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ABSTRACT

Bone infections are a frequent cause for large bony defects with a reduced healing capacity. In
previous findings, we could already show diminished healing capacity after bone infections,
despite the absence of the causing agent, Staphylococcus aureus. Moreover, these bony defects
showed reduced osteoblastogenesis and increased osteoclastogenesis, meaning elevated bone
resorption ongoing with an elevated B-cell activity. To overcome the negative effects of this
postinfectious inflammatory state, we tried to use the regenerative capacity of mesenchymal stem
cells derived from adipose tissue (adipose-derived stem cells [ASCs]) to improve bone regeneration
and moreover were curious about immunomodulation of applicated stem cells in this setting. There-
fore, we used our established murine animal model and applicated ASCs locally after sufficient
debridement of infected bones. Bone regeneration and resorption as well as immunological markers
were investigated via histology, immunohistochemistry, Western blot, and fluorescence-activated cell
scanning (FACS) analysis and μ-computed tomography (CT) analysis. Interestingly, ASCs were able to
restore bone healing via elevation of osteoblastogenesis and downregulation of osteoclasts. Surprisingly,
stem cells showed an impact on the innate immune system, downregulating B-cell population. In sum-
mary, these data provide a fascinating new and innovative approach, supporting bone healing after bac-
terial infections and moreover gain insights into the complex ceremony of stem cell interaction in terms
of bone infection and regeneration. STEM CELLS TRANSLATIONAL MEDICINE 2019;8:1084–1091

SIGNIFICANCE STATEMENT

This study focused on reduced bone regeneration after severe bone infections. To restore bone
healing in this context, stem cells gained from fat tissue (adipose-derived stem cells) were trans-
ferred to bony defects right after surgical treatment of infected bones in mice. The gained study
results could help to improve therapy of bone infections and moreover contribute to the under-
standing of stem cell interaction in bone in an inflammatory state.

INTRODUCTION

Post-traumatic osteomyelitis is a severe complica-
tion especially after open fractures, with reported
incidences between 5% and 30%, depending on
the severity of the fracture and soft tissue injury
as well as patient related comorbidities [1].
Besides antibiotic treatment, the gold standard
treating bone infections is an adequate surgical
debridement, removing all infected purulent
bone tissue. The presence of infected bone
material reduces the effectiveness of antibiotic

treatment by 103 as remaining bacteria can form
biofilms [2]. In our previous work, we could
show a highly impaired bone regeneration
capacity after bone infections in a murine tibia
defect model [3]. Besides that, we could under-
line the importance of surgical debridement ver-
sus antibiotic treatment alone for the therapy of
post-traumatic osteomyelitis. Despite virtually
complete removal of all bacteria, remaining
bony defects showed a markedly decreased
bone regeneration capacity and moreover ele-
vated bone resorption as a result of increased
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osteoclast activity in comparison to the control group (debrided
but not infected) in our previously established mouse model.
This was mediated by an inflammatory reaction, regulating vari-
ous cytokines and elevated B-cells [4]. Thus, depending on the
extent of the bone infection a large bony defect can remain,
showing a markedly reduced bone healing capacity [3].

Bone regeneration is a highly complex regulated process
containing bone resorption and bone formation. A distinct fea-
ture of bone infections, especially by Staphylococcus aureus,
cause bone resorption. In detail, proliferation and mineraliza-
tion of infected osteoblasts is altered and osteoclast activity is
increased in a receptor activator of NF-κB ligand (RANKL)-
dependent manner [5–9].

The regenerative capacity of mesenchymal stem cells
(MSCs), derived from adipose tissue (adipose-derived stem cells
[ASCs]) or bone marrow-derived stem cells (BMSCs) gained a lot
of attention in recent years [10]. Besides successful clinical use
enhancing regenerative processes [11], ASCs can be easily
harvested during a minor invasive liposuction procedure and
moreover medical devices processing lipoaspirate into ASCs in
real-time are already fully licensed [12].

In the setting of bone infections, studies investigating the
effects of MSCs are sparse. Subsequently, we sought to improve
bone healing after post-traumatic osteomyelitis in mice via stem
cell application. Besides the regenerative capacity of MSCs,
improving bone formation, this study aimed to investigate the
beneficial effects on the highly dysregulated immune system.

For this purpose, ASCs were administered to debrided
bony defects after bone infection to increase new bone forma-
tion and decrease bone resorption.

