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ABSTRACT
Conventional molecular dynamics simulations are incapable of sampling many important interactions in biomolecular systems due to their
high dimensionality and rough energy landscapes. To observe rare events and calculate transition rates in these systems, enhanced sampling
is a necessity. In particular, the study of ligand-protein interactions necessitates a diverse ensemble of protein conformations and transition
states, and for many systems, this occurs on prohibitively long time scales. Previous strategies such as WExplore that can be used to determine
these types of ensembles are hindered by problems related to the regioning of conformational space. Here, we propose a novel, regionless,
enhanced sampling method that is based on the weighted ensemble framework. In this method, a value referred to as “trajectory variation” is
optimized after each cycle through cloning and merging operations. This method allows for a more consistent measurement of observables
and broader sampling resulting in the efficient exploration of previously unexplored conformations. We demonstrate the performance of
this algorithm with the N-dimensional random walk and the unbinding of the trypsin-benzamidine system. The system is analyzed using
conformation space networks, the residence time of benzamidine is confirmed, and a new unbinding pathway for the trypsin-benzamidine
system is found. We expect that resampling of ensembles by variation optimization will be a useful general tool to broadly explore free energy
landscapes.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5100521

I. INTRODUCTION

Unraveling the functionality of macromolecules and exploring
their structures is a popular research topic in biochemistry that can
be carried out through molecular dynamics (MD). MD can be used
to explore and sample the conformation space of a system. How-
ever, its sampling power is often limited by large energetic barriers
that separate molecular stable-states. This is a problem in a vari-
ety of applications such as protein binding, unbinding, and folding
processes despite advances in high-performance computer hardware
and graphical processing units (GPUs). Enhanced sampling tech-
niques have thus been useful to increase the efficiency of MD and
observe rare events in biomolecular systems.

Enhanced sampling methods have a long history. Over the
last decades, a wide variety of methods have been described that
involve either the introduction of external forces,1 manipulation

of the energy landscape,2–4 or coupling to systems at higher tem-
peratures.5,6 Although in most cases these methods can be used
to obtain accurate thermodynamic quantities such as free energy
differences, the methods use perturbed dynamics, which compli-
cate the collection of kinetic information—both transition rates
between macrostates and microscopic state-to-state transitions.
Other enhanced sampling methods can be used to simulate rare
events without the use of biasing forces. For example, Markov state
models (MSMs)7 are based on unbiased sampling of trajectories, in
which system dynamics are described by transitions between a set
of states at discrete time intervals (i.e., τ). However, in the MSM,
the Markovian assumption (that transitions are independent of his-
tory) is only guaranteed to be fulfilled in the limit of long τ, in
practice, tens of nanoseconds.8 It can also be sensitive to clustering
parameters and feature selection9 and typically requires a very long
aggregate simulation time.
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The weighted ensemble (WE)10 method also uses unbiased tra-
jectories but offers a way to calculate observables directly, without
the use of the Markovian assumption. The WE algorithm periodi-
cally uses cloning and merging operations on this set of trajectories
in order to balance computational effort between different regions of
space. When possible, these regions can be defined as “bins” along a
collective variable (CV) that describes a transition of interest. How-
ever, for some systems, the processes of interest cannot be described
by a single CV, for instance, where multiple transition paths are
possible between multiple stable states.

The use of traditional binning procedures in the WE framework
is limited for these high-dimensional systems as the number of bins
depends exponentially on the number of CVs used. This is a problem
for traditional WE as the number of trajectories (also called “walk-
ers”) per region is typically fixed, leading to an exponential increase
in total simulation time. Even if one employed a large number of
regions and then allowed most of these to be unoccupied, it would
still be difficult to prioritize which underrepresented regions should
be chosen for cloning.

The WExplore algorithm was introduced to address this prob-
lem.11 WExplore is a WE approach that dynamically defines a large
number of sampling regions using a distance metric within a high-
dimensional CV space. These regions are defined within a hierarchy,
allowing us to balance sampling between branches of the hierarchy
at multiple levels. This allows a small number of walkers to be effi-
ciently distributed across a (possibly) high-dimensional space. WEx-
plore has been applied to sample a variety of rare events, including
ligand (un)binding pathways,9,12–14 protein folding pathways,11 and
RNA conformational changes.15

Despite this success, WExplore is limited by three main issues
related to the definitions of these hierarchical regions. First, the
nature of the hierarchical regions leads to inconsistent cloning activ-
ity: when a threshold is crossed and a region is defined on a new
level of the hierarchy for the first time, many cloning events of
a single trajectory occur in quick succession. We call this process
“thresholding,” and its stochastic nature has the potential to pro-
duce large differences between different WExplore runs. Second,
regions in WExplore are not moved once they are created. The
centers of these regions could thus be different from the positions
of local energy minima. We call this problem “suboptimal region
definition.” Furthermore, although WExplore can divide a space
into a large number of regions (e.g., 10 000), typically a maxi-
mum branching factor is defined at each level of the hierarchy to
limit the total number of regions that can be defined. This can
lead to an uneven distribution of sampling regions throughout the
space.

