
NeuroImage: Clinical 5 (2014) 332–340

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Using longitudinal metamorphosis to examine ischemic stroke lesion
dynamics on perfusion-weighted images and in relation to final outcome
on T2-w images
Islem Rekika,b,⁎, Stéphanie Allassonnièreb, Trevor K. Carpentera, Joanna M. Wardlawa

aDivision of Neuroimaging Sciences, Brain Research Imaging Centre, University of Edinburgh, UK
bCMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
⁎ Corresponding author at: Department of Neuroimag
Brain Sciences, The University of Edinburgh, Chancell
Crescent, Edinburgh EH16 4SB, UK.

E-mail addresses: islem.rekik@gmail.com (I. Rekik),
stephanie.allassonniere@polytechnique.edu (S. Allassonni
(T.K. Carpenter), joanna.wardlaw@ed.ac.uk (J.M. Wardlaw

http://dx.doi.org/10.1016/j.nicl.2014.07.009
2213-1582/© 2014 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 April 2014
Received in revised form 25 June 2014
Accepted 21 July 2014
Available online 1 August 2014

Keywords:
Longitudinal metamorphosis
Acute/subacute ischemic stroke
Dynamic evolution
Perfusion
We extend the image-to-image metamorphosis into constrained longitudinal metamorphosis. We apply it to
estimate an evolution scenario, in patients with acute ischemic stroke, of both scattered and solitary ischemic le-
sions visible on serial MR perfusionweighted imaging from acute to subacute stages.We then estimate a patient-
specific residual map that enables us to capture the most relevant shape and intensity changes, continuously, as
the lesion evolves from acute through subacute to chronic timepoints until merging into the final image.We de-
tect areas with high residuals (i.e., high dynamics) and identify areas that became part of the final T2-w lesion
obtained at ≥1 month after stroke. This allows the investigation of the dynamic influence of perfusion values
on the final lesion outcome as seen on T2-w imaging. The model provides detailed insights into stroke lesion dy-
namic evolution in space and time thatwill help identify factors that determinefinal outcomeand identify targets
for interventions to improve outcome.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Stroke is the third leading cause of death in industrialized countries
and a major cause of death worldwide. Ischemia – the commonest type
of stroke – results from disruption of blood flowwithin the brain caused
by occlusion of an artery. Efforts to improve the treatment of ischemic
stroke target ‘brain tissue at risk of infarction’ (the penumbra) that
can revert to a normal state following successful recanalization of the
occluded artery within the first few hours after onset (Wardlaw, 2010).
Multi-modality brain imaging is widely used in acute stroke manage-
ment for diagnosis, prognosis and treatment planning. In particular,
diffusion-weighted imaging (DWI) and perfusion-weighted imaging
(PWI) are frequently used to detect early ischemic changes and distin-
guish between permanently damaged and salvageable tissues. However,
whilemedical imaging has improved our understanding of stroke for the
last decades, it is still not possible to determine the ‘best’ treatment in
any one individual patient (Wardlaw et al., 2012). One reason for that
is the wide spectrum of stroke lesion patterns and the lack of under-
standing of factors governing lesion evolution. Particularly, stroke lesions
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are frequently multicomponent, appear and disappear, distort adjacent
tissues andhave ill-defined boundaries (Rekik et al., 2012). A second rea-
son is thewide use of basic volumetric analysis and thresholding tools for
assessing a stroke lesion and selecting patients for clinical trials (Davis
et al., 2008; Furlan et al., 2006; Hacke et al., 2005). These basic quantita-
tive techniques fundamentally limit our scope for examining stroke dy-
namics as they do not capture the direction, locality or the speed of
stroke lesion evolution.

This suggests the need for better methods to overcome the limita-
tions of these techniques and accurately characterize stroke lesion
dynamics. As highlighted in the review paper (Rekik et al., 2012), no
patient-specific dynamic models had been developed to map in detail
the kinetics of the lesion evolution and to estimate the spatiotemporal
deformations that ischemic tissue undergoes. Recent work by (Rekik
et al., 2013) began the exploration of advanced spatiotemporal (4D)
models for studying the dynamics of stroke evolution in longitudinal
data. The applied current deformation model enabled the identification
of areas of contraction and expansion in stroke lesion surfaces, which
allowed us to investigate correlations between perfusion and diffusion
lesion surface evolutions (Rekik et al., 2013). Although this model
proved to be a mathematically robust representation of the lesion sur-
face, it could not incorporate image intensity measures in its abstract
mathematical framework. Hence, there was no possibility of using this
model to study the effects of DWI or PWI or other tissue parameter
values on lesion dynamics. Furthermore, it was not suitable for lesions
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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where the number of components variedwith time. However, scattered
multicomponent lesions and variable patterns of perfusion and diffusion
abnormality progression are very common (84% of our cohort) (Ogata
et al., 2011).

