
Leber hereditary optic neuropathy (LHON; MIM 535000) 
is a typical mitochondrial genetic disease that leads to acute 
or sub-acute visual loss mainly in young adult men [1,2]. 
Three mitochondrial DNA (mtDNA) mutations (m.3460G>A 
in the MT-ND1 gene, m.11778G>A in the MT-ND4 gene, and 
m.14484T>C in the MT-ND6 gene) are the main etiological 
factors for more than 95% of LHON cases [3], whereas other 
rare mutations and/or unclear factors may account for the 
remaining 5%. We and others recently reported several (provi-
sional) pathogenic mutations (e.g., mutations m.3635G>A and 
m.10680G>A) in patients who present typical clinical char-
acteristics of LHON but lack a reported pathogenic mutation 
[4-9]. The two clinical features of LHON, incomplete pene-
trance and male-biased onset, suggest that additional genetic 
or environmental factors could influence the expression of 
this disease [10,11]. Secondary mtDNA mutations with little 
deleterious effect on mitochondrial functions, some of which 

are haplogroup-specific variants, have been demonstrated to 
be influential factors for clinical expression of LHON [1,3,12]. 
Indeed, recent studies have found that mtDNA backgrounds 
could contribute to the increased or decreased penetrance of 
LHON [13-15].

Mutation m.3635G>A was first identified in a Russian 
family with LHON [4], and was considered to affect mito-
chondrial complex I-dependent oxygen utilization. This 
mutation changes a highly conserved serine to asparagine 
at the 110th residue of the MT-ND1 protein. In recent years, 
mutation m.3635G>A was occasionally reported in various 
Chinese families and/or singleton cases with LHON [5,7,8]. 
The frequency of m.3635G>A was found to be similar to 
that of m.3460G>A in Chinese patients with LHON [8] and 
was regarded as a primary LHON mutation for Chinese 
[7]. However, no comprehensive analysis of the mtDNA 
genome sequence variation in these patients with LHON and 
m.3635G>A has been conducted to date.

In this study, we investigated the entire mtDNA genomes 
of five Chinese patients with LHON and m.3635G>A. We 
analyzed the new sequence data, together with four previ-
ously reported mtDNA sequences harboring m.3635G>A by 
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using a phylogenetic approach. We aimed to learn the origin 
of m.3635G>A in Han Chinese and to identify potentially 
functional variants that may act in synergy with m.3635G>A. 
Our results suggested multiple origins of m.3635G>A in Han 
Chinese.

METHODS

Samples: Five Chinese patients (Le131, Le329, Le337, 
Le834, and Le569) were recruited at the Genetic Clinic 
of the Eye Hospital, Zhongshan Ophthalmic Center with 
written informed consent from all subjects. These patients 
received ophthalmological examinations at the Zhongshan 
Ophthalmic Center and were diagnosed as LHON. Patients 
Le131 (male; age 13 at onset), Le329 (male; age 15 at onset) 
and Le834 (female; age 15 at onset) had a family history of 
LHON, and patients Le337 (male; age 33 at onset) and Le569 
(male; age 15 at onset) were sporadic. The clinical informa-
tion has been reported elsewhere [8]. Patient peripheral blood 
samples were collected in vacuum tubes containing EDTA 
and were preserved at -40 °C prior to use. Genomic DNA was 
isolated by using a standard phenol/chloroform method. This 
study was approved by the institutional review board of the 
Kunming Institute of Zoology.

Entire mitochondrial DNA sequence analysis: The complete 
mtDNA sequence was amplified and sequenced using our 
previously described method [16,17]. In brief, the entire 
mtDNA genome was amplified by using nine pair of primers 
on the GeneAmp PCR System 9700 (Applied Biosystems, 
Foster City, CA; [16,17] for detailed primers and PCR proce-
dure). Purified PCR products were directly sequenced on a 
3730 DNA sequencer (Applied Biosystems) by using BigDye 
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) 
and 66 inner sequencing primers ([17] for primer informa-
tion) following the manufacturer’s manual. Sequences 
were handled with the DNASTAR program (DNAS Inc., 
Madison, WI), and mutations/variants were scored rela-
tive to the revised Cambridge Reference Sequence (rCRS) 
[18]. Phylogenetic analysis of the five mtDNA sequences 
(Le131, Le329, Le337, Le834, and Le569) in this study, plus 
another four previously reported mtDNA sequences (Le1143, 
EU807741.1, FJ969382.1, and FJ969383.1) with m.3635G>A 
[4,5,7], was conducted following the same approach as in our 
recent studies [14,19,20]. Briefly, the haplogroup status of 
each mtDNA was classified according to the updated East 
Asian mtDNA tree and Phylotree (mtDNA tree Build 14, 5 
Apr 2012) [21-23] and was validated with MitoTool [24]. To 
show the relationship among these mtDNAs and to distin-
guish private variants from haplogroup-specific variants, 

genetic variants in each mtDNA sequence were displayed in 
an mtDNA phylogenetic tree.