Inspired to address the aforementioned problems, we propose
a new region-free enhanced sampling algorithm called Resampling
of Ensembles by Variation Optimization or “REVO.” REVO uses
cloning and merging to create ensembles of diverse trajectories with-
out defining any regions and instead optimizes a measure of “varia-
tion” that depends on the pairwise distances between the walkers.
In this paper, we first describe the REVO algorithm and its differ-
ences from WExplore and other WE methods. We then apply the
REVO method to a tunable N-dimensional random walk system to
study its performance as a function of dimensionality. We also apply
REVO to sample unbinding pathways in the well-studied trypsin-
benzamidine system and compare the results to WExplore. Finally,

we conclude with a discussion of the REVO algorithm, including
new possibilities for enhanced sampling.

II. METHODS
A. Generalized framework for weighted
ensemble sampling

Since the original publication of the weighted ensemble (WE)
algorithm, a number of augmentations and improvements to the
method have been introduced. Here, we describe a generalized
framework that is common to different algorithms in the WE family.
This framework includes two alternating steps: (1) MD simulations
that move walkers forward in time and (2) resampling operations
that merge and clone walkers. A resampling function is designed
such that desirable walkers are cloned and less-desirable walkers are
merged together. Historically, this “desirability” has been defined
using counts of walkers in a set of regions (or “bins”) constructed
along one or more collective variables that describe the system
dynamics, however, as shown here this can be thought of more gen-
erally. When a walker is cloned, it creates two independent walkers
that get the conformation of the cloned walker and half of its weight.
Merging of two walkers A and B creates a walker C with the weight
of wC = wA + wB, where C inherits the conformation of A or B, with
a probability proportional to the two weights.

On the whole, a resampling process aims to increase the diver-
sity of the trajectory ensemble and increase the probability of observ-
ing the events (or conformations) of interest.

A resampling function (Fig. 1) accepts a set of walkers and
returns the new set of walkers that result from the cloning and merg-
ing operations. The new conformations are thus a subset of the
input conformations, and the sum of the weights must be unchanged
by the resampler. In general, a resampler can return a different
number of walkers, but in this work, we keep the number of walk-
ers constant. WE simulations can use arbitrary resampling meth-
ods and remain a statistically valid process from which unbiased
estimates of observables can be calculated.16 Seen this way, con-
ventional WE and WExplore can simply be viewed as different
resamplers.

B. REVO resampling algorithm
Here, we present a new method for resampling trajectory

ensembles in the WE simulation framework. The REVO resam-
pling method works by explicitly maximizing a measure of “tra-
jectory variation,” which is defined using the weights of walkers
and an all-to-all pairwise distance matrix obtained from the dis-
tances between walkers. This distance metric is system-specific and
should describe the events of interest. Notably, the resampling in
REVO does not involve the construction of regions in order param-
eter space, which avoids the region-related limitations of WExplore
mentioned in the Introduction. We calculate the variation using the
following equation:

V =∑

i
Vi =∑

i
∑

j
(

dij

d0
)

α

�i�j, (1)

where dij is the distance between walker i and walker j deter-
mined using a distance metric of choice. The exponent α is used to
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FIG. 1. The WE simulation framework.
Each walker is represented as a cir-
cle. The size of a circle represents the
weight, and different colors represent dif-
ferent conformations. An ensemble of
walkers with the same weight and con-
formation is run for a set number of steps
(“Dynamics”). Then, resampling is per-
formed. These two steps continue until
the simulation ends.

modulate the influence of the distances in the variation calcula-
tion. A procedure for selecting an appropriate value of α is given
in Sec. III B.

� is a non-negative function which is referred to as a “novelty.”
It can be a function of walker conformation and/or walker weight,
and it is a measurement of the relative importance of each walker,
which can be defined in a system-specific fashion. Here, we define �
as a function of walker weight (w),

�i = log(wi) − log(
pmin

100
). (2)

This function prioritizes walkers with higher weight values and
ranges from �i ≈ 32 for wi ≈ 1 down to �i = 4.6 for wi = pmin.
Parameters pmin and pmax are the minimum and maximum statisti-
cal weights, respectively, that a walker can hold. Following previous
work with WExplore in REVO, we do not clone walkers of weight
less than pmin, to avoid spending simulation time on walkers that will
not significantly contribute to statistical observables. We enforce a
maximum weight (pmax) in order to avoid the accumulation of prob-
ability in a single walker (w ≈ 1), which can lower our chances of
seeing new rare events within a given simulation. For instance, here,
we set pmax to 0.1, in order to always have at least 10 walkers with
reasonably high probabilities.

We also employ a check where the two walkers that are merged
must be within a certain distance from each other, which we call
the “merge distance threshold.” This ensures that minimal informa-
tion is lost when two trajectories are merged. Parameter d0, called
the “characteristic distance,” does not affect cloning and merging
behavior but is defined to make the variation function unit-less and
to facilitate comparison across different distance metrics. A proce-
dure for calculating the characteristic distance for a given system will
be explained below.

The goal of the resampling process in REVO is to optimize V
in Eq. (1). To do this, walkers with high V i values are selected for
cloning, and walkers with low V i values are selected for merging.
This is further explained in Appendix V. The pseudocode of the
REVO resampler algorithm is shown in Algorithm 1.

C. WExplore sampling algorithm
For completeness, we describe our implementation of the

WExplore sampling algorithm based on previous work.11,13 Sim-
ilar to WE, each walker in WExplore carries a statistical weight
that changes during the resampling procedure. The WExplore algo-
rithm dynamically splits the sampling space into a set of hierar-
chical Voronoi polyhedra (VP), which are used as the “regions”
to guide resampling. Each VP is defined using a central point
called an “image,” which is a specific conformation of the system.