To partly overcome these limitations, we used a more versatile
approach, the metamorphosis model — introduced by Trouvé and
Younes (2005), which handles both multi-component and solitary
lesions and incorporates gray-scale intensities into the 3D image
evolution. To examine the influence of perfusion values on final tis-
sue outcome, we extend the work presented in Garcin and Younes
(2005) from two-image based metamorphosis to time-series based
longitudinal metamorphosis and introduce a new constraint on the
velocity path to force its regularity in time. We identified one recent
paper that addressed longitudinal image evolution using meta-
morphosis. Hong et al. (2012) adapted the work of Niethammer
et al. (2011) by proposing a metamorphic geodesic regression
using appropriate averaging of independent pairwise metamor-
phoses. In this paper, we present a different and more compact
formulation for longitudinal metamorphosis using an ordered
set ℑ = {I0, I1, …, IN} of N images. Unlike Hong et al. (2012),
our approach does not require a pairwise estimation of N + 1
metamorphoses using geodesic regression. Instead, the method esti-
mates a single metamorphosis that exactly meets all the intermediate
images (observations) in ℑ, while enforcing regularity in time for the es-
timated velocity field (Fig. 1).

The remainder of this paper is structured as follows. In Section 2, we
will describe the image-to-image formulation of the metamorphosis
theory and its extension to longitudinal data. In Section 3, we present
the results of longitudinal metamorphosis to both synthetic images and
perfusion ischemic lesion and investigate the relation of the metamor-
phic residual to the final T2-w lesion boundary. Finally, we present a
critical overall analysis, presenting the major findings and limitations
of our model and revealing new avenues for exploration in ischemic
stroke.
Fig. 1. Comparison between metamorphic regression scheme presented in Hong et al. (2012) (
morphic regression line determined by pairwisemetamorphoses between the baseline image I(
the geodesic shooting. In (b), the estimated longitudinal metamorphosis path Jt morphs the ba
velocity jumps we force the estimated velocity to be continuous in time at the observation tim
2. Methods

2.1. Image-to-image metamorphosis

2.1.1. Prior to the metamorphosis era: the diffeomorphic era
The serial medical imaging and the increasingly acquired datasets to

study changes in anatomy and brain disease evolution have triggered
the development of compelling mathematical frameworks based on
deformations (Klein et al., 2009). A specific category of spatial de-
formations has spanned the attention of researchers in this field:
diffeomorphisms (smooth deformation with a smooth inverse).
These were largely used in different registration models (Allassonnière
et al., 2005; Beg et al., 2005; Holland and Dale, 2011; Klein et al., 2009)
andbecame apart of the classical deformable template theory – especially
after the establishment of the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) – pioneered by Dupuis et al. (1998) and Trouvé
(1995, 1998). The metamorphosis theory is built upon the LDDMM
framework which is based on the idea of a diffeomorphic metric.
This metric is a distance on the object space – seen as a Riemannian
manifold – which results from the transportation of a metric on the
group of diffeomorphisms by a group action. This defines a distance
between two objects through the geodesic diffeomorphic path which
connects one to the other. In the following, wewill only consider objects
which are images. The estimated diffeomorphic transformation g1 con-
nects a source image I0 to a target image I1 as follows: I0 ∘ g1−1 = I1.
The central idea of LDDMM is that g1 is themapping at time 1 of a defor-
mation path. What drives the evolution of this transformation from g0
to g1 is the flow equation: given vt(g(t)) a velocity vector field

dg tð Þ
dt

¼ vt g tð Þð Þ
g0 ¼ id

8<
: ð1Þ

where id is the identity map.
a) and our longitudinal metamorphosis (b). The red bold line in (a) represents the meta-
t0) and the images Ii. Each individualmetamorphosis is defined by the initialmomentumof
seline image successively into I1, I2, and I3 till merging with the final image I4. To avoid the
epoints {t0, t1, …}.

image of Fig.�1
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However, a major shortcoming of the diffeomorphicmetric is that it
does not allow variations in the topology of the deformed object. For
this reason, it is commonly used to study changes in anatomical struc-
tures (as connected sets remain connected and disjoint sets remain
disjoint) rather than in brain lesions that may take dissimilar forms
and undergo a topology change (such as the appearance of new discon-
nected sets of ischemic regions in stroke or themerging of different sets
into a bigger one). To overcome this shortcoming, a differentmathemat-
ical formulation introduced a slight modification in the idea of the
diffeomorphic metric (Trouvé and Younes, 2005). This led to the defini-
tion of a new metric: the metamorphic metric.

