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Abstract

Motivation: Improvements in next-generation sequencing have enabled genome-based diagnosis for patients with
genetic diseases. However, accurate interpretation of human variants requires knowledge from a number of clinical
cases. In addition, manual analysis of each variant detected in a patient’s genome requires enormous time and effort.
To reduce the cost of diagnosis, various computational tools have been developed to predict the pathogenicity of
human variants, but the shortage and bias of available clinical data can lead to overfitting of algorithms.

Results: We developed a pathogenicity predictor, 3Cnet, that uses recurrent neural networks to analyze the amino
acid context of human variants. As 3Cnet is trained on simulated variants reflecting evolutionary conservation and
clinical data, it can find disease-causing variants in patient genomes with 2.2 times greater sensitivity than currently
available tools, more effectively discovering pathogenic variants and thereby improving diagnosis rates.

Availability and implementation: Codes (https://github.com/KyoungYeulLee/3Cnet/) and data (https://zenodo.org/re
cord/4716879#.YIO-xqkzZH1) are freely available to non-commercial users.

Contact: kylee@3billion.io or ney8909@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Missense variants are those with which one amino acid in a protein
is replaced by another amino acid due to a nucleotide change in a
gene. Missense variants are common, corresponding to 83% of non-
synonymous variants in the population, and in most cases, their
pathogenicity is less severe than that of non-sense variants or frame-
shift variants (Lek et al., 2016). Nevertheless, many genetic diseases,
such as developmental disorders, heart malformations and many
kinds of syndromic disorders, are caused by missense variants
(Homsy et al., 2015; Iossifov et al., 2014; Jin et al., 2017). Recent
improvements in next-generation sequencing (NGS) have enabled
the identification of massive numbers of variants in patients with
genetic disorders. Given the frequent occurrence of missense var-
iants, it is not surprising that they are commonly found in the gen-
ome of patients (Pérez-Palma et al., 2019). However, the clinical
pathogenicity of a missense variant is difficult to predict because it is
necessary to comprehensively consider the effect of the variant on
the protein, the cell, and, ultimately, the body (Gatz et al., 2019). In
addition, identifying a true disease-causing variant among many
detected missense variants is crucial for diagnosis. Therefore, analyz-
ing the effect of missense variants is an important and challenging
problem in the clinic.

There are standard guidelines for diagnosing patients based on
the interpretation of sequence variants as recommended by the

American College of Medical Genetics and Genomics, that is, the
ACMG guidelines (Richards et al., 2015). Based on these guidelines,
the pathogenicity of each variant in patients has been reported to the
public database, ClinVar (Landrum et al., 2016), as one of the fol-
lowing five classes: pathogenic (P), likely pathogenic (LP), uncertain
significance (VUS), likely benign (LB) and benign (B). However,
ClinVar includes fewer than 100 000 missense variants with known
pathogenicity and reliable confidence. According to dbNSFP, the
possible number of missense variants within the human genome is
82 755 468 (Liu et al., 2011), indicating that the pathogenicity of
missense variants is rarely known. Furthermore, considerable time
and effort are needed to confirm a disease-causing variant and diag-
nose a patient, leading to a high failure rate of diagnosis and delays
in treatment for patients (Amendola et al., 2016). Due to the import-
ance of missense variants in genetic diseases, there is an unmet need
to determine the pathogenicity of VUS variants found in the patient
genome (Ghosh et al., 2017). If a prediction algorithm could predict
the disease-causing variants in advance, it would considerably re-
duce the time and cost required for diagnosis. PP3 is one of the
standards in the ACMG guidelines that applies to in silico assess-
ments. The importance of PP3 is continuously growing because the
assessment of missense variants depends largely on in silico predic-
tion (Ghosh et al., 2017).