MATERIALS AND METHODS

Mouse Osteomyelitis Model

All experiments were performed in adherence to the National Insti-
tutes of Health guidelines for the use of experimental animals and
after approval by the German legislation. The protocol was approved
by the Landesamt für Natur, Umwelt und Verbraucherschutz (NRW,
Germany; permit-number: 84-02.04.2014.A044). Animals were
housed and caged individually with free access to water and
food under specific pathogen free conditions.

C57BL/6J male and female mice, 12 weeks old with an
average weight of 25 g, were used for this project. Surgical
steps were performed, as previously described in our esta-
blished mouse model, showing decreased bone formation
after debridement following bacterial infection [3]. Briefly,
after placement of a skin incision over the proximal medial
tibia, a hole (1 mm in diameter) was drilled into the proximal
medial tibia. Then S. aureus was injected into the medullary
cavity of the tibia. Thereafter, the muscle was reapproximated
and the wound closed.

Two weeks after bone infection, second surgery was per-
formed. Placing the skin incision once again over the proximal
medial tibia the bone defect was exposed. Then, infected bone
tissue was debrided, followed by rinsing of debrided defects
with isotone sodium chloride solution.

After sufficient debridement, ASCs (105 cells in 1 ml)
were administered into the bony defect on a collagen
sponge. As a control, 1 ml of phosphate-buffered saline (PBS)
was administered.

After debridement, the wound was closed and animals
were monitored until recovery from anesthesia. Mice were
sacrificed 3 and 7 days after debridement.

ASC Isolation

ASCs were isolated and cultivated from inguinal subcutaneous
fat pads harvested from C57Bl6 mice. After thoroughly washing
the fat pads in sterile PBS, tissue was minced with sterile scis-
sors. Thereafter, 0.075% collagenase type II was administered
and incubated at 37�C. Collagenase enzyme reaction was
stopped with culture medium. After centrifugation (1,000 rpm,
5 minutes), adipocytes and supernatant were removed and
remaining cell pellet was resuspended in culture medium. Cells
were then seeded on cells culture flask and passaged later on
according to proliferation of cells.

Protein Isolation

Tibiae were quick-frozen after harvest and stored at −80�C. After
pestling in liquid nitrogen, bone fragments were collected and
homogenized in lysis buffer, containing protease inhibitors until
lysis was completed. Cellular debris was removed by centrifuga-
tion and isolated protein was stored for further experiments.

Western Blot

Isolated protein was combined and mixed with Laemmli sample
buffer. After denaturation at 95�C, samples were kept on ice until
loading of the SDS-PAGE. Fifteen percent of polyacrylamide gels
were used for electrophoresis of 30 μg total protein per lane. Pro-
tein was transferred to a nitrocellulose membrane using wet
transfer method before membranes were blocked with 3% bovine
serum albumin to prevent unspecific binding. After washing,
membranes were incubated with primary antibodies against
RANKL, runt-related transcription factor 2 (RUNX2), CD19,
interferon-γ (IFN-γ), B-cell activating factor (BAFF), and galectin-9
(GAL9; Abcam, Cambridge, U.K.) overnight at 4�C, followed by
washing and incubation with horseradish peroxidase (HRP)-
conjugated secondary antibody (Thermo Fisher Scientific, Wal-
tham; Santa Cruz Biotechnologies, Dallas). Proteins were detected
for 30–60 seconds by enhanced chemoluminescence.

Flow Cytometry

Tibiae were rinsed with phosphate buffered saline containing
10% fetal calve serum using a fine cannula to wash out bone
marrow. A single cell suspension was created and cells of two
tibiae per group were combined for flow cytometry analysis. To
prevent nonspecific binding, Fc receptors were blocked with
anti-CD16/CD32 antibodies (BD Pharmingen, San Diego) before
cells were stained with antibodies against CD3, CD19, Gr1
(eBioscience, San Diego), and CD45R (BD Bioscience, San Jose).
Flow cytometry was carried out using BD LSRFortessa and
corresponding software to compensate fluorescence intensity of
antibodies. Further analysis and gating to final cell subpopula-
tions was performed using FlowJo single cell analysis software.
Cells were characterized for CD45R+CD19+ B cells, Gr-1+
granulocytes, and CD3+ T cells, respectively.