2.1.2. The metamorphosis theory
Proposed by Trouvé and Younes (2005), metamorphosis is an effi-

cient non-linear registration method that aligns two images by jointly
estimating an optimal velocity deformation vector field vt and an opti-
mal intensity scalar field It. The idea of metamorphosis stems from in-
cluding the infinitesimal variation of the gray level of the image in the
metric used to estimate the geodesics of deformations accounting for in-
tensity change and producing themetamorphic metric. The definition of
this metric requires the use of appropriate spaces to which images,
forces acting on them, and velocities driving the evolutions of the base-
line image towards the target images belong. The mathematical frame-
work for metamorphosis is composed of the three main components:

● Image: an image I is an element of the square integrable set of func-
tions M = L2(Ω) considered as a Riemannian manifold (the object
space) with Ω as the support of I. A curve (t ↦ It, t ∈ [0, 1]) onM is
the evolution path of a base line image I0. M is equipped with the
usual metric on L2.

● Action (force): an action g ∈ G is a diffeomorphic transformation
which acts upon the object space M. In the realm of a classical
diffeomorphic deformation theory, the action g is associated to the ve-
locity v through the flow equation (Eq. (1)). A curve (t↦ gt, t∈ [0, 1])
on G acting on I∈M describes a path of deformationmorphing I over
the time interval [0, 1].

● Velocity: for all t ∈ [0, 1], the velocity field vt belongs to the vector
space V, which is the tangent space to the action group G. We
adopt a similar construction as in that of Beg et al. (2005) for the ve-
locity vector space V on which smoothness constraints are placed to
ensure the existence of optimal smooth solutions in the space of
diffeomorphisms for the flow equation (Eq. (1)). We endowed the
velocity vector space Vwith an inner product b .,. NV defined through
a differential Cauchy–Navier type operator L (with adjoint L†) given
by:b f ; gNV ¼ bLf ; LgNL2 ¼ bL†Lf ; gNL2 whereb:; :NL2 is the standard L2

inner-product for square integrable vector fields on M and the
Cauchy–Navier differential operator as presented in Beg et al.
(2005) L = (−α∇2 + γ)Id (Id is the identity matrix). Thus, the re-
quired smoothness of the deformations is specified by the norm of
the space V of smooth velocity vector fields through L.

As defined by Trouvé and Younes (2005), a metamorphosis is a pair
of curves ((g(t), I(t)), t∈ [0, 1]) on the product spaceℳ= G×M, with
g(0) = id. The effective metamorphosis path J(t) on M is defined as a
combination of the action deformation path g(t) and the image path
I(t) which is the residual of the deformation on M: J(t) = g(t) ⋅ I(t).
All details ofmetamorphosis are available in Trouvé and Younes (2005).

As shown in Garcin and Younes (2005), the optimal metamorphosis
curves ((g(t), I(t)), t∈ [0, 1]) –morphing the source image I0 into target
one I1 – are estimated by minimizing the cost functional U(I, v):

U I; vð Þ ¼
Z 1

0
jvj2Vdt þ

1
σ2

Z 1

0

dI tð Þ
dt

þ∇It � vt
����

����
2

L2
dt: ð2Þ

The term∇It ⋅ vt represents the spatial variation of themoving image
It in the direction vt. Furthermore, the moving intensity scalar field It is
defined under the action of the diffeomorphism gt on a baseline image
I0 : It = gt ⋅ I0. This nicely brings us to the diffeomorphic flow equation
(Eq. (1)) that is driven by a sufficiently smooth deformation vector
field to estimate (Beg et al., 2005; Trouvé, 1998). All the previous equa-
tions have the fundamental property to remain geodesic equations in
the image manifoldM. Their solution is sought through a minimization
algorithm, which provides an efficient and robust estimation of intensi-
ty variation and diffeomorphisms — in case of large deformations
(Trouvé and Younes, 2005).

This formulation unifies a common mathematical framework in-
tensity change and deformation. The residual of the deformation
term jδ tð Þj2I tð Þ ¼ jdI tð Þ

dt þ∇It � vt j2L2 undertakes that the metamorphosis
scheme includes the variations in the image evolution path I(t) induced
by the deformation field vt, thereby it can be viewed as a condensed
form that sums up both variations in intensity and shape.

As we need to minimize this energy for image matching, a
discretization step in the time and space domains is required.We repro-
duce the discretization scheme proposed by Garcin and Younes (2005)
for the image-to-image metamorphosis where we approximate the
term ∇It ⋅ vt by (I(t + 1, x + v(t, x))− I(t, x)) as follows:

lim
ϵ→0

I t þ ϵ; xþ ϵv t; xð Þð Þ−I t; xð Þ
ϵ

¼ ∂I t; xð Þ
dt

þ ∂I t; xð Þ
dx

� v t; xð Þ: ð3Þ

Next, we discretize the energy functional in the discrete time do-
main of evolution [0, T] (with the size of a timestep Δt being such that
T = n × Δt) and in the image space domain (a grid). We use a trilinear
interpolation proposed by Garcin and Younes (2005) to define real
values for x + vt(x):