In the field of computational genomics, various attempts have
been made to develop artificial intelligence (AI)-based diagnostics
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using the rapidly increasing volume of genomic data. Some attempts
have been made to predict the pathogenicity of variants using ma-
chine learning algorithms. As an example, REVEL uses a random
forest algorithm that incorporates various pathogenicity predictors
to build an integrated predictor for missense variants (Ioannidis
et al., 2016). CADD is another ensemble method that uses linear re-
gression to integrate different scoring tools (Rentzsch et al., 2019).
FATHMM applies multiple sequence alignments (MSAs) to recog-
nize evolutionary constraints (Shihab et al., 2013). VEST4 (Carter
et al., 2013), POLYPHEN2 (Adzhubei et al., 2010) and SIFT
(Kumar et al., 2009) are other well-known prediction tools used to
predict changes in protein functionality based on random forest,
naive Bayes and statistical methods, respectively. DANN was the
first artificial neural network used to predict the pathogenicity of
non-synonymous variants based on 949 features (Quang et al.,
2015). However, there have been issues with circularity as some con-
ventional predictors use scores from other tools (Grimm et al.,
2015). Circularity can lead to the overlap of training data between
many tools, consequently resulting in overfitting. In addition, the
shortage of clinical data causes overfitting of AI machines to previ-
ous knowledge. However, there have been novel attempts to solve
this problem by applying sequence-based pathogenicity prediction.
PrimateAI compares the sequences of wild-type and mutant proteins
to identify differences and estimate the probable pathogenicity of
variants using a convolutional neural network (CNN) (Sundaram
et al., 2018). Approaches that utilize protein sequences for patho-
genicity prediction are promising because they can consider the con-
text of amino acid sequences and avoid overfitting to previous
knowledge.

We developed an algorithm that uses recurrent neural networks
(RNNs) to predict pathogenicity based on the protein sequence
around the variant. To avoid overfitting for available clinical data,
we utilized variants from other sources of data, such as common var-
iants frequently observed in the general human population (Song
et al., 2016), and conservation data, which refers to the simulated
variants that we generated based on evolutionary conservation infor-
mation. In this study, we utilized multi-task learning (Ruder, 2017)
to integrate three different types of data as follows: clinical data,
common variants and conservation data. We found that training on
simulated variants improved the prediction accuracy of pathogen-
icity predictors by reducing overfitting to known variants. We also
utilized features representing the physical and biochemical changes
in proteins upon amino acid mutation from the public database,
SNVBox, to assemble a comprehensive algorithm (Wong et al.,
2011). The resulting pathogenicity predictor 3Cnet evaluated the im-
pact of missense variants more accurately than any other pathogen-
icity predictor (PR-AUC ¼ 0.916) and identified the disease-causing
variants of genetic disease patients with 2.2 times greater sensitivity
than other predictors (top-1 recall ¼ 14.5%). 3Cnet is the first
RNN-based pathogenicity predictor to learn the effect of variants in
the context of protein sequences. 3Cnet can also predict the patho-
genicity of other non-synonymous variants including start lost, stop
gain, deletion and frameshift variants with better accuracy compared
to others (PR-AUC ¼ 0.986).

2 System and methods

2.1 Generation of clinical data from the ClinVar

database
We first curated 72 470 missense variants from ClinVar (released in
April 2020) with known molecular consequences and reliable review
status. For this purpose, we collected variants in which the molecu-
lar consequence was ‘missense variant’ and excluded those with un-
reliable review status, such as ‘no assertion for the individual
variant’, ‘no assertion criteria provided’ and ‘no assertion provided’.
As our prediction algorithm utilizes the protein sequence around the
variant site as an input feature; each variant is represented by the
Human Genome Variation Society (HGVS) term, in which the tran-
script ID and the variant information are given (den Dunnen et al.,
2016). The transcript ID was the canonical transcript in the RefSeq

database (version GRCh37) (Pruitt et al., 2005). Then, each mis-
sense variant was transformed to data representing a protein se-
quence composed of 201 amino acids centred around the variant site
(Sundaram et al., 2018). Sequence data for both wild-type and mu-
tant proteins were generated to compare the difference in the context
of amino acid sequences.

In some cases, there were multiple reports for a single variant,
with possible conflict (e.g. one was pathogenic, whereas another was
benign). Therefore, the pathogenicity of each variant was deter-
mined by integrating pathogenicity reports from ClinVar for the
same variant. We used the following five labels for pathogenicity:
pathogenic (P), likely pathogenic (LP), variants with uncertain sig-
nificance (VUS), likely benign (LB) and benign (B). We set a standard
to define pathogenicity for each variant from multiple reports. When
there were any reports indicating that a variant was pathogenic or
likely pathogenic, we considered the variant to be pathogenic, except
for the cases in which there were contrary reports. Similarly, a vari-
ant with any reports indicating that the variant was benign or likely
benign, we considered the variant to be benign. We removed var-
iants with contrary reports and variants with reports of VUS only.
As a result, we obtained 22 337 pathogenic variants and 50 133 be-
nign variants from the ClinVar database. The input features of the
clinical data are sequence representations of wild-type protein and
mutant protein, and the output feature is a binary label indicating
pathogenicity.