Microcomputed Tomographic Analysis

Bone specimens were scanned with a μCT device (Viva CT 80;
Scanco Medical AG, Brüttisellen, Switzerland) operated at
70 kVp, 114 μA, 8 W, 31.9-mm Field-of-View, an integration
time of 1,167 ms and 2× frame averaging. The data sets were
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reconstructed into 3D volumes with an isotropic nominal reso-
lution of 15.6-μm voxel size.

Image Processing

Further processing of the scanned images was performed using
μ-CT Evaluation Software Program V6.5 (Scanco Medical AG,
Brüttisellen, Switzerland). A standardized cylindrical volume of
interest with 16.84 mm in diameter was placed within the defect
site. Thereafter, bone volume to total volume was assessed
according to the guidelines for assessment of bone micro-
structures using μCT (Bouxsein, guidelines for assessment of
bone microstructure in rodents using microcomputed tomog-
raphy 2010).

Histology, Immunohistochemistry, and
Immunofluorescence

For all histological procedures, tibiae were taken and fixed in
4% paraformaldehyde solution overnight, decalcified in 19%
EDTA solution and finally paraffin embedded. Thereafter, tibiae
were longitudinally sectioned at 9 μm. Following, aniline blue
staining was performed as previously described [13]. More-
over, TRAP-staining was performed with TRAP Kit (Sigma–
Aldrich, St. Louis) after manufacturer’s instruction.

Additionally, immunohistochemical stainings with primary
antibodies against osteocalcin, proliferating-cell-nuclear-antigen
(PCNA; Santa Cruz Biotechnologies) and platelet endothelial
cell adhesion molecule 1 (PECAM-1; BD Biosciences, Franklin

Figure 1. Osteogenesis is elevated and osteoclast activity reduced by adipose-derived stem cell (ASC) treatment. Aniline blue, Tartrate-
resistant acid phosphatase (TRAP) stainings, and μCT-analysis of animals treated with ASCs and phosphate-buffered saline. Aniline blue
stainings made after 7 days showed significantly elevated new bone formation after stem cell treatment. In accordance, μCT scans rev-
ealed markedly increased bone volume to total volume of ASC-treated animals in comparison with control animals. Furthermore, TRAP
staining indicated a downregulation of osteoclasts 3 and 7 days after surgery due to ASC treatment (seven animals/group). Scale bar: ani-
line blue represents 200 μm; scale bar: TRAP represents 100 μm. *, p < .05.
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Lakes) were performed using Vectastain ABC Kit (Vector Labora-
tories, Burlingame). After deparaffinization and rehydration,
specimens were incubated with proteinase K for antigen dem-
asking. Endogenous peroxidase activity was quenched by incuba-
tion with 3% hydrogen peroxide solution. Thereafter, specimens
were blocked with normal blocking serum to prevent unspecific
binding of primary antibody that was subsequently applicated
and incubated overnight at 4�C. Following, secondary antibody
conjugated to HRP was used and staining reaction was per-
formed by use of NovaRED (HRP) Peroxidase Substrate Kit
(Vector Laboratories, Burlingame).

For immunofluorescent stainings, primary antibodies against
RUNX2 (Santa Cruz Biotechnologies) and CD19 (Abcam) were
used. Initial steps were carried out similar to immunohistochem-
ical staining until application of primary antibody. Thereafter,
samples were incubated with secondary antibody conjugated to
Alexa Fluor594 (Thermo Fisher Scientific). Three images per
specimen were taken with Zeiss Axioplan microscope and his-
tomorphometry of all histological stainings was performed by
semiautomatic pixel quantification using Adobe Photoshop as
previously been described.

Statistics

Results are presented as mean � SEM of at least three
independent experiments. Normal distribution was tested
using chi square test. p values were calculated by Student’s
t test comparing two groups. For post hoc comparisons,
Tukey’s test was used. Statistical significances were set at a
p-value <.05.

RESULTS

Application of ASCs Leads to Elevated Osteogenesis
and Angiogenesis

One of our primary interests after ASC application was the
evaluation of new bone formation after treatment. Aniline
blue staining revealed significant promotion of osteogenesis by
MSCs in comparison to PBS control at day 7 postoperatively. In
fact, a 10-fold increase of new bone formation in aniline blue
stainings could be made out after stem cell application (Fig. 1).
This observation was further validated by μ-CT scans showing
elevated bone volume to total volume within the defect site
of ASC treated animals (Fig. 1). In this context, we could
observe enhanced osteoblastogenesis and osteoblast activity
in Runx2 and osteocalcin stainings (Fig. 2). These findings
could be further supported by Western blot analysis targeting
Runx2 (Fig. 3). Besides osteogenesis, proliferation verified by
PCNA staining, could be increased by ASC treatment (Fig. 2).
To verify if applicated ASCs could likewise increase angiogene-
sis, stainings with primary antibody against PECAM-1 were per-
formed, elucidating significantly increased number of vessels
within the defect (Fig. 2).

