNN, NB, and LR. In Table 10, we can see that RCNN and XCNN did not do as
well as KNN, NB, and LR. In Tables 11 and 12, the same pattern is found as Table 10.

5.4. Comparison of Precision, Recall, F1-Score

Table 13 shows the performance of RCNN and XCNN for binary classification.
Table 14 shows results from multiclass classifications.

Table 13. Comparisons of binary results for precision, recall, F1-score and runtimes for RCNN, XCNN and
generic algorithms.

Dataset/Approach Precision Recall F1-Score Train Time Predict Time Total
Runtime

CCD-INID-
V1/RCNN

0 0.96 0.95 0.96
28.96 s 3.32 s 32.28 s

1 0.95 0.96 0.96

CCD-INID-
V1/XCNN

0 0.99 0.99 0.99
42.32 s 9.07 s 51.39 s

1 0.99 0.99 0.99

CCD-INID-
V1/KNN

0 1.00 1.00 1.00
26.1 ms 7 min 53 s 7 min 53 s

1 1.00 1.00 1.00

CCD-INID-V1/LR
0 0.60 0.71 0.65

8.57 s 350 ms 8.92 s
1 0.67 0.55 0.60

CCD-INID-
V1/NB

0 0.60 0.71 0.65
19.9 ms 18.2 ms 38.1 ms

1 0.67 0.55 0.60

CCD-INID-
V1/SVM

0 0.60 0.71 0.65
22.3 s 34.9 ms 22.33 s

1 0.67 0.55 0.60

Balot/RCNN
0 1.00 1.00 1.00

63.23 s 8.24 s 71.47 s
1 1.00 1.00 1.00

Balot/XCNN
0 0.99 0.99 0.99

60.03 s 12.10 s 72.13 s
1 0.99 0.99 0.99

Balot/KNN
0 0.99 0.99 0.99

5 min 21 s 165 min 41 s 171 min 2 s
1 0.99 0.99 0.99

Balot/LR
0 0.86 0.75 0.80

19 min 3 s 2 min 14 s 21 min 17 s
1 0.84 0.92 0.88

Balot/NB
0 0.60 0.71 0.65

4 min 32 s 5 min 21 s 9 min 53 s
1 0.67 0.55 0.60

Balot/SVM
0 0.84 0.57 0.68

25 min 6 s 3 min 17 s 28 min 23 s
1 0.76 0.93 0.83

Sensors 2021, 21, 4834 27 of 37

Table 13. Cont.

Dataset/Approach Precision Recall F1-Score Train Time Predict Time Total
Runtime

DoH20/RCNN
0 0.98 0.99 0.99

24 s 11.45 s 35.45 s
1 0.99 0.98 0.99

DoH20/XCNN
0 1.00 1.00 1.00

67.45 s 5.46 s 72.91 s
1 1.00 1.00 1.00

DoH20/KNN
0 0.93 0.83 0.88

19 ms 79 min 46 s 79 min 46 s
1 0.99 0.99 0.99

DoH20/LR
0 0.87 0.70 0.78

16 min 44 s 226 ms 166 min 46 s
1 0.98 0.99 0.98

DoH20/NB
0 0.93 0.83 0.88

109 ms 23.6 ms 132.6 ms
1 0.99 0.99 0.99

DoH20/SVM
0 0.45 0.67 0.54

50.2 s 36.3 ms 50.24 s
1 0.97 0.94 0.95

Table 14. Comparisons of multiclass results for precision, recall, F1-score and runtimes for RCNN, XCNN and
generic algorithms.

Dataset/Approach Precision Recall F1-Score Train Time Predict Time Total Runtime

CCD-INID-
V1/RCNN

0 0.35 0.42 0.38

18.24 s 4.18 s 22.42 s

1 0 0 0

2 0.18 0.86 0.30

3 0 0 0

4 0 0 0

5 0 0 0

CCD-INID-
V1/XCNN

0 0.21 0.99 0.34

16.31 9.66 s 25.97 s

1 1.00 0.14 0.24

2 0.83 0.02 0.04

3 0.99 0.85 0.91

4 0.67 0.02 0.03

5 0.92 0.10 0.18

CCD-INID-
V1/KNN

0 1.00 1.00 1.00

5 min 41 s 5 min 29 s 10 min 70 s

1 1.00 1.00 1.00

2 1.00 1.00 1.00

3 1.00 1.00 1.00

4 1.00 1.00 1.00

5 1.00 1.00 1.00

CCD-INID-V1/LR

0 1.00 1.00 1.00

20 ms 1 min 6 s 1 min 6 s

1 1.00 1.00 1.00

2 1.00 1.00 1.00

3 1.00 1.00 1.00

4 1.00 1.00 1.00

5 1.00 1.00 1.00

Sensors 2021, 21, 4834 28 of 37

Table 14. Cont.

Dataset/Approach Precision Recall F1-Score Train Time Predict Time Total Runtime

CCD-INID-
V1/NB

0 1.00 1.00 1.00

45.1 ms 43 ms 88.1 ms

1 1.00 1.00 1.00

2 1.00 1.00 1.00

3 1.00 1.00 1.00

4 1.00 1.00 1.00

5 1.00 1.00 1.00

Balot/RCNN

0 0.00 0.00 0.00

297.10 s 70.11 s 367.21 s

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 0.10 1.00 0.19

6 0.00 0.00 0.00

7 0.00 0.00 0.00

8 0.00 0.00 0.00

9 0.00 0.00 0.00

10 0.00 0.00 0.00

Balot/XCNN

0 0.00 0.00 0.00

250.01 s 113.86 s 363.87 s

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 0.00 0.00 0.00

6 0.00 0.00 0.00

7 0.00 0.00 0.00

8 0.00 0.00 0.00

9 0.23 1.00 0.37

10 0.00 0.00 0.00

Balot/KNN

0 0.99 1.00 1.00

531 min 31 s 539 min 28 s 1080 min 59 s

1 0.99 0.99 0.99

2 0.98 0.99 0.99

3 1.00 1.00 1.00

4 1.00 1.00 1.00

5 0.21 0.25 0.23

6 1.00 1.00 1.00

7 0.75 0.76 0.75

8 0.82 0.80 0.81

9 0.28 0.25 0.26

10 0.98 0.99 0.99

Sensors 2021, 21, 4834 29 of 37

Table 14. Cont.