For the variants other than missense variants, including start lost,
stop gain, deletion and frameshift variants, the center of the se-
quence was set to the residue where the truncation started or ended.
For example, in the case of a start lost variant ‘p.Gly2_Met46del’,
the residue 46 which is the new initiation site has become the center
of the sequence data. The truncated region of the mutated sequences
was filled with zeros (zero padding). In the case of a stop gain vari-
ant, the new termination site was used as the center and the region
beyond the site was filled with zeros for the mutated sequence.
Frameshift variants were treated the same with stop gain variants
and the sites where insertion/deletion occurred were considered the
termination sites. For other deletion variants, the site where the dele-
tion started was used as the center. Overall, 147 034 pathogenic var-
iants and 3995 benign variants were found and transformed into
sequence data. Note that these variants were more likely to be
pathogenic compared to missense variants.

2.2 Augmentation of clinical data with common variants

in gnomAD
We mined the gnomAD database to obtain missense variants fre-
quently observed in the general population, namely, common var-
iants (Karczewski et al., 2017). Such variants are found in the
genomes of a number of ordinary people, suggesting that they are be-
nign variants. Common variants were used as benign variants to
train the predictors and obtain better precision by reducing false pos-
itives (Gilissen et al., 2012). First, common variants with allele fre-
quencies (AFs) higher than 0.1% were collected. Then, those
variants were represented by the HGVS term based on the canonical
transcripts as had been done for the ClinVar data. Only variants not
included in the ClinVar data were curated to avoid conflicts and
overfitting due to duplicate samples. As a result, 60 614 common
variants were found and labelled benign. As the number of benign
variants, including data from ClinVar, was much larger than the
number of pathogenic variants (22 337 versus 110 747), pathogenic
samples were augmented 4-fold during training for balance. After
removing a few transcripts inconsistent with the reference sequence
of HG19 (Church et al., 2011), 18 942 unique transcripts were
included in the curated data in total.

2.3 Generation of conservation data using MSA
For the 53 998 transcripts included in the RefSeq database, MSAs
were constructed to show the evolutionary conservation patterns of
those proteins. For each transcript, the sequence was transformed
into FASTA format. Then, a hidden Markov model-based algorithm,
HHblits (Remmert et al., 2011), built MSAs from the query
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sequence using UniRef30 (version 2020.02) as the sequence database
(Suzek et al., 2007). These MSA results were utilized for two pur-
poses as follows: to derive input features describing evolutionary
conservation and to generate simulated variants reflecting evolution-
ary constraints. Among the sequences aligned with the query se-
quence, only sequences with over 30% identity and 80% overlap
with the query were retained. In addition, only residues aligned with
more than 10 residues from other sequences were regarded as reli-
able alignments and utilized for the following processes.

Only 133 084 variants were collected from clinical data, even
when common variants were included as benign samples. Because
this number was not sufficient for training a deep neural network
with more than 10 000 features as sequence inputs, more variants
were needed to train our model in an unbiased way to avoid over-
fitting, which can occur when a dataset is too small. Therefore,
we generated simulated variants based on the amino acid fre-
quency at each residue in the alignment. First, we randomly cre-
ated variants at each residue of the transcripts, considering the
trinucleotide context in their genomes (Sundaram et al., 2018).
We defined positions where one amino acid was represented in
over 50% of aligned sequences as ‘conserved.’ Among those var-
iants, we defined the variants found at conserved residues as
pathogenic-like variants. Frequently found variants with a ratio
higher than 10% out of aligned amino acids were defined as
benign-like variants. We then randomly selected 10% of all pos-
sible simulated variants to maintain a reasonable training cost.
We referred to those variants as conservation data and utilized
them for multi-task learning along with clinical data to train the
models. The resulting numbers of variants for each type of data
are summarized in Supplementary Table S1.