ALGORITHM 1: REVO resampler algorithm.

Input: Ensemble of walkers, REVO parameters
Output: Ensemble of resampled walkers
Dist_Matrix = AlltoAll_Dist(walkers);
Vold, {Vi}

n
1 = CalcVariation(weights, Dist_Matrix);

while TRUE do
c = Select the walker with highest V i where wi > pmin;
m1 = Select the walker with lowest V i where wi < pmax;
m2 = Select the walker that is closest to m1 where
wm2 + wm1 < pmax and dm2,m1 < dmerge_distance
if c, m1 and m2 are defined then

/∗Changes the conformation and weight of walkers∗/
Do cloning;
Do merging;
Vnew, {Vi}

n
1 = CalcVariation(weights, Dist_Matrix);

if Vnew > Vold then
Vold = Vnew;

else
Undo cloning and merging step;
break;

else
break;

end
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A walker can be assigned to a VP region by calculating its dis-
tance to each VP image and assigning it to the region with the
smallest such distance. A WExplore simulation employs a distance
metric which is defined to emphasize the process of interest. For
example, in protein-ligand unbinding simulations, the distance met-
ric between walkers is defined as the root mean squared distance
(RMSD) between the ligands after aligning the binding sites of both
walkers.

All walkers start with the same structure and initial weight. The
sampling space initially includes just a single region defined—at each
level of the hierarchy—by the image of the initial structure. As the
simulation progresses, new regions are defined when a structure is
sampled whose distance to all previously defined images is greater
than a predefined distance threshold. The hierarchical regions are
defined using a set of progressively smaller distance thresholds.
There are a maximum number of child regions that can be defined
under each parent at each level of the hierarchy, which is set here
to 10 for all systems. In this paper, we use a four-level hierarchy of
regions with 10 000 regions in total.

Walker resampling in WExplore occurs through the cloning
and merging processes, where the number of walkers are distributed
as equally as possible across all regions. This occurs from the top of
the hierarchy downwards: first balancing between the largest hierar-
chical regions, then the second-largest, and so on. At the beginning
of a simulation, only the smallest regions are defined and resampling
occurs only at the lowest level. As mentioned in the Introduction, the
first time a walker establishes a new region at a new level of the hier-
archy, it is cloned repeatedly until the numbers of walkers in the new
and old regions are as even as possible.

WExplore and REVO have many of the same qualities, which
facilitates their direct comparison here. As in REVO, we have a
constant number of walkers throughout the simulation. The same
distance metrics can be used in both algorithms. Also, the param-
eters pmin and pmax have the same role and can be enforced in
the same way. In WExplore, two walkers are only merged if they
are in the same region (at all levels of the hierarchy). This is
analogous to the merge distance threshold in REVO, introduced
above.

D. N -dimensional biased random walk
We first use the N-dimensional biased random walk to study

and analyze the performance of REVO in higher dimensional spaces.
In this system, the conformation of walkers is defined as an N-
dimensional vector of non-negative values. A walker starts at posi-
tion 0⃗ and randomly moves either one unit forward (with probability
Pu = 0.25) or one unit backward (with probability 1 − Pu = 0.75) in
each dimension at each dynamics step. The walkers are confined to
positive position values by rejecting moves to negative values. In this
system, the distance metric used is a scaled version of the Manhattan
norm,

dij =
1
N

N
∑

d=1
(∣xid − xjd∣). (3)

For WExplore, we use a four-level region hierarchy with distance
thresholds of d = 0.25, 1, 4, and 16. The “merge distance” in REVO
is set to 2.5 for all N.

E. Trypsin-benzamidine system
We run simulations of the trypsin-benzamidine system using

the OpenMMRunner in WEPY https://github.com/ADicksonLab/
wepy and OpenMM version 7.2.217 to run parallel simulations for
each walker on nodes equipped with 4 NVIDIA K80 GPUs. The
system was setup following our previous work.13 Atomic coordi-
nates from the PDBID 3PTB structure are used to setup the system,
including the crystallographic calcium ion and the crystallographic
water molecules. The system is solvated using a periodic cubic
water box of size 74.3 Å. This system has a total of 41 006
atoms with nine neutralizing chloride ions. The benzamidine
ligand is parameterized using the CHARMM Generalized Force
Field (CGENFF).18,19

The system is run at a constant temperature and pressure using
Langevin dynamics with a friction coefficient of 1 ps−1 which cou-
ples the system to the heat bath with a temperature of 300 K and an
integration step size of 2 fs. We employ a 1 atm constant pressure
Monte Carlo algorithm where the volume move attempts are car-
ried out every 50 steps. Nonbonded forces are calculated using the
CutoffPeriodic method in OpenMM in which only the interaction
of each particle with the nearest periodic copy of other particles is
considered. A cutoff distance of 10 Å is used for nonbonded parti-
cle interactions. Covalent bonds to hydrogen are constrained using
the OpenMM HBonds function. For WExplore, we use a four-level
region hierarchy with distance thresholds of d = 10, 5, 3, and 1.7 Å.
The REVO merge distance was set to 25 Å, effectively allowing all
nonlocal merges.

For both REVO and WExplore, five independent simulations
were run with 48 walkers each and a step size of 2 fs with resampling
occurring every 20 ps. For both resamplers, we measure the distance
between two walkers (A and B) as the RMSD between the A and B
ligands after aligning the binding sites of A and B.