Dataset/Approach Precision Recall F1-Score Train Time Predict Time Total Runtime

Balot/LR

0 0.99 1.00 1.00

22 s 2 min 10 s 2 min 32 s

1 0.99 0.99 0.99

2 0.98 0.99 0.99

3 1.00 1.00 1.00

4 1.00 1.00 1.00

5 0.21 0.25 0.23

6 1.00 1.00 1.00

7 0.75 0.76 0.75

8 0.82 0.80 0.81

9 0.28 0.25 0.26

10 0.98 0.99 0.99

Balot/NB

0 0.99 1.00 1.00

1.42 s 1.43 s 2.85 s

1 0.99 0.99 0.99

2 0.98 0.99 0.99

3 1.00 1.00 1.00

4 1.00 1.00 1.00

5 0.21 0.25 0.23

6 1.00 1.00 1.00

7 0.75 0.76 0.75

8 0.82 0.80 0.81

9 0.28 0.25 0.26

10 0.98 0.99 0.99

DoH20/RCNN

0 0.00 0.00 0.00

42.37 s 8.52 s 50.89 s
1 0.62 1.00 0.77

2 0.00 0.00 0.00

3 0.00 0.00 0.00

DoH20/XCNN

0 0.79 0.20 0.32

42.21 s 8.48 s 50.69 s
1 0.77 0.95 0.85

2 0.44 0.32 0.37

3 0.60 0.42 0.49

DoH20/KNN

0 0.96 0.89 0.93

79 min 45 s 80 min 30 s 160 min 15 s
1 0.98 0.97 0.98

2 0.92 0.96 0.94

3 0.93 0.96 0.94

DoH20/LR

0 0.96 0.90 0.93

28 s 72 min 25 s 72 min 53 s
1 0.98 0.97 0.98

2 0.92 0.96 0.94

3 0.93 0.96 0.94

Sensors 2021, 21, 4834 30 of 37

Table 14. Cont.

Dataset/Approach Precision Recall F1-Score Train Time Predict Time Total Runtime

DoH20/NB

0 0.96 0.90 0.93

27 ms 57.8 ms 84.8 ms
1 0.98 0.97 0.98

2 0.92 0.96 0.94

3 0.93 0.96 0.94

From Table 13, we find that RCNN and XCNN achieved high precision, recall and
F1-scores than the other traditional algorithms on the three datasets except for KNN on
CCD-INID-V1. However, when we consider the total computation time, which includes
training time and prediction time, we discover that RCNN and XCNN used low timespan
to gain high scores. For CCD-INID-V1, LR, NB and SVM trained extremely quick but were
unable to get high scores. KNN achieved high scores at the cost of high prediction time.
For Balot, SVM and LR took almost 20 min to train, but could not beat the scores of RCNN,
XCNN and KNN. Even though KNN got high scores, the training time was five times more
to that of RCNN and XCNN and prediction time was 1000% to that of RCNN and XCNN.
NB took less time to train and predict than the other generic algorithms but failed to gain
high scores. Notably, for the DoH20 dataset, SVM does a good job catching the malicious
packets but fail to do so for the normal packets.

For multiclass classification, as shown in Table 14, RCNN and XCNN fail to outperform
the traditional ML algorithms. Although KNN was able to get the highest scores, the
tradeoff is high computational power and runtime. For instance, for the Balot dataset,
KNN used 1081 min to achieve similar results as LR, which took only 150 s, and that of NB,
which only took 1.43 s.

5.5. Comparison of ROC and AUC

AUC is the entire two-dimensional area under the ROC. ROC is a curve that measures
two parameters, the true positive rate and the false positive rate, to show how a classifi-
cation model performs. The x-axis depicts the false positive rate, and the y-axis depicts
the true positive rate. AUC ranges from 0 to 1. If the AUC has a value of 0.0, it means
the model makes 100% incorrect predictions; whereas a value of 1.0 means the model has
perfect predictions. A value of 0.5 means the model makes no separation of classes. AUC
is a desirable form of measure because AUC offers a scaled comparison instead of absolute
values and AUC measures the model’s predictive outcomes without taking account of
classification thresholds.

ROC is highlighted in orange. Figure 11 shows ROC curves for XCNN and RCNN
when applied on the CCD-INID-V1 dataset. As shown, the proposed models show a
reasonable performance in Figure 11a but near perfection in Figure 11b, with AUC close to
the value of 1.0.

Figures 12 and 13 show ROC curves on the Balot dataset and the DoH20 dataset,
respectfully. As shown, the AUC shows a near perfect results in both cases.

Sensors 2021, 21, 4834 31 of 37

Sensors 2021, 21, x FOR PEER REVIEW 28 of 34

5.5. Comparison of ROC and AUC
AUC is the entire two-dimensional area under the ROC. ROC is a curve that

measures two parameters, the true positive rate and the false positive rate, to show how
a classification model performs. The x-axis depicts the false positive rate, and the y-axis
depicts the true positive rate. AUC ranges from 0 to 1. If the AUC has a value of 0.0, it
means the model makes 100% incorrect predictions; whereas a value of 1.0 means the
model has perfect predictions. A value of 0.5 means the model makes no separation of
classes. AUC is a desirable form of measure because AUC offers a scaled comparison in-
stead of absolute values and AUC measures the model’s predictive outcomes without tak-
ing account of classification thresholds.

ROC is highlighted in orange. Figure 11 shows ROC curves for XCNN and RCNN
when applied on the CCD-INID-V1 dataset. As shown, the proposed models show a rea-
sonable performance in Figure 11a but near perfection in Figure 11b, with AUC close to
the value of 1.0.

(a) (b)

Figure 11. ROC diagrams for results of RCNN and XCNN on CCD-INID-V1 dataset. (a) ROC of
RCNN; (b) ROC of XCNN.

Figures 12 and 13 show ROC curves on the Balot dataset and the DoH20 dataset,
respectfully. As shown, the AUC shows a near perfect results in both cases.

(a) (b)

Figure 12. ROC diagrams for results of RCNN and XCNN on Balot dataset. (a) ROC of RCNN; (b)
ROC of XCNN.

Figure 11. ROC diagrams for results of RCNN and XCNN on CCD-INID-V1 dataset. (a) ROC of
RCNN; (b) ROC of XCNN.

Sensors 2021, 21, x FOR PEER REVIEW 28 of 34

5.5. Comparison of ROC and AUC
AUC is the entire two-dimensional area under the ROC. ROC is a curve that

measures two parameters, the true positive rate and the false positive rate, to show how
a classification model performs. The x-axis depicts the false positive rate, and the y-axis
depicts the true positive rate. AUC ranges from 0 to 1. If the AUC has a value of 0.0, it
means the model makes 100% incorrect predictions; whereas a value of 1.0 means the
model has perfect predictions. A value of 0.5 means the model makes no separation of
classes. AUC is a desirable form of measure because AUC offers a scaled comparison in-
stead of absolute values and AUC measures the model’s predictive outcomes without tak-
ing account of classification thresholds.