Stem Cells Could Decrease Bone Resorption in a
RANKL-Dependent Manner

As already shown, osteoclast activity is markedly enhanced dur-
ing postinfectious, inflammatory state of osteomyelitis. Impor-
tantly, applicated ASCs were capable to decrease osteoclast

Figure 2. Stem cell application leads to increased osteoblastogenesis, angiogenesis, and proliferation. Immunoflourescent stainings
with primary antibody against runt-related transcription factor 2 (Runx2) and immunohistochemical stainings against osteocalcin,
proliferating-cell-nuclear-antigen (PCNA), and platelet endothelial cell adhesion molecule 1 (PECAM-1). Subsequently to elevated bone
formation after stem cell application, osteoblastogenesis which could be seen in Runx2 stainings was significantly elevated 3 days after
surgery. In accordance, osteocalcin, a marker for mature osteoblasts showed significantly enhanced signals after 3 and 7 days. PCNA
stainings, indicating cell proliferation was also upregulated after stem cell treatment. Interestingly, angiogenesis seemed to be
enhanced by ASC treatment, as signals observed in PECAM-1 stainings were significantly increased (seven animals/group). Scale bar
represents 100 μm. *, p < .05; **, p < .01.
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Figure 3. B-cell depletion is mediated via galectin-9 (GAL9) and B-cell activating factor (BAFF). Western blots of markers for
osteoblastogenesis, osteoclast, and B-cell activity. In accordance to immunoflourescent stainings, protein levels of runt-related transcription
factor 2 could be raised by stem cell application. Decreased osteoclast activity seems to be downregulated in a receptor activator of NF-κB
ligand-dependent manner as levels were significantly reduced in stem cell group. Investigating B-cells, CD19 was downregulated in ASC group
7 days after surgery. Subsequently, GAL9 known to inhibit B-cells is upregulated and moreover, BAFF is downregulated after stem cell applica-
tion. Interestingly, interferon-γ is decreased 7 days after surgery in stem cell group (nine animals/group). *, p < .05; **, p < .01; ***, p < 0.001.
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activity, seen in TRAP staining (Fig. 1), and thereby bone resorp-
tion. Accordingly, RANKL, essential for osteoclast function, was
significantly enhanced in Western blot (Fig. 3).

ASCs Show Immunomodulation of the Adaptive
Immune System

Besides studying the osteogenic potential of ASCs in this spe-
cial setting, a closer look on the immune system was one of
the main goals of this work. Detecting an elevated B-cell activ-
ity in our previous work, a FACS analysis revealed the deple-
tion of B-cells in stem cell treated group (Fig. 4). Interestingly,
this effect could be observed only 7 days after treatment.
Accordingly, Western blot levels of BAFF were diminished and
GAL9 elevated (Fig. 3). Interestingly, cell numbers of T-cells
and granulocytes were not affected by ASC treatment (data
not shown).

DISCUSSION

Decreased bone regeneration due to inflammatory processes,
especially after bone infections is a common problem of ortho-
pedic surgery [14]. In our previous work, we have demonstrated

decreased bone regeneration after debridement following bacte-
rial infection as a result of a dysregulated inflammatory reaction
(3 and 4). In the current study, we sought to investigate the abil-
ity of ASCs to restore the regenerative capacity of postinfectious
bone defects. In addition, our investigations focused on the
immunomodulatory properties of MSCs.

Interestingly, ASC application leads to dramatically enhanced
bone formation after debridement of osteomyelitic bone. Accord-
ingly, proliferation and differentiation of osteoblasts as well as
angiogenesis was markedly enhanced.

In this context, many studies have already demonstrated
the potential of MSCs for osteogenic differentiation [15–17].
Moreover, ASCs have the capacity to differentiate into differ-
ent types of tissue including cartilage, bone, muscle, vessels,
and adipose tissue [10, 15].