Private variant analysis: Based on the principle that poten-
tially pathogenic mtDNA mutations are most likely to be 
private mutations located in the terminal branches of phylo-
genetic tree [25], we analyzed potentially functional private 
variants (variants that are non-synonymous or located in the 
mitochondrial ribosomal RNA and mitochondrial tRNA 
genes) using the following strategies: 1) the uniqueness of 
the mtDNA variant was defined with an exhaustive database 
search according to the available guidelines [26]; 2) variant 
frequency was calculated as the number of occurrences of 
the variant in 15,859 complete or nearly complete mtDNA 
sequences summarized by the MitoTool database [24]; 3) the 
evolutionary conservation index of each variant was analyzed 
using the webserver MitoTool [24]; 4) the pathogenicity score 
of each non-synonymous variant was consulted according 
to the Supplemental Material by Pereira et al. [27]; and 5) 
the alteration in the structure of the protein transmembrane 
region caused by each non-synonymous variant was evalu-
ated by using the TMpred program.

RESULTS AND DISCUSSION

Though mutation m.3635G>A has been reported in several 
families with LHON and has been recognized as a primary 
mutation for LHON in recent years [4,5,7,8], a comprehensive 
analysis of the mtDNA genome sequence variation in patients 
with LHON and m.3635G>A is needed to identify mtDNA 
mutations that enact a synergistic effect with m.3635G>A. In 
this study, five entire mtDNA genomes that had been reported 
to harbor m.3635G>A [8] were sequenced and were analyzed 
together with four previously reported sequences [4,5,7], to 
investigate the existence of private mutations of potential 
pathogenicity in each mtDNA.

The entire mtDNA genome sequences of patients 
Le131, Le329, Le337, Le569, and Le834 in this study 
(sequences were deposited in GenBank under Accession 
number JX024564-JX024568), and four other previously 
reported sequences with m.3635G>A (Le1143, EU807741.1, 
FJ969382.1, and FJ969383.1) [4,5,7], were analyzed by using 
a phylogenetic method. Sequence variations in each mtDNA 
were displayed in a phylogenetic tree (Figure 1). According to 
the updated East Asian mtDNA tree and Phylotree (mtDNA 
tree Build 14, 5 Apr 2012) [21-23], the five sequences gener-
ated in this study can be classified into haplogroups M7b4 
(Le131), F1a (Le329 and Le337), B5b (Le569), and M7b6 
(Le834), whereas the haplogroup status of previously 
reported sequences is J2b1 (EU807741.1), R11a (FJ969382.1), 
D4g2b (FJ969383.1), and M7b6 (Le1143). Note that the 
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mtDNA genome sequences were identical for Le329 and 
Le337, Le834 and Le1143, which implies that these samples 
may share recent common maternal ancestors. Most of these 
sequences showed different haplogroup status, indicating 
multiple origins of m.3635G>A, similar to the other mtDNA 
pathogenic mutations [14,15,21,28]. We further searched 
the occurrence of m.3635G>A in 15,859 complete or nearly 
complete mtDNA sequences from worldwide populations 
summarized by the MitoTool web server [24]. No other 
sequence containing m.3635G>A was identified (Table 1).

Previous studies have shown that some mtDNA vari-
ants could play a synergistic role with the primary mutation 
affecting the clinical expression of LHON [6,12]. To explore 
whether potentially functional mutations could act in synergy 
with m.3635G>A, the non-synonymous, mitochondrial 
tRNA and mitochondrial ribosomal RNA private variants 
of each sequence were evaluated for uniqueness, frequency, 
conservation, pathogenicity, and potential ability to change 
the structure of protein transmembrane regions (Table 1 and 
Figure 2). Except m.3635G>A, a total of ten non-synonymous 
and mt tRNA private variants were identified in Le329 and 
Le337 (m.5301A>G [MT-ND2: p.I278V]; m.14063T>C 
[MT-ND5: p.I576T]; m.12811T>C [MT-ND5: p.Y159H] and 
m.15237T>C [MT-CYB: p.I164T]), Le569 (m.5773G>A, 
[MT-TC]), EU807741.1 (m.8551T>C [MT-ATP6: p.F9L]), 
FJ969382.1 (m.7868C>T [MT-CO2: p.L95F]; m.9071C>T 
[MT-ATP6: p.S182L] and m.12358A>G [MT-ND5: p.T8A]), 
and FJ969383.1 (m.3421G>A [MT-ND1: p.V39I]; Table 1). 
Employing standard database and web-based searches, we 
found all of these variants had been previously reported in 
general populations (Table 1); thus, these variants should be 
best regarded as polymorphisms.