ROC is highlighted in orange. Figure 11 shows ROC curves for XCNN and RCNN
when applied on the CCD-INID-V1 dataset. As shown, the proposed models show a rea-
sonable performance in Figure 11a but near perfection in Figure 11b, with AUC close to
the value of 1.0.

(a) (b)

Figure 11. ROC diagrams for results of RCNN and XCNN on CCD-INID-V1 dataset. (a) ROC of
RCNN; (b) ROC of XCNN.

Figures 12 and 13 show ROC curves on the Balot dataset and the DoH20 dataset,
respectfully. As shown, the AUC shows a near perfect results in both cases.

(a) (b)

Figure 12. ROC diagrams for results of RCNN and XCNN on Balot dataset. (a) ROC of RCNN; (b)
ROC of XCNN.
Figure 12. ROC diagrams for results of RCNN and XCNN on Balot dataset. (a) ROC of RCNN; (b)
ROC of XCNN.

Sensors 2021, 21, x FOR PEER REVIEW 29 of 34

(a) (b)

Figure 13. ROC diagrams for results of RCNN and XCNN on DoH20 dataset. (a) ROC of RCNN; (b)
ROC of XCNN.

5.6. Efficiency Comparisons
Table 15 contains information extracted from Table 13. This table shows the total

runtimes of the three models that have the highest precision, recall, F1-score consistently
throughout the anomaly detection experiments.

Table 15. Detection time used by RCNN, XCNN, and KNN for anomaly detections, measured in
seconds.

Dataset RCNN XCNN KNN Epochs
CCD-INID-V1 32.28 s 51.38 s 7 min 53 s 10

Balot 71.46 s 72.12 s 171 min 2 s 10
DoH20 35.45 s 72.91 s 79 min 46 s 10

We compare the computational time taken by RCNN and XCNN when training and
detecting anomalies on the three datasets. We find that RCNN consistently takes lesser
time than XCNN, but considering the size of the datasets, the computation time of XCNN
does not increase proportionally as RCNN does.

When compared with KNN, we find that RCNN and XCNN were much more effi-
cient. For the CCD-INID-V1 dataset, XCNN’s computational time was only 10.8% to that
of KNN, and RCNN’s computation time was only 6.82% to that of KNN. For the Balot
dataset, XCNN’s computation time was only 0.702% to that of KNN, and RCNN’s was
just 0.696% to that of KNN. For the DoH20 dataset, XCNN used 1.52% amount of time of
what KNN used while RCNN only used 0.74% amount of time to KNN. On average, that’s
a 91.74% of reduction to computational resources for RCNN from KNN for all three da-
tasets and a 86.98% reduction for XCNN from KNN.

From the experimental results we find that RCNN and XCNN perform extremely
well when applied on anomaly detection but fail to get accurate predictions for attack-
based detections. Even though more diverse approaches must be examined, we are able
to show that our method is able to significantly reduce computational time by reducing
significant features and maintain high detection rate with minimum false alarms when
dealing with anomaly detection. This is significant especially when dealing with zero-day
attacks, when the signature of new malicious traffic is unrecognizable.

6. Conclusions
In this research, we created a dataset using IoT networks with real smart sensors. The

dataset mimics the real-world network behavior and attacks. We propose a DL-based hy-
brid lightweight model for anomaly detection and multi-attack classification. We combine
two popular embedded feature selection methods, the RF and XGBoost, with the CNN to
form the hybrid model. The model is used to elicit the most important features. A com-

Figure 13. ROC diagrams for results of RCNN and XCNN on DoH20 dataset. (a) ROC of RCNN; (b)
ROC of XCNN.

5.6. Efficiency Comparisons

Table 15 contains information extracted from Table 13. This table shows the total
runtimes of the three models that have the highest precision, recall, F1-score consistently
throughout the anomaly detection experiments.

Sensors 2021, 21, 4834 32 of 37

Table 15. Detection time used by RCNN, XCNN, and KNN for anomaly detections, measured in
seconds.

Dataset RCNN XCNN KNN Epochs

CCD-INID-V1 32.28 s 51.38 s 7 min 53 s 10

Balot 71.46 s 72.12 s 171 min 2 s 10

DoH20 35.45 s 72.91 s 79 min 46 s 10

We compare the computational time taken by RCNN and XCNN when training and
detecting anomalies on the three datasets. We find that RCNN consistently takes lesser
time than XCNN, but considering the size of the datasets, the computation time of XCNN
does not increase proportionally as RCNN does.

When compared with KNN, we find that RCNN and XCNN were much more efficient.
For the CCD-INID-V1 dataset, XCNN’s computational time was only 10.8% to that of
KNN, and RCNN’s computation time was only 6.82% to that of KNN. For the Balot dataset,
XCNN’s computation time was only 0.702% to that of KNN, and RCNN’s was just 0.696%
to that of KNN. For the DoH20 dataset, XCNN used 1.52% amount of time of what KNN
used while RCNN only used 0.74% amount of time to KNN. On average, that’s a 91.74%
of reduction to computational resources for RCNN from KNN for all three datasets and a
86.98% reduction for XCNN from KNN.

From the experimental results we find that RCNN and XCNN perform extremely well
when applied on anomaly detection but fail to get accurate predictions for attack-based
detections. Even though more diverse approaches must be examined, we are able to show
that our method is able to significantly reduce computational time by reducing significant
features and maintain high detection rate with minimum false alarms when dealing with
anomaly detection. This is significant especially when dealing with zero-day attacks, when
the signature of new malicious traffic is unrecognizable.

6. Conclusions

In this research, we created a dataset using IoT networks with real smart sensors.
The dataset mimics the real-world network behavior and attacks. We propose a DL-
based hybrid lightweight model for anomaly detection and multi-attack classification.
We combine two popular embedded feature selection methods, the RF and XGBoost,
with the CNN to form the hybrid model. The model is used to elicit the most important
features. A comparative analysis of performances is given when we apply our model with
other traditional ML algorithms on three IoT-network-based datasets. While the proposed
models fail to outperform the traditional ML algorithms for multi-attack classification, they
outperform the traditional methods for cyber anomaly detection on all three IoT datasets.