Γvt Itþ1 : x∈Ω→Γ Itþ1
� �

xþ vt xð Þð Þ ¼ I t þ 1; xþ v t; xð Þð Þ∈ℝ:

By applying the trilinear operator Γ to It + 1(x + vt(x)), we get:

U I; vð Þ ¼
XT−1

t¼0
jvt j2V þ 1

σ2

XT−1
t¼0

X
x∈Ω

jΓ Itþ1
� �

xþ vt xð Þð Þ þ∇It � vt j2L2
vt0 ¼ vt1 andvT−1 ¼ vT

:

8<
: ð4Þ

We initialize the image evolution path from the source I0 to the tar-
get image I1 through piece-wise trilinear interpolation (fixed boundary
conditions for exactmatching): I(t)= (1− t)I0+ tI1; with t∈ [0, T]. Ul-
timately, the minimal metamorphosis path composed of both the o
ptimal image path (t ↦ It, t ∈ [0, 1]) and the associated diffeomorphic
path (t ↦ gt, t ∈ [0, 1]) is calculated using the metamorphosis energy
gradients ∇It U;∇vt Uð Þ in a standard alternating steepest gradient de-
scent algorithm:

∇It
U I; vð Þ ¼ 2

σ2 It−Γvt Itþ1 þ ΓTvt−1
Γvt−1

It−It−1

� �
ð5Þ

∇vt
U I; vð Þ ¼ 2vt þ

2
σ2 Γvt∇xItþ1

� �T
Γvt Itþ1−It

� �h i
: ð6Þ

2.2. Constrained longitudinal metamorphosis using N images

Now we will present the generalization to a set of time dependent
observations. We aim to estimate a metamorphosis (w.r.t. the meta-
morphosis metric) for which we constrain the velocity vector field
(vt)t ∈ [0,1] to be continuous in time in particular at the observation
timepoints. This is based on similar equations as before and the energy
to minimize becomes:

U I; vð Þ ¼
XT−1

t¼0
jvt j2V þ 1

σ2

XT−1
t¼0

X
x∈Ω

jΓ Itþ1
� �

xþ vt xð Þð Þ þ∇It � vt j2L2
vt0 ¼ vt1 vT−1 ¼ vT andvt−1 ¼ vt ¼ vtþ1 for t∈ 1;…; T−1f g

8<
: ð7Þ
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where (vt)t ∈ [0,1] is continuous in time.We enforce the continuity of the
velocity vector field so that thewhole path is continuous in time. This is
done as follows: for any observation timepoint t = tobs:

vtobs ¼ vþtobs ¼ v−tobs : ð8Þ

We choose a small time discretization step between the observa-
tions for this definition of regularity in time to be valid. This constraint
forces the estimated metamorphosis to follow a relevant path (w.r.t.
our application) and makes it differ from concatenated paths as illus-
trated in Fig. 2.

In order to minimize this energy and get the longitudinal metamor-
phosis using N images ℑ = {I0, I1, …, IN}, we exactly follow the steps of
the gradient descent pipeline using Eqs. (5)–(6), except that wemodify
two steps. In the first step, we initialize image evolution path from the
source image I0 to the target image IN through piece-wise trilinear inter-
polation (fixed boundary conditions for exact matching). However, we
force the algorithm to exactly go through all observations (time-series
images) by keeping the observations unaltered and only updating the
intensity path connecting them. The second change is that we impose
a time-continuity constraint on the estimated velocity which forces rel-
evantfinal deformationmaps in away thatwould better capture the dy-
namics of the lesions.

3. Material

3.1. Patient recruitment [10 patients]

We test the metamorphosis model on 10 representative patients
from a study of serial MR imaging in hyperacute stroke, representing a
range of stroke severity (mean ± std dev.): (NIHSS = 12.6 ± 8.9),
age (74 ± 9.47 years) and acute mean transit time (MTT) volume
(1.78 ± 1.23·105 mm3). We include patients who had PWI images at
around 5 h, the second at around 5 ± 1 days and the third at 10.5 ±
2.5 days after stroke and T2-weighted image lesion at ≥month after
stroke. Furthermore, we have checked that swelling in the recruited pa-
tients did not distort DWI lesion boundary as it can mislead the result
interpretations.
Fig. 2. Enforcing the continuity in time of the estimated velocity field (vt) at observation
timepoints. (Top) For a fixed voxel x in the image, we notice that the velocity curve vt is
discontinuous at observation timepoints tobs as both the red and blue curves are not
“glued” together. We enforce the continuity at the observation timepoints by associating
a new value to vobs at tobs that is equal to the velocity value at tobs− then we update tobs

+ to
establish the equality between the three discrete points in time. This generates a new ve-
locity curve (in green) that is continuous in time.
3.2. MR imaging and pre-processing steps