3 Algorithm

3.1 Network architecture of the pathogenicity predictor
The pathogenicity predictor we built is composed of the following
two sequential modules: a feature extractor and a pathogenicity clas-
sifier (Fig. 1). The feature extractor is composed of two parallel
layers utilizing long short-term memory (LSTM) networks, a type of
RNN (Hochreiter and Schmidhuber, 1997). The first layer consists
of bidirectional LSTM networks that independently feature three
different feature matrices as follows: wild-type sequence feature ma-
trix, MSA feature matrix and mutant sequence feature matrix
(Supplementary Note S1). The output feature matrices of LSTM
consider the context of the sequences through the recurrent net-
works to determine the influence of one amino acid on the other
amino acids. Then, the output matrix from the wild-type sequence
and that of MSA are merged to produce a concatenated feature ma-
trix. Features for the same residue are concatenated such that the
network can compare the amino acid of the sequence with evolu-
tionarily conserved amino acids at that residue. The output matrices
of the mutant sequence and the MSA are also merged. Then, the two
concatenated features (wild-type and mutant) are featured once
more using LSTM networks. At this point, however, only the last
feature vector from the recurrent network remains. Finally, the out-
put feature vectors of the wild-type and the mutant are concatenated
to become an extracted feature vector.

The subsequent pathogenicity classifier is composed of two fully
connected (FC) layers. The first FC layer is expected to extract the
difference between the wild-type and mutant sequences as a feature
vector. A dropout layer is applied to the first layer to avoid overfit-
ting. Then, the final FC layer is used to decide the pathogenicity of a
variant by applying softmax activation to classify the variant as
pathogenic or benign. The binary cross-entropy between labels and
the predicted classes become the loss function of the network. In the
case of models using SNVBox features as additional inputs, the fea-
ture vector is merged with the extracted feature vector. Before concat-
enation, each feature vector passes through a separate FC layer and
sigmoid activation to address the scale difference between the two
different input features. Then, the merged features are used to deter-
mine the pathogenicity of the variant by the following FC layer.

3.2 Optimizing the pathogenicity predictor using various

training data
First, we trained a prediction model using only clinical data curated
from the ClinVar database. In addition, we trained a model with
ClinVar variants along with common variants obtained from the
gnomAD database, which were used as benign samples. In another
model, conservation data generated based on MSA were used to
train the predictor. As patterns of evolutionary conservation are
widely used to predict the pathogenicity of genomic variants, a
model trained with conservation data only might be able to predict
pathogenicity to some extent (Adzhubei et al., 2010; Rentzsch et al.,
2019; Shihab et al., 2013). We also aimed to transfer the knowledge
obtained from evolutionary conservation to train a model with clin-
ical data without overfitting. With multi-task learning (Ruder,
2017), the model utilizes a shared feature extraction network for
both clinical data and conservation data, but an independent patho-
genicity classifier is used for each (Fig. 2). The prediction scores for
the multi-task model were from the pathogenicity classifier trained
on clinical data rather than the classifier trained on conservation
data.

To select the optimized model among those various models, we
verified the performance of the models using 5-fold cross-validation
of the clinical data. Only clinical data from ClinVar, which were
confirmed by ACMG guidelines, were used as the test set for cross-
validation. Note that none of the common variants overlapped with
the ClinVar database because duplicates were removed. Receiver
operating characteristic (ROC) curves and precision-recall (PR)
curves were measured, and the area under the curve (AUC) was cal-
culated. Based on ROC-AUC and PR-AUC, we selected the optimal
prediction model for discovering the pathogenicity of variants. In
this study, the hyperparameters of the network were not optimized
for the data to allow comparison of the different models without
bias.

3.3 Combining SNVBox features for pathogenicity

prediction
SNVBox is a database providing features that predict the biological
impact of single nucleotide variations (SNVs) (Wong et al., 2011).
SNVBox comprises 85 structure-based, position-specific and exon-
specific features that offer general information about proteins and
amino acid substitutions of SNVs. For example, SNVBox includes
physicochemical properties of amino acid substitution, such as
change, volume, hydrophobicity and polarity. SNVBox also includes
specific features of the protein, such as active sites, known motifs
and protein-protein interactions. Training SNVBox features along
with sequence data may improve the lack of information about the
significance of proteins and regions where the variants occur. Some
genes, such as paralogues, may have similar sequences but different
functions or pathogenicity of variants. Utilizing protein-specific fea-
tures may enable distinguishing biological differences between simi-
lar genes. Therefore, we expected a synergetic effect between the
extracted features derived from sequence inputs and the SNVBox
features, implying physical and chemical states of the proteins. In
addition, as SNVBox features do not depend on other scoring meth-
ods, these features are free from the circularity problem. The
SNVBox features were integrated with the extracted features and
then used to predict pathogenicity (Fig. 1c). For variants that could
not be found in the SNVBox database, the feature vectors were filled
with zeros. The model network utilizing SNVBox features was
trained by multi-task learning and named 3Cnet.