We achieved AUC scores of 0.956 with a runtime of 32.28 s on CCD-INID-V1, 0.999
with a runtime of 71.46 s on Balot, and 0.986 with a runtime of 35.45 s on DoH20 using
RCNN. We obtained AUC scores of 0.998 with runtime of 51.38 s on CCD-INID-V1, 0.999
with runtime of 72.12 s on Balot, and 0.999 with runtime of 72.91 s on DoH20 using XCNN.
Compared to KNN, XCNN required 86.98% less computational time and RCNN required
91.74% less computational time to achieve equal or better accurate anomaly detections.
Notably when experimenting on the Balot dataset, even though KNN got high scores,
the training time was five times more to that of RCNN and XCNN and prediction time
was 1000% to that of RCNN and XCNN. The low train time and low predict time is
crucial for the deployment of our IDS. Our IDS can be placed at central server as well as
resource-constrained edge devices. Our lightweight IDS require low retrain time and hence
decreases reaction time to new attacks.

In the future, we plan to explore other avenues to reduce, select or extract features
to achieve better attack-based detection for our IDS. In our first version of the dataset, we
monitor the network behavior of IoT things in smart home and smart lab. The devices
perform straightforward tasks to generate telemetry. However, we did not include multi-

Sensors 2021, 21, 4834 33 of 37

faucet data such as a homeowner surfing internet on smart phone or a lab researcher
gathering resource through browsers. In an effort to make our dataset more complete and
more realistic, we plan to include more user behaviors and more use case scenarios in our
next version.

Author Contributions: Conceptualization, Z.L., N.T., A.S. and K.R.; methodology, Z.L., N.T. and
K.R.; software, Z.L. and A.S.; validation, Z.L., N.T. and A.S.; formal analysis, Z.L.; investigation, Z.L.,
N.T. and A.S.; resources, K.R. and X.Y.; data curation, Z.L., N.T. and A.S.; writing—original draft
preparation, Z.L.; writing—review and editing, Z.L., K.R., M.S., X.Y. and A.Y.; visualization, Z.L.,
N.T. and A.S.; supervision, K.R.; project administration, Z.L. and K.R.; funding acquisition, K.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Cisco Systems, Inc. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of Cisco Systems, Inc.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available with the approval from the Center for Cyber Defense
at North Carolina A&T State University. Please contact zliu2@aggies.ncat.edu for further information.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Khurpade, J.M.; Rao, D.; Sanghavi, P.D. A Survey on IOT and 5G Network. In Proceedings of the 2018 International Conference

on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; IEEE: New York, NY, USA, 2018; pp. 1–3.
2. Nespoli, P.; Mármol, F.G.; Vidal, J.M. Battling against cyberattacks: Towards pre-standardization of countermeasures. Clust.

Comput. 2021, 24, 57–81. [CrossRef]
3. Othmana, Z.; Rahimb, N.; Sadiqc, M. The Human Dimension as the Core Factor in Dealing with Cyberattacks in Higher Education.

Int. J. Innov. Creat. Chang. 2020, 11, 1–19.
4. Gadirova, N. The Impacts of Cyberattacks on Private Firms’ Cash Holdings. Doctoral Dissertation, University of Ottawa, Ottawa,

ON, Canada, 2021.
5. Putchala, M.K. Deep Learning Approach for Intrusion Detection System (ids) in the Internet of Things (iot) Network Using Gated

Recurrent Neural Networks (gru). Master’s Thesis, Wright State University, Dayton, OH, USA, 2017.
6. Li, J.; Zhao, Z.; Li, R. Machine learning-based IDS for software-defined 5G network. IET Netw. 2017, 7, 53–60. [CrossRef]
7. Pushpam, C.A.; Jayanthi, J.G. Systematic Literature Survey on IDS Based on Data Mining. In Proceedings of the International

Conference on Computer Networks and Inventive Communication Technologies, Coimbatore, India, 23–24 May 2019; Springer:
Cham, Switzerland, 2020; pp. 850–860.

8. Mishra, P.; Pilli, E.S.; Varadharajan, V.; Tupakula, U. Intrusion detection techniques in cloud environment: A survey. J. Netw.
Comput. Appl. 2017, 77, 18–47. [CrossRef]

9. Lee, S.K.; Bae, M.; Kim, H. Future of IoT networks: A survey. Appl. Sci. 2017, 7, 1072. [CrossRef]
10. Balaji, S.; Nathani, K.; Santhakumar, R. IoT technology, applications and challenges: A contemporary survey. Wirel. Pers. Commun.

2019, 108, 363–388. [CrossRef]
11. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas, security threats, and

solution architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]
12. Galeano-Brajones, J.; Carmona-Murillo, J.; Valenzuela-Valdés, J.F.; Luna-Valero, F. Detection and mitigation of dos and ddos

attacks in iot-based stateful sdn: An experimental approach. Sensors 2020, 20, 816. [CrossRef] [PubMed]
13. Liu, Z.; Yu, H. Ransomware’s origin, explosions, and its evolution. Int. J. Adv. Electron. Comput. Sci. 2018, 5, 2394–2835.
14. Tahaei, H.; Afifi, F.; Asemi, A.; Zaki, F.; Anuar, N.B. The rise of traffic classification in IoT networks: A survey. J. Netw. Comput.

Appl. 2020, 154, 102538. [CrossRef]
15. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. IEEE

Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]
16. Bay, S.D.; Kibler, D.; Pazzani, M.J.; Smyth, P. The UCI KDD Archive of Large Data Sets for Data Mining Research and Experimen-

tation. ACM SIGKDD Explor. Newsl. 2000, 2, 81–85. [CrossRef]
17. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A. A Detailed Analysis of the KDD CUP 99 Data Set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009.

http://doi.org/10.1007/s10586-020-03198-9
http://doi.org/10.1049/iet-net.2017.0212
http://doi.org/10.1016/j.jnca.2016.10.015
http://doi.org/10.3390/app7101072
http://doi.org/10.1007/s11277-019-06407-w
http://doi.org/10.1109/ACCESS.2019.2924045
http://doi.org/10.3390/s20030816
http://www.ncbi.nlm.nih.gov/pubmed/32028711
http://doi.org/10.1016/j.jnca.2020.102538
http://doi.org/10.1109/COMST.2018.2844341
http://doi.org/10.1145/380995.381030

Sensors 2021, 21, 4834 34 of 37

18. Venkatraman, S.; Alazab, M. Research Article Use of Data Visualisation for Zero-Day Malware Detection. Secur. Commun. Netw.
2018, 2018, 1728303. [CrossRef]

19. Al-Hadhrami, Y.; Hussain, F.K. Real time dataset generation framework for intrusion detection systems in IoT. Future Gener.
Comput. Syst. 2020, 108, 414–423. [CrossRef]

20. Anagnostopoulos, M.; Spathoulas, G.; Viaño, B.; Augusto-Gonzalez, J. Tracing Your Smart-Home Devices Conversations: A Real
World IoT Traffic Data-Set. Sensors 2020, 20, 6600. [CrossRef] [PubMed]

21. Parmisano, A.; Garcia, S.; Erquiaga, M.J. A Labeled Dataset with Malicious and Benign IoT Network Traffic; Stratosphere Laboratory:
Praha, Czech Republic, 2020.