All MR images were acquired using a GE Sigma LX 1.5-T MR scanner
(General Electric, Milwaukee,Wisconsin) with a birdcage quadrature coil
and a standardized protocol for acute stroke. The spin-echo echoplanar
imaging diffusion tensor axial sequences and dynamic susceptibility con-
trast echoplanar imaging PWI had 15 axial slices each of 6 mm thickness
with an interslice gap of 0.97 mm and an imaging matrix of 128 × 128
encompassing a 240 × 240 mm field of view. MTT perfusion maps were
generated using PWI data, full details of the image acquisition and pro-
cessing protocol have been described previously in Rivers et al. (2007).
The MTT and final follow-up T2-weighted images (at ≥1 month after
stroke)were co-registered using a 3D affine transformation and their cor-
responding visible lesions were manually delineated on every slice by an
expert. Similarly the perfusion series were registered to the diffusion se-
ries (Bastin and Armitage, 2000). We used affine registration to compen-
sate for these effects and account for patient motion, similar procedures
have been applied elsewhere (Huang et al., 2008). Normalizedmutual in-
formation was used as a similarity measure since the contrast between
the diffusion baseline image and other images is dependent upon the di-
rection of diffusion weighting — likewise the perfusion series before and
after the arrival of gadolinium contrast.

4. Results

4.1. Comparison between the proposed longitudinal metamorphosis and
independent metamorphoses

In this section, we compare the synthetic results of ourmethodwith
respect to those of a modest concatenation of individual metamorpho-
ses. Note that this concatenation does not make any assumption on
the continuity of the deformation field so that it will most probably be
discontinuous at the observation timepoints. This problem should be
avoided by our method and therefore better fit the real behavior of
the lesion. To perform this, we introduce a synthetic example where
the comparison is easier and preliminary observations are made.

We have tested the proposed longitudinal metamorphosis which is
the solution of an energy minimization under constraint on synthetic
images (two small spheres merging into one sphere then expanding
into a bigger one, Fig. 3). Our approach is different from the estimation
of successive independent metamorphoses from image at t1 to image
at t2 then from image at t2 to image at t3, etc., then gluing these bits all
together to build the longitudinal metamorphosis scenario. More
importantly, we show in Fig. 3 successive snapshots of the estimated ve-
locity field magnitude for the proposed constrained longitudinal meta-
morphosis that goes through three synthetic images (Fig. 3-B, first
row) and for an image-to-image metamorphosis concatenating two in-
dependent metamorphoses (one morphing image 1 into image 2 and a
second onemorphing image 2 into image 3) (Fig. 3-B, second row). The
visual comparison of both evolution scenarios shows a lack of a transition
phase between metamorphosis I and metamorphosis II: the concatena-
tion process of two independentmetamorphoses create an abrupt change
in the estimated velocity field. However, the constrained longitudinal
metamorphosis includes an in-between transition phase between the
pairs of evolution {image 1 → image 2} and {image 2 → image 3} at
the observation timepoint t2 (outlined in red in Fig. 3). Therefore the evo-
lution of the set of synthetic images seems more natural in the first esti-
mated longitudinal metamorphosis scenario.

4.2. Metamorphic longitudinal matching applied to perfusion MR images of
stroke

For every patient, we estimated a longitudinal metamorphosis of
MTT lesion from acquisition timepoints t1 to t3. Both velocity and inten-
sity paths are presented in Fig. 4. We empirically set the trade-off pa-
rameter σ such as 1

σ2 ¼ 0:001 for all patients. We chose Cauchy–Navier

image of Fig.�2


Fig. 3. Comparison between the proposed constrained longitudinal metamorphosis and independent metamorphoses using the estimated velocity field. (A) Synthetic data composed of
three images. (B) (First row) We display successive snapshots of the estimated velocity magnitude map for the constrained longitudinal metamorphosis going through image 1, then
image 2 and finally image 3. The velocity maps at the observation timepoints are highlighted in red. (Second row) We visualize the estimated velocity magnitude map for an image-
to-image metamorphosis concatenating two independent metamorphoses: a first one from image 1 to image 2 and a second one from image 2 to image 3. (C) We visualize the velocity
vector field on the x–y plane and its magnitude map at the observation timepoints. The color bar codes the velocity magnitude: the orange color represents positive magnitude (corre-
spondingwith bright areas in the gray-scale velocitymagnitudemaps) and the purple color represents negativemagnitude (correspondingwith dark areas in the gray-scale velocitymag-
nitude maps).
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differential operator L to provide greater smoothing of our data, justi-
fied in our study since we focus on obtaining a quantified estimate of
the dynamics of ischemic lesion spatial margins. We set α = 0.01 and
γ = 0.001 as suggested by Beg et al. (2005).