4 Results

4.1 Improving pathogenicity predictor using augmented

variants
Figure 3 compares the performance of various pathogenicity predic-
tors in terms of ROC-AUC and PR-AUC. While the model trained
with ClinVar variants only had a PR-AUC of 0.687, the model
trained by both ClinVar variants and common variants had a PR-
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Fig. 1. The architecture of the recurrent neural network to train variant pathogenicity based on protein sequences. (a) The feature extractor contains two parallel layers of long

short-term memory (LSTM) networks. The features of the wild-type sequence, mutated sequence and MSA are merged and processed to become a vector, known as the

extracted features. (b) The pathogenicity classifier is composed of two fully connected layers that determine the binary pathogenicity of a variant from the extracted features.

(c) The pathogenicity classifier utilizes SNVBox features and the extracted features by combining these two features through sigmoid activation followed by concatenation
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AUC of 0.780. The results showed that the inclusion of common
variants as benign variants contributed to improving the accuracy of
the prediction model. In addition, even though the predictor trained
on conservation data only had relatively low performance (PR-AUC
¼ 0.612), the predictor trained by multi-task learning with both clin-
ical data and conservation data (PR-AUC ¼ 0.827) showed better
pathogenicity prediction performance compared to the model
trained on clinical data only. Overall, the predictor integrated with
SNVBox features, 3Cnet, demonstrated the best pathogenicity pre-
diction performance (PR-AUC ¼ 0.869).

4.2 External validation for independent ClinVar variants
To compare other prediction tools with 3Cnet, we built an external
dataset independent of the training dataset used for cross-validation
(Bleeker et al., 2003). As the ClinVar dataset that we used as training
data was released in April 2020, we utilized novel variants in
ClinVar released in August 2020 as external data. All the variants
reported in the previous ClinVar dataset were excluded from the ex-
ternal validation set. The reported pathogenicity and prediction
results of those overlapping variants are summarized in
Supplementary Table S2. In addition, only variants with scores
annotated for all tools consisting of REVEL, VEST4, SIFT,
PolyPhen, PrimateAI, CADD, FATHMM, DANN and 3Cnet
remained. Pathogenicity scores for each tool were collected from
dbNSFP (version 4.0), except for PrimateAI, for which scores were
from the Illumina database, Basespace. The external validation set
needed to be independent not only of the training data we used for
3Cnet but also of the training data used for other tools for fair com-
parison. Even though we were unable to specify every single variant
used to train other tools due to the use of the commercially available
database, HGMD (Stenson et al., 2003) and the circularity problem,
we reasonably infer that the external variants were mostly exclusive
from the variants used to train other tools as dbNSFP v4.0 (May
2020) was formerly released.

Consequently, we collected 6298 pathogenic variants and 6468
benign variants as external validation data. We tested the perform-
ance of 3Cnet using the external validation set and compared it with
those of other pathogenicity prediction algorithms. Figure 4 shows
that 3Cnet (PR-AUC ¼ 0.924) showed the best pathogenicity predic-
tion performance among all the tested pathogenicity predictors,
including REVEL (PR-AUC ¼ 0.912), VEST4 (PR-AUC ¼ 0.901),
SIFT (PR-AUC ¼ 0.841), Polyphen2 (PR-AUC ¼ 0.811), PrimateAI
(PR-AUC ¼ 0.791), CADD (PR-AUC ¼ 0.786), FATHMM (PR-
AUC ¼ 0.782) and DANN (PR-AUC ¼ 0.649), which are currently
widely used to confirm variant pathogenicity. These results indicated
that 3Cnet classifies the pathogenicity of variants more accurately
than previous methods without utilizing scores from other
algorithms.