22. Kunang, Y.N.; Nurmaini, S.; Stiawan, D.; Suprapto, B.Y. Attack classification of an intrusion detection system using deep learning
and hyperparameter optimization. J. Inf. Secur. Appl. 2021, 58, 102804.

23. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.
Comput. Appl. 2017, 84, 25–37. [CrossRef]

24. Liu, Z.; Thapa, N.; Shaver, A.; Roy, K.; Yuan, X.; Khorsandroo, S. Anomaly Detection on IoT Network Intrusion Using Machine
Learning. In Proceedings of the 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data
Communication Systems (icABCD), Durban, South Africa, 6–7 August 2020; IEEE: Red Hook, NY, USA, 2020; pp. 1–5.

25. Ghugar, U.; Pradhan, J. ML-IDS: MAC Layer Trust-Based Intrusion Detection System for Wireless Sensor Networks. In Computa-
tional Intelligence in Data Mining; Springer: Singapore, 2020; pp. 427–434.

26. Alhowaide, A.; Alsmadi, I.; Tang, J. PCA, Random-Forest and Pearson Correlation for Dimensionality Reduction in IoT IDS.
In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC,
Canada, 9–12 September 2020; pp. 1–6. [CrossRef]

27. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A detailed investigation and analysis of using machine learning techniques
for intrusion detection. IEEE Commun. Surv. Tutor. 2018, 21, 686–728. [CrossRef]

28. Xie, J.; Song, Z.; Li, Y.; Zhang, Y.; Yu, H.; Zhan, J.; Ma, Z.; Qiao, Y.; Zhang, J.; Guo, J. A survey on machine learning-based mobile
big data analysis: Challenges and applications. Wirel. Commun. Mob. Comput. 2018, 2018, 8738613. [CrossRef]

29. Amanullah, M.A.; Habeeb, R.A.; Nasaruddin, F.H.; Gani, A.; Ahmed, E.; Nainar, A.S.; Akim, N.M.; Imran, M. Deep learning and
big data technologies for IoT security. Comput. Commun. 2020, 151, 495–517. [CrossRef]

30. Sendak, M.; Elish, M.C.; Gao, M.; Futoma, J.; Ratliff, W.; Nichols, M.; Bedoya, A.; Balu, S.; O’Brien, C. “The human body is a black
box” supporting clinical decision-making with deep learning. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, Barcelona, Spain, 27–30 January 2020; pp. 99–109.

31. Sun, J.; Tian, Z.; Fu, Y.; Geng, J.; Liu, C. Digital twins in human understanding: A deep learning-based method to recognize
personality traits. Int. J. Comput. Integr. Manuf. 2020, 1–14. [CrossRef]

32. Zaman, S.; Karray, F. Lightweight IDS based on features selection and IDS classification scheme. In Proceedings of the 2009
international conference on computational science and engineering, Vancouver, BC, Canada, 29–31 August 2009; IEEE: Los
Alamitos, CA, USA, 2009; Volume 3, pp. 365–370.

33. Rai, A. Explainable AI: From black box to glass box. J. Acad. Mark. Sci. 2020, 48, 137–141. [CrossRef]
34. Lu, Y.Y.; Fan, Y.; Lv, J.; Noble, W.S. DeepPINK: Reproducible feature selection in deep neural networks. arXiv 2018,

arXiv:1809.01185.
35. Aman1608. Available online: https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-

learning/ (accessed on 21 April 2021).
36. Chang, W.; Ji, X.; Xiao, Y.; Zhang, Y.; Chen, B.; Liu, H.; Zhou, S. Prediction of Hypertension Outcomes Based on Gain Sequence

Forward Tabu Search Feature Selection and XGBoost. Diagnostics 2021, 11, 792. [CrossRef] [PubMed]
37. Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and

random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [CrossRef]
38. Zhu, M. Construction of Quantization Strategy Based on Random Forest and XGBoost. In Proceedings of the 2020 Conference on

Artificial Intelligence and Healthcare, Taiyuan, China, 23–25 October 2020; pp. 5–9.
39. Misir, R.; Mitra, M.; Samanta, R.K. A reduced set of features for chronic kidney disease prediction. J. Pathol. Inf. 2017, 8, 24.
40. Kondo, M.; Bezemer, C.P.; Kamei, Y.; Hassan, A.E.; Mizuno, O. The impact of feature reduction techniques on defect prediction

models. Empir. Softw. Eng. 2019, 24, 1925–1963. [CrossRef]
41. Sheikh, N.U.; Rahman, H.; Vikram, S.; AlQahtani, H. A Lightweight Signature-Based IDS for IoT Environment. arXiv 2018,

arXiv:1811.04582.
42. Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy,

validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 1–27. [CrossRef]
43. Dizdarević, J.; Carpio, F.; Jukan, A.; Masip-Bruin, X. A survey of communication protocols for internet of things and related

challenges of fog and cloud computing integration. ACM Comput. Surv. (CSUR) 2019, 51, 1–29. [CrossRef]
44. Chen, Y.C.; Chang, Y.C.; Chen, C.H.; Lin, Y.S.; Chen, J.L.; Chang, Y.Y. Cloud-fog computing for information-centric Internet-of-

Things applications. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan,
13–17 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 637–640.