We used the proposed longitudinal metamorphosis to exhibit and
examine a single map (here residual map) generated for every patient.
A significant property of the estimated residualmap is that it condenses
in one image both the magnitude of the deformation and the intensity
variation in the lesion during its metamorphosis (see Fig. 5), thereby
giving insights into the kinetic and photometric dynamic behavior of
the perfusion lesion. We would also like to highlight that both residual
and deformation maps were generated using the estimated in-between-
observations It and vt evolution paths while excluding the observation
Fig. 4. Longitudinal metamorphosis. (a) MTTmaps at three acquisition timepoints superimpose
estimated intensity path (t↦ It) from t1 to t3 ofMTT lesionmetamorphosis; bottom row: screens
areas and blue arrows point to expanding areas. Both of the displayed intensity and velocity m
timepoints (our fixed boundaries) since the lesion evolution in space
and time is mainly defined by these in-between estimated paths.

For each patient, we reconstruct the normalized residual map
(rMap) as:

Forx∈Ω; rMap xð Þ ¼
XT−1

t¼0

jΓ Itþ1
� �

xþ vt xð Þð Þ−It xð Þj2L2 : ð9Þ

Thenwe normalize it between 0 and 1. The estimated residual maps
quantify the variation in perfusion values inside the lesion under the ac-
tion of the estimated deformation field. Therefore, residual areas with
highest values mark where the most relevant dynamic change in both
dwith the manual segmentation of the lesion (in yellow). (b) Top row: screenshots of the
hots of the estimated velocity path (t↦ vt) from t1 to t3. Yellow arrows point to contracting
aps are normalized (without a unit).

image of Fig.�3
image of Fig.�4


Fig. 5. Algorithm pipeline. (a) ThreeMTT images at three successive acquisition timepoints. (b) Extraction of themanually segmentedMTT lesions (observations) that will be used in the
longitudinal metamorphosis estimation. (c) Reconstruction of the metamorphosis-derived normalized residual map (rMap). (d) Overlaying the residual map with the final T2-w image.
(e) Automatically thresholding the residual map and detecting the areas of highest change (in pink) — superimposed with final T2-w image.
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intensity and shape takes place. To detect these areas with highest MTT
variation from t1 to t3, we define an automated threshold as the mean
value of rMap. Then, we generate a new normalized thresholded rMap
by including all the voxels with values above this threshold. Fig. 5 visu-
alizes the steps of the algorithm for every patient in our cohort. Finally,
we compute the volumetric overlap (in %) between the thresholded re-
sidual map and T2-w lesion w.r.t. final T2-w volume. This volumetric
overlap indicates how much of the final T2-w lesion is occupied by the
thresholded residual map.

Using Eq. (9), the residual map includes the most relevant lesion
changes in shape and intensity from t1, to t2 then to t3; however, it
does not inform us about the direction in which the perfusion change
is going (positive direction i.e., increasing values or negative direction
i.e., decreasing values). To interpret the thresholded rMap with regard
to the direction of perfusion value variation — while only focusing on
the acute and late perfusion changes, we generated a signed MTT map
defined as the difference image between MTT image at t3 and MTT
image at t1:

Forx∈Ω; mapΔMTT
xð Þ ¼ MTTt3 xð Þ−MTTt1 xð Þ:
Fig. 6. Signed thresholded residualmaps in three representative patients. Top row: same axial sli
patients. Bottom row: (a) thefinal T2-w imagewhere the final dead tissue ismanually outlined
negative values) overlaid with final T2-w image. Both images (a) and (b) represent the same a
Then, we mark areas in the thresholded residual map with negative
(blue) and positive (red) mapΔMTT values. This generates a signed
thresholded residual map (Fig. 6) that allows us to simultaneously
look at perfusion areas that underwent the highest intensity and defor-
mation changes with distinction of areas where MTT values decreased
from t1 to t3 (negative mapΔMTT values) or increased from t1 to t3 (pos-
itivemapΔMTT values). Positive regions in the signed rMapthresholded rep-
resent ‘extreme’ areas where the perfusion abnormality has worsened.
In the other hand, negative regions highlight areas where the blood
flow bettered.

4.3. Remark

The signed thresholded residualmaps donot exceed the boundaries of
the manual outlines of MTT lesions at the three acquisition timepoints.
We also would like to point out that one could use Eq. (9) without the
L2 norm to generate the thresholded residual map. However, we pre-
ferred to restrict our analysis on only immediate change from acute (at
t1) to final (at t3) dead tissue and not to consider the intermediate change
that is governed by many unknown variables and pathophysiological
ces of oneMTT lesion (outlined in blue) at three successive acquisition timepoints for three
in red. (b) Signed thresholded residualmap (red color for positive values and blue color for
xial slice.

image of Fig.�5
image of Fig.�6
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‘laws’. Comparing only the first to final tissue states is a common clinical
assessment routine. We used it to shed light on the thresholded residual
map.