We also tried to see whether 3Cnet can train and assess the
pathogenicity of non-synonymous variants other than missense var-
iants. Human variants such as start lost, stop gain, deletion and
frameshift variants have a high probability of being pathogenic
through loss of function. We trained 3Cnet not only with the mis-
sense variants but also with those variants. Integrated non-
synonymous variants consisted of 169 371 pathogenic variants and

Fig. 2. Multi-task learning between clinical data and conservation data. The feature

extractor is trained by all data sources, including clinical data from the ClinVar

database, common variants from the gnomAD database, and conservation data gen-

erated based on the UniRef database. Therefore, the extracted features become com-

mon features for different types of data. In contrast, pathogenicity classifiers are

separated for specific data types. The clinical data and the common variants are used

to train the pathogenicity classifier, while the other pathogenicity classifier is trained

by conservation data. After training, the pathogenicity of a variant is determined by

the classifier trained by clinical data

(a) (b)

Fig. 3. Cross-validation of internal ClinVar variants for different models using the recurrent neural network. (a) PR curve for cross-validation. Conservation (solid yellow) indi-

cates the model trained by conservation data. ClinVar (dashed blue) indicates the model trained using only clinical data from the ClinVar database. ClinVarþCommon (dotted

blue) indicates the model trained by ClinVar data along with the common variant. The multi-task (solid blue) model is trained by multi-task learning between clinical data and

conservation data. 3Cnet (solid magenta) is the model trained by multi-task learning with pathogenicity classifiers that utilize SNVBox features. (b) ROC curve for cross-

validation
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54 128 benign variants. Also, we included common variants as be-
nign variants with AF > 0.1% from gnomAD database. In total,
169 371 pathogenic variants and 114 743 benign variants were
trained to build the test model. We collected external non-
synonymous variants from ClinVar (August 2020) by excluding all
the trained variants from the data. Unfortunately, only CADD and
DANN was able to assess those variants among algorithms in
dbNSFP (Fig. 5). For the external non-synonymous variants, consist-
ing of 17 130 pathogenic variants and 6518 benign variants, we
compared the performance of 3Cnet (PR-AUC ¼ 0.986), CADD
(PR-AUC ¼ 0.973) and DANN (PR-AUC ¼ 0.780). Also, we com-
pared those algorithms using non-synonymous variants without mis-
sense variants. 3Cnet (ROC-AUC ¼ 0.846) showed superior
performance not only for missense variants but also for other non-
synonymous variants compared to CADD (ROC-AUC ¼ 0.717) and
DANN (ROC-AUC ¼ 0.705) (Fig. 5c). PR-AUC was consistently
high for all the tools (0.999 for 3Cnet, 0.998 for CADD, 0.997 for
DANN) because of the large number of pathogenic variants
(10 832) compared to benign variants (50). Therefore, the PR curve
was not shown in this case.

4.3 Assessment of missense variants of patients from

confirmed cases
We also assessed the effectiveness of 3Cnet scores for distinguishing
disease-causing variants from other missense variants in patients.
Such an application is highly practical in clinical cases for the discov-
ery of the disease-causing variant(s) among the large number of mis-
sense variants found in the genome of a patient. We obtained the
missense variants found in the genomes of 111 patients with rare
genetic disease who were diagnosed based on the ACMG guidelines
(Seo et al., 2020). The disease-causing variants were confirmed by
medical doctors, and other missense variants from those patients
were curated as non-causing variants. To test a reasonable number
of variants, we removed variants with an AF > 0.1% in the general
population. As some patients with autosomal recessive diseases had
two disease-causing variants, 186 disease-causing variants and
54 496 non-causal variants were examined.

We compared the PR curve of 3Cnet to those of REVEL, VEST4,
PrimateAI, CADD, FATHMM and DANN (Fig. 6a). SIFT and
Polyphen2 were excluded because they had too many variants with
maximum pathogenicity scores (2210 variants for SIFT and 3451
variants for Polyphen2), which prevented a proper PR curve to be
drawn (Supplementary Note S2). The results showed that 3Cnet
identified disease-causing variants more effectively (PR-AUC ¼

0.183) than REVEL (PR-AUC ¼ 0.069), VEST4 (PR-AUC ¼ 0.042),
PrimateAI (PR-AUC ¼ 0.042), FATHMM (PR-AUC ¼ 0.033),
CADD (PR-AUC ¼ 0.020) and DANN (PR-AUC ¼ 0.014). ROC
curves were not compared in this case due to the large imbalance be-
tween positives and negatives.

