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Functional analysis of gene sets derived from experiments is typically done by pathway
annotation. Although many algorithms exist for analyzing the association between a gene
set and a pathway, an issue which is generally ignored is that gene sets often represent
multiple pathways. In such cases an association to a pathway is weakened by the
presence of genes associated with other pathways. A way to counteract this is to
cluster the gene set into more homogenous parts before performing pathway analysis
on each module. We explored whether network-based pre-clustering of a query gene set
can improve pathway analysis. The methods MCL, Infomap, and MGclus were used to
cluster the gene set projected onto the FunCoup network. We characterized how well
these methods are able to detect individual pathways in multi-pathway gene sets, and
applied each of the clustering methods in combination with four pathway analysis
methods: Gene Enrichment Analysis, BinoX, NEAT, and ANUBIX. Using benchmarks
constructed from the KEGG pathway database we found that clustering can be beneficial
by increasing the sensitivity of pathway analysis methods and by providing deeper insights
of biological mechanisms related to the phenotype under study. However, keeping a high
specificity is a challenge. For ANUBIX, clustering caused a minor loss of specificity, while
for BinoX and NEAT it caused an unacceptable loss of specificity. GEA had very low
sensitivity both before and after clustering. The choice of clustering method only had a
minor effect on the results. We show examples of this approach and conclude that
clustering can improve overall pathway annotation performance, but should only be used if
the used enrichment method has a low false positive rate.
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INTRODUCTION

The advance in high throughput experiments has led to a huge increase in the data available for
understanding biological function. However, extracting function from high-throughput experiments
is often not straightforward since genes and proteins are involved in many different biological
mechanisms and pathways. The quest for biological insight from high-throughput experiments has
therefore prompted the invention of a large number of pathway enrichment analysis tools.

The most recent family of pathway analysis methods are the network-based tools, such as
EnrichNet (Glaab et al., 2012), NEAT (Signorelli et al., 2016), NEArender (Jeggari and Alexeyenko,
2017), BinoX (Ogris et al., 2017), and ANUBIX (Castresana-Aguirre and Sonnhammer, 2020). These
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methods require a functional association network, such as
FunCoup (Persson et al., 2021) or STRING (Szklarczyk et al.,
2021), where different types of data describing relationships
between genes and/or proteins, are integrated to infer
functional associations between genes. Using enrichment of
network links, instead of overlap between gene sets,
substantially improves the chances of detecting a relationship,
as networks provide much more information (Ogris et al., 2017).
Statistical significance of network-based pathway analysis
methods is assessed based on the network crosstalk, i.e., links
connecting the studied gene set and the pathway of interest.
Methods such as BinoX rely on network randomization to obtain
a null distribution, which is fit to a binomial distribution to
compute the expected crosstalk. NEAT and NEArender compute
the expected crosstalk based on the node degree of the query, the
pathway and the network, with the difference that NEAT fits a
hypergeometric distribution and NEArender a chi-square
distribution, but their results are very similar. ANUBIX
randomly samples gene sets of the same size as the original
query set and fits the expected crosstalk to a beta-binomial
distribution. While all these methods except ANUBIX have
been shown to suffer from high false positive rates when
testing random gene sets for enrichment (Castresana-Aguirre
and Sonnhammer, 2020), we here included BinoX and NEAT,
together with ANUBIX to study how clustering affects different
methods.

Network-based methods provide the highest sensitivity of all
the pathway enrichment families (Ogris et al., 2017; Castresana-
Aguirre and Sonnhammer, 2020). However, experimental gene
sets are often complex with multiple affected pathways, which

increases noise and leads to decreased sensitivity. An example of
this would be a gene set consisting of four functional modules
where each one is enriched for a specific pathway (Figure 1). A
pathway analysis method would struggle to detect each module’s
pathway association if the genes belonging to each module is only
a small fraction of all genes in the gene set. Additionally, the
studied gene set could contain noise in the form of other genes
not related to the main phenotypes of the gene set, which could
cause false negatives, impacting the sensitivity of pathway
analysis.

Due to the ubiquitous use of pathway analysis methods and
reliance on their output to interpret results from diverse and
important fields of research such as drug development (Jhamb
et al., 2019), biomarker discovery (Chen et al., 2017) and patient
diagnosis (Lu et al., 2019), it is important to ensure that these
methods can cope well with complex gene sets.