F. Clustering and network visualizations
To compare the structures obtained by the REVO and WEx-

plore resamplers, we build conformation space networks (CSN) as
follows.20–22 First, the feature vector of each frame is determined:
a set of distances between a predefined set of ligand and protein
atoms. This set includes the 50 nearest heavy protein atoms to
the ligand as well as the 9 heavy atoms of the ligand. The fea-
ture vector includes all possible pairs of atoms from these two
sets, resulting in a feature vector of size 450. Feature-vector based
clustering was done with the MSMBuilder23 program using the
KCenters method and the Canberra distance metric. Three sets
of clusters were determined: one using only WExplore trajecto-
ries, one using only REVO, and one using both sets of trajec-
tories. In each case, the data were grouped into 2000 clusters.
After clustering, the CSNs are constructed using the CSNAnaly-
sis tool (https://github.com/ADicksonLab/CSNAnalysis), using the
unweighted transition counts matrix and a lag time of 20 ps.

III. RESULTS
A. N -dimensional random walk

To compare the REVO and WExplore resampling algorithms,
we first run simulations for the random walk system at dimensions
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N = 2, 5, 10, and 20, with 10 copies each. The simulations were run
with 200 walkers, for 10 000 cycles that consist of 10 dynamics steps
followed by resampling. For both REVO and WExplore, a minimum
and maximum walker weight of (pmin = 10−100) and (pmax = 0.1) were
used. The characteristic distance parameter (d0) of REVO is deter-
mined by running a single dynamic cycle and then calculating the
average distance between all walkers. The overall average value is
the characteristic distance, which is tabulated for each value of N
in Table S1. To compare with our REVO and WExplore results, we
also ran straightforward random walk simulations (CONV) with no
resampling.

Figure 2 shows the average predicted probability along each
dimension, calculated by averaging the positional probability distri-
butions over all dimensions and all runs. Since the random walk is
biased toward the origin, the probability decreases drastically with
increasing x. In this system, the target equilibrium probability of
each x position can be directly calculated as Pt

(x) = (
2
3)(

1
3)

x.
We find that, using the same number of dynamics steps, REVO is

FIG. 2. Average predicted probability distributions. The black curve is the target
probability. Probability distributions are averaged over all 10 runs for (a) REVO
and (b) WExplore.

capable of visiting more distant points in comparison with the more
limited sampling by WExplore.

Furthermore, we can compare run-to-run variability of the two
algorithms by calculating the average standard error of predicted
probability for x in the range 0–22 for N = 2, 5, 10, and 20. The
value of this averaged standard error is 1.003 × 10−5 and 2.06 × 10−5,
respectively, for REVO and WExplore, which shows REVO simula-
tions are more consistent than WExplore.

Following previous work,11 we quantify the quality of sampling
of each probability distribution using two values: the “accuracy” and
the “range.” The range of a given simulation is calculated by deter-
mining the largest x values visited along each dimension and then
averaging them. The accuracy (A) of a given curve P(x) is equal
to

A =∑

x
a(x), (4)

where

a(x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1 + ∣ log(Pt(x))−log(P(x))∣
log(Pt(x)) , if log(P(x)) > 2 log(Pt

(x)),

0, otherwise.

For a given x point, the highest accuracy contribution [a(x)] is
1, which is achieved when P(x) = Pt(x). This decreases as P(x)
gets farther from the target probability. Figure 3 shows that REVO
obtains the highest accuracy and range for all simulated values
of N. Notably, WExplore struggles with very high-dimensional
spaces, with accuracy and range values approaching that of con-
ventional simulation. REVO resampling dramatically outperforms
WExplore for N = 5, 10, and 20, indicating that it is much
more capable of efficiently discovering new areas of space in high-
dimensional systems. In fact, the accuracy and range values actu-
ally improve with increasing N, reaching their maximum values at
N = 10.

To investigate this phenomenon, we examine the walkers and
their distances to the origin, for each value of N (Fig. 4). For the
2-dimensional system, walker positions are evenly spread over two
sampling “arms” that extend along the x and y axes. In general, an
N dimensional system will have N of these arms, extending outward
from the origin. We hypothesized that having more sampling arms
will allow for a higher fraction of the walkers to be far from the ori-
gin, which could improve both the accuracy and range values. In
Figs. 4(b) and 4(c), we confirm that the expected distance to the ori-
gin averaged over the set of walkers increases as N goes from 2 to
10. Once N increases to 20, even though there are more sampling
“arms,” the same 200 walkers are not able to sample all of these
arms efficiently and the expected distance to the origin decreases.
Interestingly, Fig. 4(c) tracks very well with the expected accuracy in
Fig. 3(a).

In our random walk simulations, we propose a move along
each dimension, for each time step. An N-dimensional system can
then be seen as N 1-dimensional systems, where the only thing
that couples them together is the resampling algorithm. As the
average probability distributions are calculated over all dimensions,
the higher dimensional systems gain a benefit as they have more
chances to sample higher values. To remove this effect, we calcu-
late the accuracy and range using only the first two dimensions for
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FIG. 3. (a) The calculated accuracy values are shown for three methods, aver-
aged over 10 runs. REVO outperforms when compared to WExplore and CONV
methods for all dimensions. (b) The range of visited x values for three methods
averaged over 10 runs. REVO explores a broader sampling space when com-
pared to WExplore and CONV methods for all dimensions. Error bars show the
standard error of the mean across the set of runs.