In addition, we compared the recall rate of the disease-causing
variants among the top-k variants for each patient for k values rang-
ing from 1 to 5, representing the probability of finding the true
disease-causing variant from the genome of a patient (Fig. 6b). We
selected REVEL and PrimateAI for comparison because REVEL was
identified as the second-best tool and PrimateAI was the best model
among previous tools using deep learning and it utilizes amino acid
sequences similar to 3Cnet. The top-k recall of 3Cnet (43% for top-
5) was considerably high, representing the ability to identify disease-
causing variants in patients. Such results implied that 3Cnet would
be useful for the practical purpose of diagnosing genetic disease in
clinical cases. In addition, the score distributions for disease-causing
variants and non-causal variants were compared using box plots
(Fig. 6c). The distribution of 3Cnet scores showed less uncertainty
compared to others, enabling causal variants to be more clearly dis-
tinguished from benign variants to reduce VUS burden (Ghosh et al.,
2017).

4.4 Finding novel pathogenic variants using 3Cnet

scores
We also used the 3Cnet scores to discover novel pathogenic variants
within the genome of patients. For some of the rare disease patients,
known pathogenic variants were not found in the genomes, but their
symptoms were similar to those of specific rare genetic diseases (Seo
et al., 2020). We speculated the existence of new missense variants
not reported in the ClinVar database but with some level of patho-
genicity. We scored the rare missense variants (AF < 0.1%) found in
the genome of these patients and closely assessed the variants with
3Cnet scores greater than 0.9. We excluded variants with REVEL
scores greater than 0.75 as they could be discovered without the
help of 3Cnet. The threshold for the REVEL scores corresponds to
the stringent threshold proposed by Ioannidis et al. (2016) As a re-
sult, we identified seven novel missense variants whose pathogenicity
had never been reported to ClinVar but are likely to be pathogenic
according to the ACMG guidelines (Table 1). Remarkably, there
was a VUS variant (NP_056651.1: p.Gly54Glu) that could be classi-
fied as likely pathogenic only if the 3Cnet score was used as evidence
for the PP3 rule. For practical use of 3Cnet for PP3 evidence, we

(a) (b)

Fig. 4. Validation performance of external ClinVar variants and comparison with other pathogenicity prediction tools. (a) PR curve for external validation. 3Cnet showed the

best performance for the independent clinical data. REVEL, an ensemble model using scores from many prediction tools, was the second best followed by VEST4, which utilizes

SNVBox features for prediction. The performance of PrimateAI was the best among previous deep learning-based algorithms. (b) ROC curve for external validation
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recommend 0.75 for the moderate threshold of 3Cnet scores
(Supplementary Note S3).

5 Implementation and availability

The data that support the findings of this study are available at
https://zenodo.org/record/4716879#.YIO-xqkzZH1. The data in-
clude missense variants used to train 3Cnet (variant_data), sequence
data transformed from the variant data (sequence_data), SNVBox
features for each variant (SNVBOX_features), and MSAs for protein
sequences in the RefSeq database (msa_data.tar.gz). In addition, the
prediction scores of different tools for external ClinVar data and pa-
tient data from confirmed cases are also provided (validation_re-
sult). The Python codes used for this study are available at https://
github.com/KyoungYeulLee/3Cnet. They include the codes to build
the sequence data from variant data to train neural networks (featur-
ize) and the codes used to build and test the prediction network
(model).

6 Discussion

Pathogenicity prediction using deep learning has had limitations for
clinical use due to its low performance compared to conventional
methods, which may be because deep neural networks requiring
massive amounts of data for effective training. In general, available

clinical data are insufficient for training deep neural networks with-
out bias (Taylor and Nitschke, 2017). Indeed, when a deep neural
network is trained solely on clinical data from ClinVar, the model is
overfitted to the data and is unable to interpret novel pathogenic
variants. Nevertheless, the usage of clinical data from patients diag-
nosed based on the ACMG guidelines is essential to build accurate
pathogenicity predictors. We overcame this limitation of deep neural
networks by taking advantage of the knowledge obtained from evo-
lutionary conservation of protein sequences. Our conservation data-
set consisted of 4 018 149 artificial variants generated based on
MSA. Although the pathogenicity of the simulated variants was not
confirmed by clinical analysis, such data could help to avoid overfit-
ting to clinical data and contribute essential features reflecting the
evolutionary constraints on the proteins.