4.4. Exploring the predictive potential of MTT maps using metamorphic
residual maps

There exists a wide variation between patients in the total volu-
metric overlap between the thresholded metamorphic residual
map and final T2-w lesion between patients (mean = 45.4%, standard
deviation = 28% median = 32.8%). Positive skewness (Fig. 7-box 1)
suggests that most patients deviate from the median with a wider
range of volumetric overlap. This shows that the thresholded residual
map marking abnormal perfusion areas with highest change in shape
and intensity identifies relatively large dead areas within the T2-w
lesion.

The most dynamic part of PWI lesion where perfusion was improv-
ing (i.e., negatively signed thresholded residual map) overlapped with
the final T2 volume with range from 0 to 67%, mean= 26.1%, standard
deviation = 19.3%, and median= 17.1% in our cohort. This shows that
the acute–subacute improvement of the hemodynamics of the abnor-
mal perfusion area does not necessarily imply that it will certainly end
up outside the final T2-lesion. The negative overlap was evenly split at
the median of the data (i.e., zero skewness, Fig. 7-box 2). Only Figs. 7-
box 2 and 6 show that the majority of areas in the rMapthresholded are
positively signed (red areas in Fig. 6), i.e., with worsened blood flow.
This indicates that the thresholded residual map contains areas whose
MTT values increased from t1 to t3, thus, identifying areas that are
more likely to shift into an irreversible state of tissue death.

5. Discussion and conclusions

In the present work, we proposed a trivial extension of the work of
Trouvé and Younes (2005) and Garcin and Younes (2005) for the
image-to-image metamorphosis theory into a constrained longitudinal
metamorphosis that passes exactly through the true observations,
while forcing the geometric evolution to be continuous in time. We ap-
plied it to serial perfusion image data obtained in the acute to subacute
stages in patients with ischemic stroke. This provided a robust, sophisti-
cated mathematical tool to extract both dynamic and intensity features
Fig. 7. Boxplot illustrating the skewness in our cohort for the volumetric overlap between thre
shows the distribution of the volumetric overlap between negatively signed rMapthresholded an
The lower boundary of the blue box represents the 25th percentile and the upper boundary r
the 10th) percentile.
from the perfusion lesion summarized in the intensity variation and
shape deformation residual map. We then used a static T2-w image at
≥1 month after stroke to determine the reversibility of the metamor-
phic residual of the perfusion lesion.We aimed to provide a sophisticat-
ed method, that is blind to clinical features (e.g., site of occlusion and
stroke severity score), for evaluating the effect of variations in cerebral
perfusion on tissue outcome. We hypothesized that the hypoperfused
areas that underwent the most shape and intensity variation a) would
have been exposed to the largest differences in perfusion values and
b) the values would be consistent between tissues that behaved
similarly.

We demonstrated that the estimation of longitudinal metamorphic
residual maps is a promising tool in tracking the spatiotemporal chang-
es in lesion shape and intensity. This overcomesmajor limitations of the
commonly used 2D or 3D voxel-based or volume-subtraction methods
that do not allow the estimation of dynamic characteristics of lesion
progression or regression (Beaulieu et al., 1999; Karonen et al., 2000;
Kluytmans et al., 2000; Rekik et al., 2012; Wittsack, 2002). Our model
is fully automated and does not require anymanual landmarkmatching.
It is also generic so it could be applied to other medical applications
based on serial imaging.

Using the automatically thresholded residual map, we showed that
the amount of variation in MTT lesion shape and intensity identified a
large portion of tissue that is irreversibility damaged. Thus, the MTT
map showed promise for identifying dead tissue margins and tissue
that survived, although there was substantial variation in the individual
perfusion values. This means that it is difficult to identify any one MTT
value that differentiates tissue destined to die from tissue that will sur-
vive between patients, as it is the dynamic properties of the MTT lesion
that seem to determine tissue fate. The present model could be used to
tailor more sophisticated models to predict tissue fate using the esti-
mated evolution of the perfusion lesion shape and intensity. It could
also be used to examine other factors thatmay influence ischemic lesion
outcome such as blood pressure or pharmacological treatment. The
signed residual maps showed that most of the abnormal perfusion
tissue in which MTT values increased (with positive mapΔMTT

values
i.e., worsening of blood flow) belonged to the final T2-w boundary.
However, some portions (negative overlap: mean = 26.1%, standard
deviation= 19.3%) of the acutely ischemic tissuewhoseMTT values de-
creased (i.e., better blood flow) also ended up as dead tissue. This
sholded metamorphic residual map (rMapthresholded) and final T2-w lesion (box 1). Box 2
d final T2-w lesion. The red line represents the median value of the volumetric overlap.

epresents the 75th percentile. The upper (vs. lower) horizontal line denotes the 90th (vs.

image of Fig.�7
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highlights the potential for themost active positive residuals to be used
in further predictive models to identify the boundaries of the final dead
tissue.