One way to achieve this is to reduce the mentioned complexity
by separating the mix of affected pathways. Clustering is a
technique that has been used to lower complexity of data by
grouping similar entities in various fields, such as pattern
recognition (Baraldi and Blonda, 1999; Chen and Huang,
2003), image analysis (Chen et al., 2015; Dhanachandra et al.,
2015), and analysis of biological interaction networks (Ideker
et al., 2002; Opresko et al., 2004; Mitra et al., 2013). In the field of
pathway analysis, clustering is used in PathFindR (Ulgen et al.,
2019) and GScluster (Yoon et al., 2019) to find subnetworks or
modules in a gene set mapped to a protein-protein interaction
(PPI) network, followed by gene overlap based pathway analysis.
However, neither of these tools have evaluated the combination of
clustering with state-of-the-art pathway analysis methods, nor

FIGURE 1 | Gene sets derived from experiments are often complex with multiple affected pathways. This illustration shows genes that belong to 4 pathways that
are functionally distinct. The mixture of pathways may complicate the pathway enrichment analysis, especially for smaller pathways. By separating gene clusters prior to
pathway analysis, a clearer picture of the pathway enrichment can be obtained.
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have they compared the performance of used methods with and
without clustering.

The approach we take here is applying clustering to decrease
complexity of the gene sets, and then apply state-of-the-art
network-based pathway enrichment methods. We first
investigated whether top-performing clustering methods such
as MCL, Infomap, andMGclus are able to extract single pathways
from pathway mixtures. The performance of clustering in
combination with the network-based pathway analysis
methods BinoX, NEAT, and ANUBIX, as well as classical
overlap-based Gene Enrichment Analysis (GEA), was
evaluated using a benchmark constructed based on the KEGG
pathway database.

MATERIALS AND METHODS

Clustering is a way to group objects into different communities,
where the objects within each community are more similar to
each other than to objects in the other communities (Malliaros
and Vazirgiannis, 2013). When clustering is used in the context of
a network it involves grouping nodes with high intra-module
density, i.e., that are highly connected within a network
neighborhood and less connected to the nodes outside said
community. There are different types of clustering, e.g.,
connectivity clustering, centroid clustering, density clustering,
distribution clustering, network-based clustering, etc. (Emmons
et al., 2016). In our study we focus on network-based clustering,
since we are mapping a query gene set onto a network. Since the
purpose of this study is not to benchmark the clustering methods
themselves, we decided to pick three methods. These methods are
MGclus, which has been shown to work well with the FunCoup
network (Frings et al., 2013), Infomap (Rosvall and Bergstrom,
2008), and MCL (Van Dongen, 2008), due to their superior
performances compared to other methods (Lancichinetti and
Fortunato, 2009; Shemirani et al., 2021).

Clustering Methods
MGclus defines modules based on the intra- versus inter-
connectivity in a module and considers shared neighbors of
nodes as evidence that they belong to the same module.

Both Infomap and MCL extract modules using random walks
on the underlying network. MCL performs an iterative random
walk along the edges of the network to discover where the flow
tends to gather. These iterative random walks are calculated using
Markov chains, where the transition probability matrix changes
in each run. Infomap finds the optimal set of modules that
minimizes the information required to describe a random
walk through a network. The description is in two levels,
coding for nodes and modules (Rosvall et al., 2009). All
clustering algorithms were used with their standard
configurations.

Pathway Analysis Tools
GEA is an overlap-based method that tests if the overlap between
two sets of genes is higher than would be expected by chance.
Statistical significance is assessed using a modified Fisher’s exact

test where random overlap is modeled from random samples of
pairs of gene sets. This test is a conservative variation of Fisher’s
exact test, where 1 is subtracted from the observed overlap, as in
DAVID’s (Huang et al., 2009) EASE score. This means that GEA
cannot determine statistical significance of overlaps smaller than
2 nodes.