Interestingly, our findings indicated the potential of ASCs to
modulate osteoclast activity and thereby diminish bone resorp-
tion. Accordingly, stem cells could modulate RANKL/osteo-
protegerin (OPG)-axis, which was dysregulated due to bone
infection. Consistent to our findings, MSCs are known to
decrease cell number of osteoclasts via modulation of RANKL/
OPG-axis [18]. In a murine psoriasis model Th17 cells enhanced
osteoclasts in a RANKL-dependent manner, whereas MSC

Figure 4. B-cells were decreased 7 days after surgery by stem cell application. Immunofluorescent stainings with primary antibody
against CD19 and FACS analysis of B-cells. In accordance to Western blot results, immunoflourescent stainings and FACS analysis revealed
B-cell depletion by stem cell application 7 days after surgery (six animals/group). Scale bar represents 100 μm; *, p < .05.
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application could downregulate osteoclasts via OPG production
[18]. Moreover, stem cell-based therapy seemed to be promising
to reduce bone resorption in rheumatoid arthritis [19].

Besides regenerative abilities, emerging data indicate immu-
nomodulatory properties of MSCs [20]. For instance, BMSCs
showed the capacity to reduce the inflammatory response and
developing fibrosis in a murine lung injury model, secreting inter-
leukin (IL)-1 receptor antagonist (IL-1ra) [21]. Furthermore,
BMSC infusion in a murine myocardial infarct model led to a sig-
nificant increase of anti-inflammatory protein Tsg-6 [22]. In this
context, TSG-6 application as well as human BMSCs have been
shown to reduce secretion of tumor necrosis factor α (TNF-α)
and IL-1α during inflammatory state in a peritonitis model. Fur-
ther beneficial effects of BMSCs were evident in a sepsis model
reducing the expression of TNF-α and IL-6 [23]. Accordingly, ASCs
could also modulate the immune response of arthritic Dilute
Brown Non-Agouti/1 mice. Here, ASC treatment resulted in a
decreased incidence and severity of arthritis accompanied by a
significant decrease in inflammatory cytokines such as TNF-α, Il-
1β, and IFN-γ. In an experimental colitis and sepsis model, ASCs
turned out to have a protective and anti-inflammatory effect via
secretion of IL-10 [24]. Investigations concerning cystic fibrosis
revealed the ability of MSCs battling bacterial infections via
secretion of antimicrobial agents [25]. In this context, the immu-
nomodulatory and antibacterial abilities of MSCs could be used
as a new and innovative approach treating bacterial infections
and autoimmune disorders like graft versus host disease [26].
More specifically, ASCs showed beneficial effects preventing and
treating osteomyelitis [27] and could restore bone regeneration
of osteonecrosis in maxillofacial surgery [28].

Accordingly, our data could demonstrate the modulation
of the innate immune system via stem cell application, regulat-
ing B-cells during late fracture healing. BAFF and GAL9 levels
seemed to have a regulatory function in this context.

B-cell function is essential for bone remodeling and osteo-
clast function. Activated B-cells secrete RANKL and thereby
increase osteoclast activity [29]. However, the physiological bal-
ance of bone formation and resorption can be shifted toward
bone erosion by increased B-cell activity [29]. In inflammatory
musculoskeletal diseases like rheumatoid arthritis, B-cells have
a major impact on focal bone erosion [30–32]. Supporting this
hypothesis, B-cell depleting therapy seems quite effective
suppressing bone erosions and synovitis in rheumatoid arthritis
[31]. Moreover, B-cells seem to be involved in periodontitic
bone loss [33].

Recent studies elucidated a downregulation of excessive
B-cell proliferation via MSCs. Potential mechanism responsible
for this is a cell contact based inhibition mediated by GAL9 [34,
35]. BAFF is indispensable for B-cell maturation and enhances
B-cell survival [36]. In terms of B-cell overactivity, MSCs showed
the potential to affect B-cells via BAFF regulation [34].

CONCLUSION

Our investigations show how ASCs could overcome the impair-
ment of bone regeneration after osteomyelitis in a murine animal
model. Interestingly, bone formation and osteoblastogenesis
could be elevated and moreover osteoclastogenesis decreased
in a RANKL-dependent manner. Besides that, immunomodula-
tory effects of applicated ASCs on the innate immune system
were evident in a B-cell depletion, mediated by GAL9 and BAFF.
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