45. Dinh, T.; Kim, Y.; Lee, H. A location-based interactive model of internet of things and cloud (IoT-Cloud) for mobile cloud
computing applications. Sensors 2017, 17, 489. [CrossRef]

http://doi.org/10.1155/2018/1728303
http://doi.org/10.1016/j.future.2020.02.051
http://doi.org/10.3390/s20226600
http://www.ncbi.nlm.nih.gov/pubmed/33218082
http://doi.org/10.1016/j.jnca.2017.02.009
http://doi.org/10.1109/IEMTRONICS51293.2020.9216388
http://doi.org/10.1109/COMST.2018.2847722
http://doi.org/10.1155/2018/8738613
http://doi.org/10.1016/j.comcom.2020.01.016
http://doi.org/10.1080/0951192X.2020.1757155
http://doi.org/10.1007/s11747-019-00710-5
https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
http://doi.org/10.3390/diagnostics11050792
http://www.ncbi.nlm.nih.gov/pubmed/33925766
http://doi.org/10.1016/j.gsf.2020.03.007
http://doi.org/10.1007/s10664-018-9679-5
http://doi.org/10.1186/s42400-021-00077-7
http://doi.org/10.1145/3292674
http://doi.org/10.3390/s17030489

Sensors 2021, 21, 4834 35 of 37

46. Wang, T.; Zhang, G.; Liu, A.; Bhuiyan, M.Z.A.; Jin, Q. A secure IoT service architecture with an efficient balance dynamics based
on cloud and edge computing. IEEE Internet Things J. 2018, 6, 4831–4843. [CrossRef]

47. Tawalbeh, L.A.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and security: Challenges and solutions. Appl. Sci. 2020,
10, 4102. [CrossRef]

48. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Breitenbacher, D.; Shabtai, A.; Elovici, Y. N-BaIoT: Network-based Detection of
IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

49. MontazeriShatoori, M.; Davidson, L.; Kaur, G.; Lashkari, A.H. Detection of DoH Tunnels using Time-series Classification of En-
crypted Traffic. In Proceedings of the 5th IEEE Cyber Science and Technology Congress, Calgary, AB, Canada, 17–22 August 2020.

50. Di Mauro, M.; Galatro, G.; Liotta, A. Experimental Review of Neural-based approaches for Network Intrusion Management.
IEEE Trans. Netw. Serv. Manag. 2020, 17, 2480–2495. [CrossRef]

51. Kim, A.; Park, M.; Lee, D.H. AI-IDS: Application of deep learning to real-time Web intrusion detection. IEEE Access 2020, 8,
70245–70261. [CrossRef]

52. Ravikumar, G.; Singh, A.; Babu, J.R.; Govindarasu, M. D-IDS for Cyber-Physical DER Modbus System-Architecture, Modeling,
Testbed-based Evaluation. In Proceedings of the 2020 Resilience Week (RWS), Salt Lake City, UT, USA, 19–23 October 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 153–159.

53. Yang, H.; Chen, Y. Research on IDS Data Fusion Model Based on DS Evidence Theory. In Proceedings of the 2012 International
Conference on Convergence Computer Technology, Daejeon, Korea, 23–25 August 2012; pp. 286–289.

54. Li, W.; Dai, Y.X.; Lian, Y.F.; Feng, P.H. Context sensitive host-based IDS using hybrid automaton. J. Softw. 2009, 20, 138–151.
[CrossRef]

55. Bakhsh, S.T.; Alghamdi, S.; Alsemmeari, R.A.; Hassan, S.R. An adaptive intrusion detection and prevention system for Internet of
Things. Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

56. Maldonado, S.; López, J. Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM
classification. Appl. Soft Comput. 2018, 67, 94–105. [CrossRef]

57. Lu, M. Embedded feature selection accounting for unknown data heterogeneity. Expert Syst. Appl. 2019, 119, 350–361. [CrossRef]
58. Liu, H.; Zhou, M.; Liu, Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA J. Autom. Sin.

2019, 6, 703–715. [CrossRef]
59. Chen, Z.; He, N.; Huang, Y.; Qin, W.T.; Liu, X.; Li, L. Integration of a deep learning classifier with a random forest approach for

predicting malonylation sites. Genom. Proteom. Bioinform. 2018, 16, 451–459. [CrossRef]
60. Thapa, N.; Liu, Z.; Kc, D.B.; Gokaraju, B.; Roy, K. Comparison of Machine Learning and Deep Learning Models for Network

Intrusion Detection Systems. Future Internet 2020, 12, 167. [CrossRef]
61. Maleki, N.; Zeinali, Y.; Niaki, S.T.A. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature

selection. Expert Syst. Appl. 2021, 164, 113981. [CrossRef]
62. Rahman, M.A.; Muniyandi, R.C. An enhancement in cancer classification accuracy using a two-step feature selection method

based on artificial neural networks with 15 neurons. Symmetry 2020, 12, 271. [CrossRef]
63. Mourad, M.; Moubayed, S.; Dezube, A.; Mourad, Y.; Park, K.; Torreblanca-Zanca, A.; Torrecilla, J.S.; Cancilla, J.C.; Wang, J.

Machine learning and feature selection applied to SEER data to reliably assess thyroid cancer prognosis. Sci. Rep. 2020, 10, 1–11.
[CrossRef] [PubMed]

64. Haq, A.U.; Li, J.P.; Saboor, A.; Khan, J.; Wali, S.; Ahmad, S.; Ali, A.; Khan, G.A.; Zhou, W. Detection of Breast Cancer Through
Clinical Data Using Supervised and Unsupervised Feature Selection Techniques. IEEE Access 2021, 9, 22090–22105. [CrossRef]

65. Malhi, A.; Gao, R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 2004, 53,
1517–1525. [CrossRef]

66. Song, F.; Guo, Z.; Mei, D. Feature selection using principal component analysis. In Proceedings of the 2010 International
Conference on System Science, Engineering Design and Manufacturing Informatization, Nanjing, China, 20–23 October 2019;
IEEE: Los Alamitos, CA, USA, 2020; Volume 1, pp. 27–30.

67. Li, S.; Harner, E.J.; Adjeroh, D.A. Random KNN feature selection-a fast and stable alternative to Random Forests. BMC Bioinform.
2011, 12, 450. [CrossRef] [PubMed]

68. Tahir, M.A.; Bouridane, A.; Kurugollu, F. Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-
nearest neighbor classifier. Pattern Recognit. Lett. 2007, 28, 438–446. [CrossRef]

69. Chen, J.; Huang, H.; Tian, S.; Qu, Y. Feature selection for text classification with Naïve Bayes. Expert Syst. Appl. 2009, 36, 5432–5435.
[CrossRef]

70. Zhang, M.L.; Peña, J.M.; Robles, V. Feature selection for multi-label naive Bayes classification. Inf. Sci. 2009, 179, 3218–3229.
[CrossRef]

71. Cheng, Q.; Varshney, P.K.; Arora, M.K. Logistic regression for feature selection and soft classification of remote sensing data. IEEE
Geosci. Remote Sens. Lett. 2006, 3, 491–494. [CrossRef]

72. Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol.
Med. 2008, 3, 1–8. [CrossRef] [PubMed]