The application of 3Cnet varies depending on the desired pur-
pose. One application is finding the true disease-causing variant in
the genome of a patient. On average, a given patient genome con-
tains approximately 100–400 rare missense variants (Auton et al.,
2015). Among those variants, only one or two variants will directly
cause the symptoms, while many of the others will be benign.
Therefore, 3Cnet can be used to narrow down the candidate variants
based on predicted pathogenicity, thereby reducing the time and cost
spent for diagnosis. In addition, scoring variants using 3Cnet can be
used to identify novel gene-disease associations. Some genes may not
be linked to any diseases in OMIM, a gene-disease mapping data-
base (Amberger and Hamosh, 2017), but they might have variants

(a) (b)

(c)

Fig. 5. External validation performance for non-synonymous variants including start lost, stop gain, deletion and frameshift variants. (a) PR curve for non-synonymous var-

iants. (b) ROC curve for non-synonymous variants. (c) ROC curve for non-synonymous variants except for missense variants
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that are related to a disease. If multiple variants with high pathogen-
icity scores are found in a single gene and the symptoms of patients
with those variants are similar to those of a specific disease, the gene
can be hypothesized as correlating with the disease. Finally, the fea-
tures extracted from the 3Cnet network can be utilized to train other
deep learning models in which the pathological impacts of variants
are important, for example, to predict the functional domains of
genes based on their sequence.

3Cnet was trained by the set of benign variants mainly from pub-
lic databases such as ClinVar and gnomAD, a composition that is
not free from bias. 3Cnet could misunderstand some benign variants

as pathogenic if such variants were not reported at the databases.
Therefore, using 3Cnet to identify benign human variants needs to
be careful and rigorous validation should be followed. Another
shortage of 3Cnet is that it currently only takes 201 residues around
the mutation site. Some of the proteins in human body have longer
sequences, in which case, the length of input sequences may not be
sufficient. Nevertheless, 3Cnet is the first RNN-based deep learning
model to utilize sequence inputs to predict pathogenicity. We could
use attention-based networks, such as transformers, rather than
RNNs to train the model. As a popular technique for natural lan-
guage processing, transformers might be able to train the context of

(a) (b)

(c)

Fig. 6. Discriminating disease-causing variants from other missense variants in the patient genome. (a) PR curve for classifying disease-causing variants and non-causal variants.

(b) The top-k recall rate implies the probability of determining the true disease-causing variant(s) among the top ranked variants using prediction scores. This number is import-

ant because the diagnosis rate of patients is closely related to the recall rate. (c) Score distribution of different algorithms for disease-causing variants and non-causal variants. A

smaller proportion of the uncertain area with similar scores for disease-causing variants and non-causing variants indicates a higher resolution of the scoring scheme for divid-

ing these variants

Table 1. Novel pathogenic variants discovered using 3Cnet and assessed based on the ACMG guidelines

HGVSp Phenotype OMIM ID Assigned ACMG rules ACMG class 3Cnet score

NP_056651.1:p.Gly54Glu 617710 PM2, PM3, PP2 VUSa 0.990

NP_066287.2:p.Leu1660Val 613721 PS2, PM1, PM2 LP 0.979

NP_733842.2:p.Trp1725Ser 263200 PM2, PM3 VUSb 0.944

NP_001420.2:p.Arg1829Pro 613684 PS2, PM1, PM2 LP 0.907

NP_001005463.1:p.Asn197Asp 617330 PS2, PM2 LP 0.978

NP_006006.3:p.Leu1049Arg 614607 PS2, PM2 LP 0.995

NP_061947.1:p.Gly262Ser 616589 PS2, PM2, PP2 LP 0.993

aThe ACMG class (VUS) could be changed to likely pathogenic (LP) only if the 3Cnet score was applied for PP3.
bThe patient diagnosed with autosomal recessive disease (polycystic kidney disease 4) had trans variants, and the other variant was classified as LP.
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protein sequences and associate distant amino acids using self-
attention layers (Vaswani et al., 2017).
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