BinoX assumes that the random crosstalk between two gene
sets in the network is distributed according to the binomial
distribution. It therefore randomizes the network and
computes a distribution of pairs of randomly drawn gene sets
to estimate the parameters of a binomially distributed random
crosstalk. These parameters are used to determine the expected
crosstalk. BinoX can assess whether a pathway is enriched or
depleted for the studied gene set. A depleted pathway means that
the gene set has fewer links to the pathway than expected by
chance.

NEAT and NEArender use slightly different assumptions
about the distribution of random crosstalk in the network.
NEAT assumes a hypergeometric distribution of crosstalk
while NEArender assumes a chi-square distribution. Therefore,
instead of testing the observed crosstalk between the studied gene
set and a pathway of interest using a sampled random
distribution, they rely on the hypergeometric and chi-square
test respectively to assess statistical significance. However, both
methods compute the expected crosstalk in the same way, taking
into account the degree of the gene set, the pathway and the
network. Both methods can compute enrichment and depletion.
Since NEAT and NEArender show very similar results, we only
selected one of them (NEAT) for our benchmark.

ANUBIX is a novel network-based method that computes
the enrichment of a gene set for a pathway of interest based on
the network crosstalk. The observed crosstalk is assessed for
statistical significance using a model of the null distribution of
the random crosstalk in the network. This null distribution is
modeled by drawing random samples of gene sets, of the same
size as the studied gene set, from the genome, calculating their
crosstalk with the pathway of interest and fitting the
parameters of a beta-binomial distribution for the
distribution of the random crosstalk. The procedure can be
applied to one or multiple pathways of interest. The statistical
significance of the observed crosstalk is only assessed for
enrichment, where the observed crosstalk is larger than
would be expected by chance.

Null Model Modification of ANUBIX
To generate a null distribution of random crosstalk, ANUBIX
samples gene sets from the genome, at random. The assumptions
behind this null distribution may be weak when the gene sets
under study contain genes not present in the used functional
association network or have node degrees that deviate from the
expected degrees when drawing random genes. To make the
underlying null model more accurate we used degree-aware node
sampling (McCormack et al., 2013) to construct the underlying
distribution. We achieved this by first grouping all network nodes
into bins, one per degree if more than 100 nodes exist for a given
degree, or bins representing a range of degrees if this was needed
to obtain at least 100 nodes in the bin. Sampling to produce
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random gene sets was done by randomly selecting nodes from
bins with the same degree as the nodes in the query set.

To assess the improvement of this modification, we generated
100 random gene sets by sampling from the whole genome and
another 100 random gene sets by sampling from the subset of
genes present in all Chemical and Genetic interaction (CGP) gene
sets in the Molecular Signatures Database (MSigDB) (Liberzon
et al., 2011). Sampling was done such that the gene frequencies in
the MSigDB gene sets were preserved. The size of the gene sets
was fixed to 50 genes, which was the median size of all the gene
sets in MSigDB.

Functional Association Network
Network-based pathway enrichment methods require a protein
interaction network. In our study we used FunCoup, which is one
of the most comprehensive functional association networks of
genes/proteins available. FunCoup infers functional associations
between genes by integrating different types of evidence using a
redundancy-weighted naïve Bayesian approach, combined with
orthology transfer. FunCoup’s high coverage comes from the
number and variety of different evidence types used, such as:
mRNA and protein co-expression, co-evolution based on
phylogenetic profile similarity, Protein-Protein and domain-
domain interactions, sub-cellular co-localization, co-regulation
via miRNA and transcription factors, as well as genetic
interaction.

For this study, we used theHomo sapiens FunCoup 5 network.
To avoid noise, we used the default link confidence cutoff of 0.8
resulting in a network of 612,276 links and 12,890 genes.

Pathway Database
For this study we use the 313H. sapiens pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (v.96.0) (Kanehisa
et al., 2016).

BENCHMARKS

Pathway Recovery for Each Clustering
Method
Performance of clustering algorithms may vary depending on the
properties of the network they are applied to, so we constructed a
simple benchmark to assess this. We generated 100 gene sets by
merging different KEGG pathways that had shared links, three
pathways at a time. Then we applied the different clustering
methods to these gene sets to produce modules. Each module was
assigned to the pathway with the highest overlap, and the Jaccard
index between the sets of assigned and true pathways was
computed for each method. The Jaccard index distributions of
the clustering methods were compared using Kruskal-Wallis and
Wilcoxon tests.