None of these mtDNA variants was reported to be a 
“confirmed” or “suspected” LHON-associated mutation, 
except m.12811T>C in family Le329 and sample Le337, 
which was regarded as a secondary mutation for LHON 
[29] and was considered the main reason for the associa-
tion between haplogroup M7b1’2 and the increased risk of 
LHON expression in our previous study [14]. Further analysis 
of private variants in samples Le329 and Le337 revealed 
another two potentially functional non-synonymous variants 
(m.14063T>C and m.15237T>C, Table 1, Figure 1). These 
two variants, together with m.12811T>C, showed the ability 
to change the structure of the protein membrane-spanning 
region (Table 1, Figure 2A-B). However, sample Le337 was 
sporadic, and family Le329 was too small to estimate the 
function of these variants on LHON penetrance [8]. Further 
experimental assays should be performed to characterize the 
function of these variants.

Among all LHON cases with m.3635G>A analyzed in this 
study, families EU807741.1 (family E in [4]) and FJ969382.1 
(family LHON-001 in [5]) showed a relatively higher LHON 
penetrance. Sequence EU807741.1 [4] contained one non-
synonymous private variant m.8551T>C, but it did not change 
the MT-ATP6 protein transmembrane structure (data not 
shown). Functional assessment of this mutation in a previous 
study also failed to support the mutation’s pathogenicity [4]. 
However, the potentially deleterious effect of this variant 
could not be fully excluded because of its low frequency, 
high conservation index, and high pathogenic score (Table 
1). Mutation m.7868C>T was considered the reason for the 
high penetrance of LHON in family LHON-001 [5]. Our 
reanalysis of this sequence revealed another potentially func-
tional non-synonymous variant m.9071C>T in this lineage, 
with the ability to influence the membrane-spanning region 
structure (Figure 2C), indicating its potentially synergic role 
with m.3635G>A.

Note that some of the private variants in these patients 
are haplogroup-specific variations for other haplogroups (for 
details, please refer to the updated East Asian mtDNA tree 
and Phylotree; mtDNA tree Build 14, 5 Apr 2012 [21-23]): e.g., 
m.5301A>G and m.12811T>C in sequences Le329 and Le337 
are haplogroup-specific variants for haplogroups D5 and 
M7b1’2’4–8, respectively; m.5773G>A in sequence Le569 is a 
haplogroup-specific variant for many haplogroups, including 
A5a1a1, L0d3, and others; m.9071C>T and m.12358A>G in 
sequence FJ969382.1 are haplogroup-specific variants for 
haplogroups H16c and B4e, respectively; and m.3421G>A 
in sequence FJ969383.1 is a haplogroup-specific variant for 
multiple haplogroups such as D4n, HV1a3, and so on (Table 
1). Except for variants m.12811T>C and m.9071C>T that have 
been discussed above, these variants widely distributed in 
general populations, and thus are unlikely to be pathogenic. 
Furthermore, no alteration in the protein transmembrane 
structure was observed for proteins with these variants (data 
not shown), further excluding their potentially synergic role 
with m.3635G>A. Through analyzing all private variants in 
each sequence, no additional potentially deleterious mtDNA 
mutation was found in patients Le131, Le569, Le834, Le1143 
[7], and FJ969383.1 [5] (Table 1).

To sum up, the complete mtDNA genome sequence 
variation in Chinese patients with m.3635G>A was compre-
hensively analyzed in this study. Our results showed that 
m.3635G>A arose independently in different mtDNA 
haplogroups in Chinese families. Through analyzing mtDNA 
private variants in patients with LHON and m.3635G>A, 
we identified several variants that may act in synergy 
with m.3635G>A. However, we used only the evolutionary 

http://www.molvis.org/molvis/v18/a316
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Figure 1. Haplogroup classification tree of nine complete mtDNA sequences with m.3635G>A. The revised Cambridge Reference Sequence 
(rCRS) [18] was included in the tree to show the phylogenetic position of each lineage. Deletions and insertions are denoted with a “d” and 
“+”, respectively; “r” indicates the variant occurs in the rRNA genes; “t” indicates the variant occurs in the tRNA genes; “nc” indicates the 
variant occurs in the non-coding region; synonymous and non-synonymous variants are labeled “s” and “ns”, respectively; suffixes A, C, 
and G mean transversions; recurrent mutations are underlined; back mutations are underlined and marked “@”.

http://www.molvis.org/molvis/v18/a316
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conservation analysis and predicted alteration of the protein 
transmembrane structure to assess the potential pathoge-
nicity of a mutation, which may not be sufficient to make 
a firm conclusion. Further genetic and functional studies 
are essential to characterize the role of these variants in the 
pathogenesis of LHON.
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