N = 2, 5, 10, and 20 (Fig. S1). The accuracy values in this case are
within standard error for N = 2, 5, and 10 but drop for N = 20. The
range is constant for N = 2 and 5 and sees a slight increase for N = 10,
before again dropping for N = 20.

In Fig. S2, we examine different values of the distance expo-
nent α and the presence or absence of the weight novelty term (�).
The weight novelty term was introduced to prioritize walkers with
higher weights, thereby encouraging not only that higher x values
are sampled but that they are sampled with as high a probability as
possible. As expected, turning off this weight novelty term (setting
�i = 1 for all i) results in a lower average accuracy for all N. We
would also expect this would result in a higher range since the range
is independent of the weights of walkers. This is what is observed, on
average, although the weight novelty leads to a slightly higher range
for N = 10. Possible reasons for this phenomenon will be addressed
in Sec. IV.

B. Choosing an optimal distance exponent (α)
for ligand unbinding simulations

For biomolecular simulations, it is not feasible to run a large
set of simulations with many different α values. Here, we describe
a procedure for determining an optimal distance exponent without
running any additional simulations. We instead use ensembles of
walkers from previous WExplore simulations, taken at two different
time points. “Early” ensembles were taken from early time points
in WExplore ligand unbinding simulations (less than 50 cycles),
where all walkers have reasonably low distances to each other and
all walker weights are still relatively high (Fig. S3). “Late” ensembles
were taken from the end of these simulations, where some walk-
ers are in the unbound state (with low weight) and some walkers
remain in the binding site. We isolate five early ensembles and five
late ensembles from two different sets of ligand unbinding sim-
ulations: (1) the WExplore trypsin-benzamidine simulations con-
ducted here and (2) the unbinding of the TPPU ligand from solu-
ble epoxide hydrolase (sEH) conducted in previous work.14 In each
case, the ensembles had 48 walkers each, with pmin = 10−12 and
pmax = 0.1.

The trajectory variation values were calculated using Eq. (1)
for the early and late ensembles using α = 1, 2, 3, and 4.

FIG. 4. (a) The final walker positions for a representative N = 2 simulation are shown as points. This is overlayed on a probability distribution heat map, calculated using
Pt (x, y) = Pt (x)Pt (y). (b) Probability distributions for the distance to the origin, averaged over all simulations, all walkers and for 10 cycles spaced evenly between cycle 1000
and cycle 10 000. Distributions are shown separately for N = 2, 5, 10, and 20. (c) The expectation values of these curves as a function of N.

J. Chem. Phys. 150, 244112 (2019); doi: 10.1063/1.5100521 150, 244112-6

© Author(s) 2019

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Average variation values are shown in Fig. 5. For both systems,
higher α increases the difference in trajectory variation between
early and late trajectory ensembles. An appropriate α value is one
that clearly differentiates between the early and late ensembles.
If our measure of trajectory variation is not higher for the late
ensembles that include the unbound state, then we would likely
not be able to sample ligand unbinding events by maximizing that
measure of variation alone. Based on these results, we choose to
use α = 4 for our REVO simulations of the trypsin-benzamidine
system.

C. Trypsin-benzamidine ligand unbinding
We now compare results for the trypsin-benzamidine unbind-

ing process obtained using the REVO and WExplore methods.

1. Residence time
The mean ligand residence time has been shown to be impor-

tant for determining drug efficacy.24 This can be calculated via the
flux of unbinding trajectories in ligand-protein unbinding simula-
tions, using a technique called ensemble splitting or “coloring.”25–28

The starting structure for the trypsin-benzamidine simulations for

FIG. 5. The trajectory variation determined for four α values for (a) trypsin-
benzamidine and (b) sEH-TPPU.

both REVO and WExplore is the ligand bound in the binding pocket.
After each dynamics cycle and before resampling, we apply a bound-
ary condition that examines the conformation of the walkers to
determine if the unbound state is reached. A walker is considered
unbound if the minimum ligand-protein distance exceeds 10 Å. A
walker that reaches the unbound state is “warped”: the structure is
set back to the initial bound state. The sum of the weights of the
warped walkers is used to determine the unbinding rates and the
mean residence time of the ligand. The flux as a function of time is
determined using the weights of the warped walkers as follows:

Flux(t) = ∑i∈Wwi

t
, (5)

where W is the set of all warped walkers. This flux is shown in Fig. 6.
The black curve shows the average probability of the five runs and is

FIG. 6. The average unbound probability for all runs for (a) REVO and (b)
WExplore. The thick blue region represents the standard error of the mean at each
time point. The black curve shows the average probability for all runs.
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influenced strongly by the highest weighted warping events. In total,
we observe 1160 unbinding events for REVO and 740 for WExplore.
The first unbinding events occur at 182.4 ns and 345.6 ns for REVO
and WExplore, respectively.

The ligand residence time, or the mean first passage time of
unbinding, can be determined as the reciprocal of the average prob-
ability flux.25,26,29,30 Figure 7 shows the predicted residence time as
a function of simulation time for both REVO and WExplore. For
both REVO and WExplore, the total simulation time over the five
runs was 8.75 µs. The final calculated residence times are 3.76 ms
and 1.19 for REVO and WExplore, respectively, which are close to
the experimental value of 1.6 ms.31 The standard error in Fig. 7
is calculated using the standard error of the average flux from
Fig. 6.