True Positive Benchmark
KEGG pathways were bisected into two parts with similar
number of nodes and total node degree. The overlap between
the bisected parts was emulated based on the median overlap
between gene sets in the MSigDB database and KEGG pathways.

KEGG pathways were ordered by size and grouped into seven
bins with an equal (or as equal as possible) number of pathways in
each bin.We then sampled one pathway from each bin at random
and merged them into a unique gene set. To decide how many
pathways to join, we performed a pathway analysis study of
Chemical and Genetic interaction (CGP) MSigDB gene sets
against KEGG pathways using the null model modified
ANUBIX. To keep a reasonable gene set size, and to avoid
merging too many pathways, we used Bonferroni correction
(Abdi, 2007) and a family-wise error rate (FWER) of 5% as a
cutoff. This resulted in a median number of significantly enriched
pathways of seven per gene set. We therefore chose to join seven
pathways for the construction of the multi-pathway gene sets.
Since our sampling was constrained by the binning procedure, to
avoid having toomuch overlap between the constructed gene sets,
but still retain a statically usable number of gene sets we generated
100 gene sets and ran pathway enrichment against the other parts
of the bisected pathways. Since each gene set was constructed
from seven different pathways and we were aiming to recover the
other half of each of those pathways, we could at most have 700
true gene set-pathway associations or True Positives (TPs).

False Positive Benchmark
For the false positive (FP) benchmark we generated 100 random
gene sets of the average size of the true positive gene sets, 280
genes. The generated gene sets were tested for enrichment against
the true KEGG pathways. Considering their randomness, we did
not expect to find any enriched pathways.

Performance Measures
Both the true positive and false positive benchmarks were applied
with and without clustering of gene sets prior to pathway analysis.
When clustering was applied, pathway enrichment was tested
individually for each identified module. The pathways with the
lowest p-value for each module were merged into a single list. The
performance of each method was assessed by Receiver Operator
Characteristics (ROC) curves (Bradley, 1997). For our analysis,
we select only the pairs that were statistically significantly (FDR <
0.05) enriched after adjusting p-values using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). The
pipeline of the clustering implementation in pathway
enrichment analysis is shown in Figure 2.

Adaptive Module Size Filtering
Applying clustering to the query gene sets increases the sensitivity
of the underlying analysis. However, this often comes with an
increase in false positives, mainly stemming from small modules.
To control for this, we devised a filtering approach for small
modules prior to the pathway enrichment analysis. To calibrate it,
we generated 100 random gene sets for a range of sizes between 50
and 600 genes, increasing the size by 50 genes, and ran the
clustered pathway enrichment pipeline against KEGG pathways.
At FDR < 0.05, we studied which minimum module size cutoff
was necessary to keep the FPR below 5%. With the selected range
of gene set sizes, we observed that the required module size cutoff
increased linearly with the query gene set size (Supplementary
Figure S1), suggesting that the cutoff should be adapted to
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different gene set sizes. This approach only works well for
methods that already control the FPR well prior to clustering,
here yielding good results only for ANUBIX. The adaptive
module size filtering ensures an FPR level matching the set
FDR level in ANUBIX when filtering out modules whose size
is below 2% of the query gene set size, hence this filter was applied
to ANUBIX here. For BinoX and NEAT this was however not
possible to achieve without a massive loss of sensitivity, hence the
filter could not be applied to them.

Clustered vs. Non-Clustered MSigDB Gene
Sets Analysis
We ran pathway enrichment analysis against KEGG pathways for
all the CGPMSigDB gene sets in two different scenarios, with and
without pre-clustering the gene sets. To showcase that different
gene sets are a mixture of different pathway or pathway families,
for each MSigDB gene set, we studied how often a certain
pathway subclass, as defined by KEGG, was targeted by the
same gene set module. The KEGG database classifies pathways
into 6 classes and 42 subclasses. The overlap in significantly
enriched pathways between (A) with pre-clustering and (B)
without pre-clustering was computed using the Jaccard Index
as described in Eq. 1:

J(A, B) � |A ∩ B|
|A ∪ B| (1)