One of the key clinical findings of our approach revealed the absence
of a single threshold for rMap that fitted all patients. Patient-specific
thresholds were automatically defined using the metamorphic residual
maps. These thresholds involved both variation inMTT perfusion values
and lesion shape change as the lesion evolved [t1, t3]— showing that the
evolution of ischemic but still viable tissue is patient-specific (and not
dataset-specific). This is consistent with a recent summary (Dani et al.,
2012) which did not identify a specific threshold or range of perfusion
values that clearly discriminated tissue fate. Our method may have
allowed us to capture some of the highly dynamic nature of perfusion
values in individual parts of ischemic lesions for the first time in humans,
as for example, have been shown in experimental models due to spread-
ing depolarizations (Strong et al., 2007).

Several longitudinal studies have previously evaluated lesion evolu-
tion using standard thresholding and volumetric analysis techniques
(Beaulieu et al., 1999; Karonen et al., 2000) to assess the combined
role of perfusion or diffusion lesion in determining the degree of tissue
survival or death. However, they did not explore the dynamic character-
istics of lesionboundary evolution and their relation to its hemodynamics.
A recent study (Carrera et al., 2011) noted that MTT perfusion values –
outside and also within the DWI lesion – could be used to improve the
identification offinal infarct boundary. Twodifferent perfusion thresholds
were distinctively identified for two different datasets. Interestingly, in
our study, we showed that perfusion values and spatiotemporal changes
from acute to later stages are patient-specific and not dataset-specific,
thereby demonstrating that perfusion thresholds or thresholds that de-
pend on perfusion values are specific to each patient and not to a partic-
ular dataset. This accumulating evidence mitigates against the likelihood
of finding universal and consistent perfusion values that identify at risk
of infarction, dead and oligemic tissue in all patients and is expected to
change the course of future clinical trials and patient selection criteria to-
wards individualized medicine.

Identifying the shift in tissue abnormality, from being ‘reversible’ to
being ‘irreversible’ in both space and time, is still one of the main chal-
lenges in stroke. The emergence of methods for dynamic modeling in
stroke research shows potential for advancing our understanding of is-
chemic tissue dynamics. The key to a nuanced understanding of how
perfusion values influence the spatial extent of tissue that will ultimate-
ly die or survive lies in refining the perfusion hypothesis (Butcher et al.,
2005). This hypothesis states that abnormal perfusion areas where
blood flow improved between acute and subacute stages will recover
and those where blood flow worsened have the greatest likelihood to
be irreversible. However, while this may be generally true, we have no-
ticed in our study that there is substantial variation in perfusion values
in space and time that limits use of specific perfusion values in predic-
tion of tissue fate. Exposing the ‘laws’ that govern the hemodynamics
of stroke would revolutionize stroke research. This may be achievable
by using a more sophisticated version of longitudinal metamorphosis
(e.g., by including tissue heterogeneity or other perfusion parameters
or site of occlusion) that we have demonstrated which is now feasible.

Our study has some limitations. We did not account for differences
in perfusion values between gray and white matter as ischemic lesions
are difficult to segment into gray and white matter at present (Koga
et al., 2005). We checked visually that the included patients did not
have large amounts of lesion swelling as this could bias assessment of
the final dead tissue volume. Accounting for acute swelling and late ex
vacuo effect usingmore sophisticated registration algorithms would in-
crease the accuracy of ourmethod but validated techniques are not cur-
rently available. Our sample sizewas small—we chose these 10 patients
to represent a range of lesion morphologies and changes over time to
illustrate that the method was feasible and determine its potential for
displaying dynamic stroke lesion pathophysiology. It was not our inten-
tion to provide definitive perfusion values or to examine how, for
example perfusion values might influence diffusion values, or the im-
pact of clinical variables. This is subject to future work in larger datasets
with a more personalized version of the implemented metamorphosis
method.

6. Conclusion

We used longitudinal metamorphosis to track the evolution of per-
fusion abnormality in stroke using time-series imaging. This model pro-
vides novel ways to identify the most active changes in ischemic lesion
hemodynamics using signed residual maps andwe believe will be valu-
able in future stroke research to clarifywhat determines ischemic lesion
evolution and identify new potential targets for development of new
treatments to increase the change of better clinical recovery. The appli-
cation of the metamorphosis model to scattered and solitary perfusion
stroke lesions has led us to a set of observations: some are partly consis-
tent with stroke literature such as the role that perfusion values play in
determining final tissue fate, and others pave the way for a paradigm
shift with regard to the ‘universality’ of perfusion values in determining
final tissue fate. We have also presented a novel powerful analysis tool
(metamorphic residual map) for extracting both kinetic and intensity
features from time-series imaging. Future work includes integrating
new clinical variables into the longitudinal metamorphosis model and
validating our findings in larger datasets using different perfusion
maps. Moreover, this model and algorithm are not specific to stroke le-
sions and could be used to model other brain diseases' evolution with
topology change such as hematoma or white matter hyperintensities
or tumors.
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