73. Kursa, M.B. Robustness of Random Forest-based gene selection methods. BMC Bioinform. 2014, 15, 8. [CrossRef] [PubMed]
74. Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.M.; Shao, J. Classification of lung cancer using ensemble-based feature selection and

machine learning methods. Mol. BioSyst. 2015, 11, 791–800. [CrossRef]

http://doi.org/10.1109/JIOT.2018.2870288
http://doi.org/10.3390/app10124102
http://doi.org/10.1109/MPRV.2018.03367731
http://doi.org/10.1109/TNSM.2020.3024225
http://doi.org/10.1109/ACCESS.2020.2986882
http://doi.org/10.3724/SP.J.1001.2009.00138
http://doi.org/10.1177/1550147719888109
http://doi.org/10.1016/j.asoc.2018.02.051
http://doi.org/10.1016/j.eswa.2018.11.006
http://doi.org/10.1109/JAS.2019.1911447
http://doi.org/10.1016/j.gpb.2018.08.004
http://doi.org/10.3390/fi12100167
http://doi.org/10.1016/j.eswa.2020.113981
http://doi.org/10.3390/sym12020271
http://doi.org/10.1038/s41598-020-62023-w
http://www.ncbi.nlm.nih.gov/pubmed/32198433
http://doi.org/10.1109/ACCESS.2021.3055806
http://doi.org/10.1109/TIM.2004.834070
http://doi.org/10.1186/1471-2105-12-450
http://www.ncbi.nlm.nih.gov/pubmed/22093447
http://doi.org/10.1016/j.patrec.2006.08.016
http://doi.org/10.1016/j.eswa.2008.06.054
http://doi.org/10.1016/j.ins.2009.06.010
http://doi.org/10.1109/LGRS.2006.877949
http://doi.org/10.1186/1751-0473-3-17
http://www.ncbi.nlm.nih.gov/pubmed/19087314
http://doi.org/10.1186/1471-2105-15-8
http://www.ncbi.nlm.nih.gov/pubmed/24410865
http://doi.org/10.1039/C4MB00659C

Sensors 2021, 21, 4834 36 of 37

75. Lin, R.H.; Pei, Z.X.; Ye, Z.Z.; Guo, C.C.; Wu, B.D. Hydrogen fuel cell diagnostics using random forest and enhanced feature
selection. Int. J. Hydrogen Energy 2020, 45, 10523–10535. [CrossRef]

76. Niu, D.; Wang, K.; Sun, L.; Wu, J.; Xu, X. Short-term photovoltaic power generation forecasting based on random forest feature
selection and CEEMD: A case study. Appl. Soft Comput. 2020, 93, 106389. [CrossRef]

77. Yao, R.; Li, J.; Hui, M.; Bai, L.; Wu, Q. Feature Selection Based on Random Forest for Partial Discharges Characteristic Set. IEEE
Access 2020, 8, 159151–159161. [CrossRef]

78. Hsieh, C.P.; Chen, Y.T.; Beh, W.K.; Wu, A.Y.A. Feature Selection Framework for XGBoost Based on Electrodermal Activity in
Stress Detection. In Proceedings of the 2019 IEEE International Workshop on Signal Processing Systems (SiPS), Nanjing, China,
20–23 October 2019; IEEE: Red Hook, NY, USA, 2020; pp. 330–335.

79. Zhanshan, L.; Zhaogeng, L.I.U. Feature selection algorithm based on XGBoost. J. Commun. 2019, 40, 101.
80. Shi, X.; Wong, Y.D.; Li, M.Z.F.; Chai, C. Accident risk prediction based on driving behavior feature learning using CART and

XGBoost (No. 18-06270). In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11
August 2018.

81. Zheng, H.; Yuan, J.; Chen, L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature
importance evaluation. Energies 2017, 10, 1168. [CrossRef]

82. Kasongo, S.M.; Sun, Y. Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-
NB15 Dataset. J. Big Data 2020, 7, 1–20. [CrossRef]

83. Hasan, M.A.M.; Nasser, M.; Ahmad, S.; Molla, K.I. Feature selection for intrusion detection using random forest. J. Inf. Secur.
2016, 7, 129–140. [CrossRef]

84. Gharaee, H.; Hosseinvand, H. A new feature selection IDS based on genetic algorithm and SVM. In Proceedings of the 2016 8th
International Symposium on Telecommunications (IST), Tehran, Iran, 27–28 September 2016; pp. 139–144.

85. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP),
Madeira, Portugal, 22–24 January 2018.

86. Han, K.; Wang, Y.; Zhang, C.; Li, C.; Xu, C. Autoencoder inspired unsupervised feature selection. In Proceedings of the 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 2941–2945.

87. Wang, S.; Ding, Z.; Fu, Y. Feature selection guided auto-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–10 February 2017; Volume 31.

88. Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, QLD, Australia, 2 December 2014;
pp. 4–11.

89. Roopak, M.; Tian, G.Y.; Chambers, J. An intrusion detection system against ddos attacks in iot networks. In Proceedings of the
2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 0562–0567.

90. Zhong, M.; Zhou, Y.; Chen, G. Sequential model based intrusion detection system for IoT servers using deep learning methods.
Sensors 2021, 21, 1113. [CrossRef]

91. Xie, M.; Hu, J. Evaluating host-based anomaly detection systems: A preliminary analysis of adfa-ld. In Proceedings of the
2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 3,
pp. 1711–1716.

92. Shurman, M.; Khrais, R.; Yateem, A. DoS and DDoS Attack Detection Using Deep Learning and IDS. Int. Arab J. Inf. Technol. 2020,
17, 655–661.

93. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing Realistic Distributed Denial of Service (DDoS) Attack
Dataset and Taxonomy. In Proceedings of the IEEE 53rd International Carnahan Conference on Security Technology, Chennai,
India, 1–3 October 2019.

94. Chundi, J.; Rao, V.G. Role of feature reduction in intrusion detection systems for wireless attacks. Int. J. Eng. Trends Technol. 2013,
1, 241–246.

95. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats
and a Public Dataset. IEEE Commun. Surv. Tutor. 2016, 18, 184–208. [CrossRef]

96. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
97. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. Xgboost: Extreme gradient boosting. R Package Version 0.4-2. 2015.