RESULTS

Gene sets derived from experiments typically represent multiple
affected pathways. Therefore, mapping these gene sets onto a

network such as FunCoup and applying network-based clustering
algorithms to divide gene sets into more homogeneous subsets
was expected to reduce noise and lead to more accurate pathway
analysis. We investigated the effect of clustering on pathway

FIGURE 2 | Integrating clustering methods into pathway enrichment analysis. The input gene set was mapped onto an association network and clustering
algorithms were applied. Based on this, the gene set was divided into several modules, and pathway enrichment analysis was run for each of the modules separately,
keeping only the most significant result for each module-pathway pair. Pathway enrichment was also run in the original gene set for comparison purposes. Each node
represents a gene. Different colors refer to membership in different modules or pathways. A multicolored circle indicates more than one membership.

FIGURE 3 | Ability of the clustering methods Infomap, MCL, andMGclus
to recover original KEGG pathways in multi-pathway gene sets. Three
pathways were grouped into a single gene set prior to clustering. Eachmodule
was assigned to the pathway with the greatest overlap, and the Jaccard
index of the overlap between true and assigned pathways was computed. The
Jaccard index distributions of the clustering methods were compared using
Kruskal-Wallis and Wilcoxon tests.
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analysis using MGclus, MCL, and Infomap. To assess the
clustering performance of these methods on data used in
pathway analysis we applied them to gene sets constructed by
joining multiple KEGG pathways. Infomap and MCL
demonstrated the greatest ability to recover the original
pathways with a mean Jaccard index of 41.2% for Infomap
and 39.9% for MCL, followed by MGclus at 31% (Figure 3).
The difference between Infomap and MCL was not significant
(p = 0.42), however both Infomap and MCL were significantly
different from MGclus, with p = 1.3 × 10−9 and p = 6.5 × 10−8,
respectively.

The original null model of ANUBIX is suitable to capture non-
randomness in pathways. However, it may not optimally handle
biases present in the query gene set such as genes that are not in
the network or genes with very high node degrees. To account for
these biases and make the null model more strict we improved the
random sampling step to take into account the degree
distribution of the query genes. To assess the modified null
model generation procedure we created two datasets of
random gene sets: one by sampling from the whole genome,
and another by sampling from the pool of genes present in the
MSigDB CGP gene sets. For the first dataset, both the original and
the null model modified ANUBIX had 0% FPR. However, for the
second dataset the original ANUBIX had an FPR of 6.6%, while
the FPR of the null model modified ANUBIX was only 0.2%.

We then devised a benchmark to show the effect of pre-
clustering of query gene sets. The first part of the benchmark
was intended to assess the ability to recover True Positive gene
set-pathway pairs. Construction of the benchmark involved
bisecting KEGG pathways, merging the first half of several
pathways into a heterogeneous gene set and trying to detect

enrichment between this gene set and the other bisected halves.
In the second part of the benchmark we simulated False
Positive gene set-pathway associations by generating
random gene sets of the average size of the true positive
gene sets. We then assessed the performance of pathway
analysis methods: ANUBIX, BinoX, NEAT, and GEA, with,
and without pre-clustering on this benchmark. Figure 4 shows
the results as a Receiver Operating Characteristic (ROC) curve
for MCL and all pathway analysis algorithms. ROC curves
when clustering by Infomap and MGclus are in
Supplementary Figure S2. The ROC curves only show the
statistically significant results at FDR < 0.05, and only for
enrichment (i.e. not depletion).

Detailed True Positive Rate (TPR) and False Positive Rate
(FPR) results are shown in Table 1. The best balanced
performance prior to the application of clustering was
demonstrated by ANUBIX, with a TPR of 71% and a FPR of
0%. BinoX and NEAT showed higher TPRs, of 75% and 74%
respectively, but had a much higher FPR of 9% and 8%,
respectively. As expected, GEA had a low TPR of only 37%
due to the low coverage that overlap-based methods tend to have.
However, it had a flawless specificity. A significant difference was
observed between the results of ANUBIX and the other methods
(McNemar´s test, p < 0.001).