As shown in Fig. 7, the predicted residence time can exhibit
large jumps when new highly weighted warping events are recorded.
A key motivation for developing the REVO method was to increase
the consistency in residence time estimates across different simula-
tions. Figure 6 shows that the REVO simulations are more consistent
in the aggregated unbound probability, ranging from 4.13 × 10−8 to

FIG. 7. Average predicted residence times are shown in black for (a) REVO and
(b) WExplore. The red line shows the experimental residence time for the trypsin-
benzamidine system.31

2 × 10−3, whereas the WExplore results varied from 3.09 × 10−10

to 38 × 10−3. We quantify the convergence of the average trajectory
flux as a function of the size of the trajectory set in Fig. 8. Impor-
tantly, this shows that REVO can obtain more reliable residence time
estimates using a smaller number of runs.

2. Heterogeneity of ligand unbinding pathways
We now compare the heterogeneity of the unbinding pathways

that are observed using the two sampling methods. Two conforma-
tion space networks (CSNs) are shown in Fig. 9 that combine sam-
pling results for the five simulations conducted with each sampling
algorithm. The undirected CSNs are created using the force mini-
mization algorithm Force Atlas in Gephi.32 Each node in the CSN
represents a state, and the size of each node is proportional to the
sum of the weights of all walker conformations that were assigned to
that state. Directed edge weights are computed as 100 times the tran-
sition probability. The weight of each undirected edge in the CSN is
the average of the in-edge and out-edge weights.

The nodes in Fig. 9 networks are colored by the solvent accessi-
ble surface area (SASA) in Å2, with the SASA value averaged over
all conformations in that cluster. The total number of frames is
437 280 for both REVO and WExplore. For visualization purposes,
the weight of all edges is set to 1.0 after graph minimization. As
seen in the CSNs, the bound and unbound states are connected via
different exit paths.

The CSN for the REVO simulations is shown in Fig. 9(a). We
find four main ligand unbinding pathways for trypsin-benzamidine,
three of which (Paths 1–3) are consistent with those found in an
earlier work using WExplore.13 The CSN for the WExplore simula-
tions [Fig. 9(b)] depicts only two of these pathways. Representative
structures from the REVO pathways are shown in Fig. 9(c), and the
WExplore pathways are shown in Fig. 9(d). The binding site is pre-
dominantly formed by two loops: one, depicted in blue, consists of
residues 209–218, and the other is depicted in orange and consists
of residues 179–190. In Path 1, the ligand exits directly from the
binding site without any large changes of loop conformation. Paths

FIG. 8. Average trajectory flux values are shown using all possible subsamples
over the set of five runs. Individual averages are shown as points, and the probabil-
ity of the subsamples is shown using a violin plot. The trajectory flux corresponding
to the experimental residence time is shown as a horizontal red line.
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FIG. 9. Network representations of the free energy landscapes of binding are shown for REVO (a) and WExplore (b). In both cases, discrete transition path ensembles
were visually identified and labeled. Nodes are colored according to their ligand solvent accessible surface area using the color bar at the figure bottom, and node size
corresponds to the statistical weight of the states. Representative conformations are shown to depict each ligand unbinding pathway for REVO (c) and WExplore (d). Loop
regions 209–218 and 179–190 are shown in blue left and orange right.

2, 3, and 4 are dependent on conformational changes of the loop
regions. In Path 2, the blue loop opens and the ligand exits through
it. This benzamidine unbinding pathway was observed in two pre-
vious works.13,33 In Path 3, the ligand exits to the right through a

TABLE I. Cluster counts for all simulations.

Resampler Run Number of clusters visited

REVO 1 803
2 720
3 862
4 793
5 892

Average 814.0
STD err 26.67

WExplore 1 921
2 811
3 876
4 660
5 716

Average 796.8
STD err 43.42

newly formed opening in the orange loop. This path has only been
previously observed in our WExplore simulations.13 Finally, in Path
4, benzamidine exits between the blue and orange loops, as in Path
1, but through a newly formed opening above the disulfide bond
formed by residues CYS188 and CYS212.

To measure the breadth of sampling of individual runs, we
jointly cluster the trajectories from REVO and WExplore into a set
of 2000 clusters. The numbers of clusters visited by each simulation
are shown in Table I. We find that REVO has a higher number of
clusters visited, on average, with a lower standard error.

Pooling all simulations together, REVO visits 435 clusters that
were not visited by WExplore. Conversely, WExplore visits 268

TABLE II. Co-clustering information.

REVO WExplore

Exclusive cluster numbers 435 268
Average ligand RMSD (Å) 6.65 7.07
Average loops RMSD (Å) 3.76 3.20
Average SASA (Å2) 43.30 88.32
Average probability 0.014 0.008
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FIG. 10. Ligand densities for unique clusters visited by REVO (red) and WExplore
(yellow). Density maps are plotted using the VMD Volmap tool with an isosurface
value of 0.02.

unique clusters. This shows that REVO samples a more broad set
of states than WExplore. To analyze structural properties of the
unique clusters found by both algorithms, we determine a represen-
tative conformation for each cluster as the conformation with the
minimum distance to the center of the cluster (Table II).

For each algorithm, a density map of ligand poses from unique
structures is shown in Fig. 10. The red color volume shows the lig-
and density for REVO, which is localized mostly inside the blue loop
and up in between the orange and blue loops, consistent with Path 4.
WExplore unique clusters are concentrated in the area on the sur-
face of trypsin adjacent to the binding site, related to the higher
probability ligand transition Path 1.