Available online: https://cran.r-project.org/web/packages/xgboost/index.html (accessed on 11 May 2021).
98. Wang, B.; Fan, S.D.; Jiang, P.; Zhu, H.H.; Xiong, T.; Wei, W.; Fang, Z.L. A Novel Method with Stacking Learning of Data-Driven

Soft Sensors for Mud Concentration in a Cutter Suction Dredger. Sensors 2020, 20, 6075. [CrossRef]
99. Samat, A.; Li, E.; Wang, W.; Liu, S.; Lin, C.; Abuduwaili, J. Meta-XGBoost for hyperspectral image classification using extended

MSER-guided morphological profiles. Remote Sens. 2020, 12, 1973. [CrossRef]
100. Ullah, I.; Mahmoud, Q.H. A Deep Learning Based Framework for Cyberattack Detection in IoT Networks. IEEE Access 2021.

[CrossRef]

http://doi.org/10.1016/j.ijhydene.2019.10.127
http://doi.org/10.1016/j.asoc.2020.106389
http://doi.org/10.1109/ACCESS.2020.3019377
http://doi.org/10.3390/en10081168
http://doi.org/10.1186/s40537-020-00379-6
http://doi.org/10.4236/jis.2016.73009
http://doi.org/10.3390/s21041113
http://doi.org/10.1109/COMST.2015.2402161
http://doi.org/10.1080/01431160412331269698
https://cran.r-project.org/web/packages/xgboost/index.html
http://doi.org/10.3390/s20216075
http://doi.org/10.3390/rs12121973
http://doi.org/10.1109/ACCESS.2021.3094024

Sensors 2021, 21, 4834 37 of 37

101. Mehmood, F.; Ullah, I.; Ahmad, S.; Kim, D.H. A Novel Approach towards the Design and Implementation of Virtual Network
Based on Controller in Future IoT Applications. Electronics 2020, 9, 604. [CrossRef]

102. Google. Available online: https://developer.android.com/studio (accessed on 11 May 2021).
103. Nate Ebel. Available online: https://medium.com/goobar/androidthings-hello-rainbow-hat-ab218e9bbd6a (accessed on 11

May 2021).
104. Raspberry Pi. Available online: https://www.raspberrypi.org/ (accessed on 11 May 2021).
105. Google. Available online: https://developer.android.com/things (accessed on 11 May 2021).
106. NFStream. Available online: https://www.nfstream.org/ (accessed on 11 May 2021).
107. Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols. In Proceedings of the 2017

8th International conference on information technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 685–690.
108. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017

IEEE international systems engineering symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7.
109. Alavi, S.A.; Rahimian, A.; Mehran, K.; Ardestani, J.M. An IoT-based data collection platform for situational awareness-centric

microgrids. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC,
Canada, 13–16 May 2018; pp. 1–4.

110. Zhong, C.L.; Zhu, Z.; Huang, R.G. Study on the IOT architecture and gateway technology. In Proceedings of the 2015 14th
International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Guiyang,
China, 18–24 August 2015; pp. 196–199.

111. Blanco-Novoa, Ó.; Fraga-Lamas, P.; A Vilar-Montesinos, M.; Fernández-Caramés, T.M. Creating the internet of augmented things:
An open-source framework to make iot devices and augmented and mixed reality systems talk to each other. Sensors 2020,
20, 3328. [CrossRef]

112. Cruz-Piris, L.; Rivera, D.; Marsa-Maestre, I.; De La Hoz, E.; Velasco, J.R. Access control mechanism for IoT environments based
on modelling communication procedures as resources. Sensors 2018, 18, 917. [CrossRef] [PubMed]

113. Dipsis, N.; Stathis, K. A RESTful middleware for AI controlled sensors, actuators and smart devices. J. Ambient Intell. Hum.
Comput. 2019, 11, 2963–2986. [CrossRef]

114. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in internet of things: Taxonomies and open challenges. Mob. Netw.
Appl. 2019, 24, 796–809. [CrossRef]

115. Imperva. Available online: https://www.imperva.com/learn/ddos/slowloris/ (accessed on 11 May 2021).
116. Stone, B.; Cohen, N. Social networks spread defiance online. New York Times, 15 June 2009; 15.
117. Double Octopus. Available online: https://doubleoctopus.com/security-wiki/threats-and-tools/address-resolution-protocol-

poisoning/ (accessed on 24 May 2021).
118. ISEA. Available online: https://infosecawareness.in/concept/arp-spoofing/system-admin (accessed on 24 May 2021).
119. Cloudflare. Available online: https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/ (accessed on 24 May 2021).
120. Bat_09. Available online: https://bat0san.medium.com/tryhackme-hydra-walkthrough-2202a6806b74 (accessed on

24 May 2021).
121. Network Security. Available online: https://www.networxsecurity.org/members-area/glossary/a/asterisk.html (accessed on 24

May 2021).
122. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network intrusion detection.

arXiv 2018, arXiv:1802.09089.
123. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine

learning. J. Mach. Learn. Res. 2017, 18, 559–563.

http://doi.org/10.3390/electronics9040604
https://developer.android.com/studio
https://medium.com/goobar/androidthings-hello-rainbow-hat-ab218e9bbd6a
https://www.raspberrypi.org/
https://developer.android.com/things
https://www.nfstream.org/
http://doi.org/10.3390/s20113328
http://doi.org/10.3390/s18030917
http://www.ncbi.nlm.nih.gov/pubmed/29558406
http://doi.org/10.1007/s12652-019-01439-3
http://doi.org/10.1007/s11036-018-1089-9
https://www.imperva.com/learn/ddos/slowloris/
https://doubleoctopus.com/security-wiki/threats-and-tools/address-resolution-protocol-poisoning/
https://doubleoctopus.com/security-wiki/threats-and-tools/address-resolution-protocol-poisoning/
https://infosecawareness.in/concept/arp-spoofing/system-admin
https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://bat0san.medium.com/tryhackme-hydra-walkthrough-2202a6806b74
https://www.networxsecurity.org/members-area/glossary/a/asterisk.html

	Introduction
	Related Work
	Methods and Datasets
	Architectures for RCNN and XCNN
	Datasets Used
	CCD IoT Network Intrusion Dataset V1
	List of Attacks
	Feature Engineering Using NFStream

	Detection_of_IoT_botnet_attacks_N_BaIoT Dataset
	CIRA-CIC-DoHBrw-2020 Dataset

	Experimental Setup
	Data Preparation and Pre-Processing
	Metrics Used for Evaluations

	Results
	Feature Importance
	Training, Testing Loss and Accuracy over Epochs
	Confusion Matrix Comparisons
	Comparison of Precision, Recall, F1-Score
	Comparison of ROC and AUC
	Efficiency Comparisons

	Conclusions
	References