When applying clustering of the gene sets prior to pathway
analysis, we observed a statistically significant (McNemar´s test,
p < 0.001) increase in TPR for all the network-based pathway
enrichment methods ANUBIX, BinoX, and NEAT, but not for
GEA, which decreased. The TPR for ANUBIX increased by at
most 7 percentage points, when using Infomap, still maintaining
an FPR not exceeding the requested FDR level of 5%. BinoX and
NEAT exhibited higher increases in TPR of up to 14–15
percentage points. However, this increase came with a very
high increase in FPR from 9% to 56–61% for BinoX and from
8% to 52–56% for NEAT. There is a significant difference between
the results of the other methods and ANUBIX for all the
clustering algorithms (p < 0.001).

We observed that almost all of the enrichments found without
clustering were also found using pre-clustering of the query sets
(Figure 5). For BinoX and NEAT the fraction of unique
enrichments found without clustering were the lowest, below
2%, while for GEA they were the highest at 12–15%. Looking at
enrichments only found by pre-clustering, these fractions were
generally higher, 8–17%. We further noted that most of the
associations, 99.6%, identified by GEA were also found by the
network-based methods.

FIGURE 4 | Receiver Operating Characteristic (ROC) curves that
measure the performance of each pathway analysis tool, with clustering
(dotted lines) and without (solid lines). The used clustering algorithm was
Infomap. Only the significantly enriched tests are shown (FDR < 0.05).

TABLE 1 | True positive rate (TPR) and false positive rate (FPR) for combinations of
the clustering and pathway enrichment methods run at FDR = 0.05.

ANUBIX BinoX NEAT GEA

TPR FPR TPR FPR TPR FPR TPR FPR

No clustering 0.71 0.00 0.75 0.09 0.74 0.08 0.37 0.00
MCL 0.73 0.03 0.90 0.57 0.88 0.53 0.35 0.00
MGclus 0.75 0.03 0.88 0.61 0.88 0.56 0.35 0.00
Infomap 0.78 0.05 0.90 0.56 0.88 0.52 0.36 0.00

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8557666

Castresana-Aguirre et al. Clustered Pathway Analysis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Clustered Versus Non-Clustered Gene Sets
Analysis

A large-scale analysis was carried out for 3302 gene sets from
MSigDB/CGP against the 313 human pathways in KEGG, to
observe possible benefits of applying clustering to experimental
gene sets. Clustering was applied using Infomap and ANUBIX
was used for the pathway enrichment analysis. Pathway
enrichment analysis web server tools, such as PathBIX
(Castresana-Aguirre et al., 2021) or PathwAX (Ogris et al., 2016),
are implemented in a way that allows only single gene set queries. By
analogy, we studied MSigDB gene sets by assuming independence
between gene sets, i.e., multiple testing correction was only
performed for the number of pathways each query is compared to.

Clustering of MSigDB gene sets occurred in 2703 of the 3302
gene sets. Pathway analysis without pre-clustering resulted in
129,044 significant (FDR < 0.05) crosstalks across 2,222 gene sets.
Clustered analysis produced 122,819 significant crosstalks for
2,178 gene sets, of which 1,890 were shared with the non-
clustering approach. The Jaccard index overlap (see Materials
and Methods) of significant crosstalks between clustering and
non-clustering was 52.5%, and 67.2% of the non-clustering
crosstalks were found by the clustering approach while 70.6%
of the clustering crosstalks were found by non-clustering.

To show that clustering helps to isolate different mechanisms
within a gene set, we used the pathway subclasses as defined in the
KEGG database and mapped them to the significant pathway
crosstalks from the MSigDB large-scale analysis. Each pathway
belongs to a KEGG subclass, and on average 95% of the significant
pathways of a certain subclass had crosstalk to just one module in
a gene set.

An Application of Clustered Pathway
Enrichment Analysis
To illustrate the usefulness of clustering we provide an example
with an MSigDB gene set,
HAHTOLA_SEZARY_SYNDROM_UP (Hahtola et al., 2006).
More examples can be found in Supplementary File S1 where
we provide all significant pathway enrichments found by pre-
clustering using ANUBIX and Infomap but not without
clustering. The selected example query set contains 99 up-
regulated genes (Supplementary Table S1) from peripheral
blood samples of Sezary syndrome patients compared to
samples from healthy donors. Sezary syndrome is an
aggressive form of cutaneous T-cell lymphoma (http://ghr.nlm.
nih.gov/condition/sezary-syndrome) and is a rare disease driven
by cancerous T-cells with one or several chromosomal