IV. DISCUSSION
The above results demonstrate the ability of REVO to explore

a broad sampling space with greater accuracy and range when
compared to WExplore simulations. For the N-dimensional ran-
dom walk system, we found that the accuracy and range of REVO
is greater than WExplore for all values of N, suggesting that
REVO may be especially powerful for systems with very high-
dimensional sampling spaces. In addition to finding all previously
discovered unbinding pathways for the trypsin-benzamidine sys-
tem, the REVO resampler discovered a new unbinding pathway
involving significant protein conformational change. These find-
ings are remarkable as WExplore was already notable for its broad
sampling of ligand unbinding pathways in the trypsin-benzamidine
system.

As REVO is a region-free sampling algorithm, it is not lim-
ited by regioning obstacles, the main hindrance of its predecessors,
WExplore, and conventional weighted ensemble sampling. “Thresh-
olding” is a key issue in the WExplore algorithm, occurring when a
region is defined on a new level of the hierarchy, resulting in many
highly correlated cloning events of a single trajectory. We hypoth-
esized that removing this behavior would lead to more consistent

measurements of observables. Encouragingly, this is exactly what is
observed here, both in the unbinding flux for trypsin-benzamidine
and the standard error measurements in the N-dimensional random
walk.

As in WExplore, the distance metric used in REVO is flexible.
It can be any measurement of distance and need not be differen-
tiable as a function of system coordinates. For instance, distances
could be defined as differences between TM-scores34 or other mea-
sures of template similarity [e.g., “global distance test total score”
(GDT-TS) used in CASP competitions]. Distance metrics can also
involve histograms of ion and/or water positions which are dis-
continuous as a function of atomic positions. Another means of
customization is the novelty function [� in Eq. (1)]. Here, the
novelty function for each trajectory is defined using only the tra-
jectory weight. However, this function can include any trajectory
feature that is of interest to the researcher. Furthermore, the objec-
tive function that we are maximizing in this work is the variation
within the trajectory ensemble. This could also be modified to opti-
mize other properties of the ensemble. For instance, the matching
of NMR observables such as Nuclear Overhauser Effects and cou-
pling constants or matching density maps from crystallography or
cryo-EM.

The efficient nature of the N-dimensional random walk sys-
tem allowed us to run a number of simulations under different
conditions to examine the properties of the REVO algorithm. One
puzzling result was the increase in the sampling range for N = 10
when the weight novelty was turned on. This was counter-intuitive
as the weight novelty term seeks to encourage cloning of out-
lier trajectories that have reasonably high weights, while simula-
tions without the weight novelty seek to clone the farthest out-
lier trajectories at all costs. One important factor is that these
simulations are run with a minimum attainable trajectory prob-
ability (pmin). This can explain this puzzling result, in that the
weight novelty encourages higher weighted trajectories to ven-
ture out from the origin, which can be cloned a higher number
of times before they reach pmin. Aside from this small increase
in range, we expect the weight novelty to be broadly useful in
obtaining accurate rate constants for rare events, as evidenced by
the higher accuracy values in the N-dimensional random walk
simulations.

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this
manuscript: characteristic distance values for the N-dimensional
random walk (Table S1), accuracy and range values considering only
the first two dimensions (Fig. S1), analysis of the distance exponent
for the N-dimensional random walk (Fig. S2), and visualization of
representative “early” and “late” ensembles for trypsin-benzamidine
and sEH-TPPU systems (Fig. S3).
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APPENDIX A: REVO METHOD MATHEMATICAL MODEL
The REVO resampling method is an optimization problem

which aims to select a set of walkers for resampling operations
(e.g., cloning and merging) in order to maximize an objective func-
tion. The walker i is denoted as Wi = {Xi,wi}, where Xi repre-
sents the system coordinates and wi is the walker weight. In this
section, we precisely define the REVO resampling problem using a
mathematical model as follows:

n is the number of walkers.
pmin is the minimum allowable probability of a walker.
pmax is the maximum allowable probability of a walker.
dmerge is the maximum walker-walker distance for merge
operations.
w = [w1,w2, . . . ,wn]

T
∈ Rn is the vector of walker weights,

whose elements sum to 1.
� = [�(W1),�(W2), . . . ,�(Wn)]

T is a vector of walker
“novelties” defined by the positively valued � function.
α is the exponent of the distance term in the variation
function.
d0 is the characteristic distance parameter.
D = {dij(Xi, Xj)} for i = 1, . . ., n and j = 1, . . ., n is the distance
matrix where dij(Xi, Xj) is the distance between walker i and
walker j, dij = dji, and dii = 0.

The “variation” of the system is defined as

V =∑

a
∑

b
(

dab

d0
)

α
�a�b, (A1)

where we denote �(Wa) as “�a.”
REVO solves this optimization problem using a “greedy” algo-

rithm, which at each step finds the cloning operation that would
cause a maximal increase in V. We further denote w⋆ and �⋆ as the
walker and novelty vectors after resampling operations and V⋆ as
the variation value of walkers after resampling. Now, we can define
∆V as

∆V = V∗
− V

=∑

a
∑

b
(

d⋆ab
d0

)

α

�⋆a �
⋆
b −∑

a
∑

b
(

dab

d0
)

α
�a�b. (A2)

Let i denote the index of a cloned walker and let j and k denote
indices of walkers that are merged together with walker k continuing
on to the next cycle (that is, absorbing the weight of walker j). The
goal of the REVO resampler in a given iteration is to maximize ∆V
by finding the optimal set of walkers (i, j, k). The cloning and merg-
ing operations change the weights of walkers i, j, and k and change
the interwalker distances djx for all x. All other walker weights and
distances are preserved,

w⋆
i = w⋆

j =
wi

2
,

w⋆
k = wj + wk,

(A3)
d⋆ij = d⋆ji = 0,

d⋆jx = dix ∀ x ≠ j.