FIGURE 5 | Fractions of unique pathway enrichments found with pre-clustering relative to without pre-clustering, and vice versa, run at FDR = 0.05 for all the
combinations of clustering methods and pathway enrichment tools.
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abnormalities. We used the web-server PathBIX, which provides
both regular ANUBIX and clustered ANUBIX. We ran this gene
set against the KEGG pathway database with a FunCoup cutoff of
0.8 and compared the results obtained from non-clustering and
clustering. At FDR < 0.05, non-clustering finds 8 significantly
enriched pathways, full results in Supplementary Table S2. The
top seven pathways belonged to the KEGG classes of “Replication
and repair” and “Cell growth and death”, which are pathway
classes affected by cancer. The eighth was the “Human T-cell
leukemia virus 1 infection” pathway at FDR = 0.01. As opposed to
the other seven unspecific cancer related pathways, the last one
has been associated with Sezary syndrome (Pancake et al., 1995).

When clustering was applied to this gene set, it was split into
three modules of size 20, 18, and 4, where each module was
enriched for 16, 4, and 2 pathways respectively (Figure 6), full
results in Supplementary Table S3. The first module retrieved all
the enriched pathways found by the non-clustering approach,
while finding additional enriched pathways belonging to the same
pathway classes as the pathways found by non-clustering.
Pathways relevant to cancer included “Fanconi anemia”
(Figure 7A) at FDR = 2.8e−3, a bone marrow failure
syndrome whose complications can result in leukemia
(Cheung and Taniguchi, 2017), due to a failure in the repair
of DNA interstrand crosslinks in the genome (Ceccaldi et al.,

2016). The first module was further enriched in other cancer
related pathways, such as “Transcriptional misregulation in
cancer” at FDR = 1.77e−3. Furthermore, it was enriched in the
“Viral carcinogenesis” pathway (FDR = 0.01). This pathway
includes genes targeted by the Human T-cell leukemia virus 1
(HTL1 virus), which is thought to be the potential trigger for
Sezary syndrome. This is as relevant as the HTL1 infection
pathway identified by the non-clustering approach.

The second module finds pathways belonging to the
metabolism class, such as “Glutathione metabolism”
(Figure 7B) at FDR = 0.02, which is reasonable as glutathione
has been proven to effectively block cell death in primary T cells
from Sezary patients (Kiessling et al., 2009). Other metabolism
pathways like “Purine metabolism” at FDR = 0.03, and “One
carbon pool by folate” at FDR = 0.03, are reasonable as purine and
folate are potential therapeutic drugs for Sezary syndrome (Oka
and Miyagaki, 2019).

The third module finds pathways belonging to the class of
parasitic infectious diseases, with “Malaria” at FDR = 3.79e−3
(Figure 7C) and “African trypanosomiasis” at FDR = 8.72e−4.
Biomarkers such as miRNA are used for detecting infectious
diseases. In malaria, some of the most expressed miRNAs are
miR451 and miR92 (Babatunde et al., 2018), where the former is
significantly correlated with diagnosis and prognosis of Sezary

FIGURE 6 | Clustered pathway enrichment analysis of the MSigDB gene set HAHTOLA_SEZARY_SYNDROM_UP. The gene set is divided into 3 modules by
applying the network clustering algorithm Infomap. Each module finds different classes of pathways.
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syndrome, and the latter is downregulated in it (Narducci et al.,
2011).

DISCUSSION

This study aimed at assessing the added benefit of pre-clustering
gene sets prior to conducting pathway enrichment analysis. In order
to achieve this we evaluated combinations of three network
clustering methods in conjunction with one overlap-based and
three network-based pathway analysis algorithms. Our findings
indicate that pre-clustering increases sensitivity of pathway
analysis with network-based methods but observed that it comes
with the challenge of risking a high false positive rate. For two of
these methods, the improvement in sensitivity came with an
unacceptable loss of specificity. However, ANUBIX was able to
substantially increase the sensitivity while keeping a high specificity.

The large-scale application of ANUBIX with clustering to the
MSigDB gene sets against all KEGG pathways resulted in a similar
number of significant enrichments as when no clustering was
applied, but about a third of the enrichments were unique to each
approach. We further observed that each network module within
a gene set tended to be enriched by a different subclass of
pathways. This supports the hypothesis that experimentally

derived gene sets often represent mixtures of genes with
different mechanisms, and isolating these provides a more
informative analysis of the different mechanisms that are
related to the condition under study. In this analysis we used
Infomap for clustering as it was the best method in the
benchmarks, and for the pathway enrichment analysis we used
ANUBIX since it outperformed the other methods.

Before the pre-clustering analysis, we introduced a modification
to the null model of ANUBIX. The new null model of ANUBIX
evaluated in the study uses degree-aware sampling of genes in the
network instead of randomly sampling genes from the whole
genome. This null model modification resulted in a lower FPR
compared to the original implementation, hence the modified
version of ANUBIX was used in the rest of this study.

A previous benchmark showed that BinoX and NEAT suffer
from a relatively high false positive rate (Castresana-Aguirre and
Sonnhammer, 2020). To compute the crosstalk between a query
gene set and a pathway, BinoX randomizes the network leading to a
loss of the internal pathway structure. NEAT does not randomize the
network to assess statistical significance but relies on the degrees of
the query gene set, pathway, and the whole network, regardless of
how that degree is distributed across the pathway. It has been
demonstrated that there is a correlation between the FPs of these
network-based methods and the fraction of intralinks of the

FIGURE 7 | Crosstalk between the three modules in the MSigDB gene set HAHTOLA_SEZARY_SYNDROM_UP and selected KEGG pathways (only genes linked
in the network are shown). (A) The “Fanconi anemia” pathway which is significantly enriched for crosstalk to module 1. (B) The “Glutathione metabolism” pathway which
is significantly enriched for crosstalk to module 2. (C) The “Malaria” pathway which is significantly enriched for crosstalk to module 3. The query gene set module genes
are marked in green and the pathway genes are marked in blue.
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pathways (Castresana-Aguirre and Sonnhammer, 2020), meaning
that the less random the pathway topology is, the more prone it is to
produce FPs. The distribution of crosstalk between a random gene
set and a pathway often suffers from overdispersion, i.e., when the
variance is larger than the mean. When this happens, the null
distributions of crosstalk assumed by the different methods,
binomial (BinoX) or hypergeometric (NEAT), are not
appropriate. Both the overdispersion and the high false positive
rate are resolved by ANUBIX. Instead of randomizing the whole
network which distorts the pathway structure, ANUBIX assesses
statistical significance by sampling random gene sets of the same size
as the query gene set and computing an expected crosstalk
distribution for each pathway. The resulting null distribution is
fitted to a beta-binomial distribution, which has been demonstrated
to accurately capture overdispersion (Young-Xu and Chan, 2008),
and this is used to assess the significance of an observed crosstalk.
Even though ANUBIX is the best performing method in that
benchmark, we wanted to include other network-based methods
to study if clustering could decrease their FPR. However, this issue
became even more apparent when clustering was applied. We
further observed that the average degree in the unclustered
ANUBIX FP gene sets was 82 while the average degree of the
genes in FP modules generated from those gene sets increased
significantly (p < 0.001) to 150, 161, and 193 for Infomap, MCL
andMGclus respectively. Statistical significance was assessed using a
permutation test by computing the average degree for 2,000 data sets
with 100 gene sets in each.

For this benchmark, we did not include quantitative pathway
analysis tools, such as GSEA (Subramanian et al., 2005), CAMERA
(Wu and Smyth, 2012) or SPIA (Tarca et al., 2009). In order to work,
these methods require as input the differential expression of all
genes. Several limitations were described previously (Subramanian
et al., 2005) when selecting subsets of genes from such a list. Thus,
clustering the whole set of genes into independent subsets is unlikely
to be beneficial for these methods.

We have demonstrated that the application of clustering of
query gene sets prior to pathway analysis improves the sensitivity
of all studied pathway enrichment methods, and helps to
elucidate complex mechanisms within an experimental gene
set. However, pre-clustering is recommended to be used

primarily with methods that can control the false positive rate
well. The approach finds almost all associations found without
clustering, while adding many new ones, and thus represents a
powerful new tool in the quest for more accurate pathway
analysis.
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