Finally, we can formulate this optimization problem as follows:

maximize
�⋆

∆V = V⋆
− V ,

subject to i = 1, 2 . . .n,
j = 1, 2 . . .n & j ≠ i,
k = 1, 2 . . .n & k ≠ i & k ≠ j,
wi ≥ 2pmin,
wj + wk ≤ pmax,
djk ≤ dmerge,

w⋆
i = w⋆

j =
wi

2
,

w⋆
k = wj + wk,

w⋆
l = wl for l = 1, 2 . . .n & l ≠ i & l ≠ j& l ≠ k.

This is a complex optimal assignment problem which may be solved
using binary integer programming.35 Here, we intend to show an
optimized example of the algorithm with a simpler model.

APPENDIX B: MATHEMATICAL MODEL: CLONING
ONLY

Now, imagine we have n walkers and we want to choose one
of them to clone into two identical walkers with half the weight of
chosen initial walker and the same distances to other walkers. The
new arrangement will have n + 1 walkers, as no merging will take
place. The variation will be calculated as above, and the change in
variation upon cloning walker i is denoted ∆V i.

Let us define V =∑iV i, where V i is as follows:

Vi =∑
l
(

dil

d0
)

α
�i�l. (B1)

It is intuitive that walkers with higher V i values should be the walk-
ers most beneficial for cloning since they would then get to con-
tribute twice to the variation function. However, the weight of this
walker will also be reduced, which will lower �i. We will first show
that if V i ≥Vm and �i ≥�m, then walker i will show a higher increase
in variation than walker m. In other words, ∆∆im = ∆V i −∆Vm > 0,

∆∆im = ∆Vi − ∆Vm

=

⎡
⎢
⎢
⎢
⎢
⎣

∑

i
∑

j
(

d⋆ij
d0

)

α

�⋆i �
⋆
j −∑

i
∑

j
(

dij

d0
)

α

�i�j

⎤
⎥
⎥
⎥
⎥
⎦i

−

⎡
⎢
⎢
⎢
⎢
⎣

∑

i
∑

j
(

d⋆ij
d0

)

α

�⋆i �
⋆
j −∑

i
∑

j
(

dij

d0
)

α

�i�j

⎤
⎥
⎥
⎥
⎥
⎦m

. (B2)

The weight of one walker changes and most of the terms cancel
out. After simplification, we end up with the following equation:

∆∆im = (2�⋆i − �i)∑
l
�l(

dil

d0
)

α
− (2�⋆m − �m)∑

l
�l(

dml

d0
)

α

= (2
�⋆i
�i

− 1)∑
l
(

dil

d0
)

α
�i�l − (2

�⋆m
�m

− 1)∑
l
(

dml

d0
)

α
�m�l.

(B3)

Using Eq. (B1), we have
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FIG. 11. Minimum walker weight of i to ensure that ∆∆im > 0.

∆∆im = (2
�⋆i
�i

− 1)Vi − (2
�⋆m
�m

− 1)Vm. (B4)

In this work, we employ a specific form of �,

�i = log(wi) − log(pmin/100), (B5)

which varies with walker weight as follows:

w⋆
i =

1
2
wi,

(B6)
�⋆i = logw⋆

i − log(pmin/100)

= log(wi/2) − log(pmin/100)

= log(wi) − log(pmin/100) − log 2

= �i − log 2.

Therefore, we have

∆∆im = (1 − 2
log 2
�i

)Vi − (1 − 2
log 2
�m

)Vm. (B7)

If we assume �i ≥ �m, it can be shown that

(1 − 2
log 2
�i

) ≥ (1 − 2
log 2
�m

). (B8)

Additionally if we have V i ≥ Vm, then this guarantees ∆∆im > 0.
However, it is a common scenario that V i > Vm, but �i < �m.

This would be the case if walker i had large distances to other walkers
but had a lower weight than walker m. To find the minimum �i value
such that ∆∆im is still positive, we set ∆∆im to zero and solve for �i
in terms of �m and V i/Vm. The result is as follows:

�min
i = (

Vi

Vm
)

2 log 2
Vi
Vm

− 1 + 2 log 2
�m

. (B9)

Thus, if V i = Vm, then �min
i = �m, which is intuitive, as if

walker m has both the highest Vm and the highest �m, then

it is guaranteed to cause the largest increase in V, as shown
above.

Figure 11 shows wmin
i , which corresponds to �min

i for different
values of wm and V i/Vm. This clearly shows that for the � func-
tion in Eq. (B5), for even small values of V i/Vm, we find that �min

i is
very small, approaching pmin which is the smallest allowable walker
weight. Thus, in our implementation of the REVO algorithm, we
only consider the walkers with the highest V i values for cloning.
Note that for different choices of the novelty function �i(W i), this
assumption might have to be revisited.
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