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Large spatial extension of the zero-energy
Yu–Shiba–Rusinov state in a magnetic field
Zoltán Scherübl1, Gergő Fülöp1,2, Cătălin Paşcu Moca 3,4, Jörg Gramich2, Andreas Baumgartner 2,5,

Péter Makk1,2, Tosson Elalaily1,6, Christian Schönenberger 2,5, Jesper Nygård 7, Gergely Zaránd3,8 &

Szabolcs Csonka1✉

Various promising qubit concepts have been put forward recently based on engineered

superconductor subgap states like Andreev bound states, Majorana zero modes or the Yu-

Shiba-Rusinov (Shiba) states. The coupling of these subgap states via a superconductor

strongly depends on their spatial extension and is an essential next step for future quantum

technologies. Here we investigate the spatial extension of a Shiba state in a semiconductor

quantum dot coupled to a superconductor. With detailed transport measurements and

numerical renormalization group calculations we find a remarkable more than 50 nm

extension of the zero energy Shiba state, much larger than the one observed in very recent

scanning tunneling microscopy measurements. Moreover, we demonstrate that its spatial

extension increases substantially in a magnetic field.
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Superconductor nanostructures are the most advanced plat-
forms for quantum computational architectures thanks to
the macroscopic coherent wavefunction and the robust

protection by the superconducting gap. Recently, various qubit
concepts like the Andreev (spin) qubits1–5, Majorana box
qubits6–8, braiding with Majorana zero modes in a Majorana or a
Shiba-chain9–18 have been put forward or even implemented. All
these qubits are based on their associated subgap states such as
Andreev bound states19, Majorana zero modes18,20–26 or Shiba
states27–30. The Shiba state is formed when a magnetic adatom or
its artificial version (quantum dot) is coupled to a superconductor
and the localized magnetic moment creates a subgap state by
binding an anti-aligned quasiparticle from the superconductor.
Depending on the coupling strength between the superconductor
and the magnetic moment, the ground state can be either the
screened local moment with singlet character, Sj i or the
unscreened doublet states, Dj i.

The coupling of these subgap states via a superconductor is an
essential next step towards 2-qubit operations or state engineer-
ing, e.g. an Andreev molecule31–33 or a Majorana-chain, which
consists of series of adatoms or quantum dots interlinked by the
superconductor9–18,34–36. Obviously, the coupling between such
subgap states strongly depends on their spatial extension into the
superconductor, so it is required for these localized states to
extend as much as possible.

So far, the spatial extent and structure of the Shiba states were
investigated by STM measurements on magnetic adatoms
deposited on the surface of a superconductor37–40 and, interest-
ingly, it revealed that the dimensionality plays a crucial role39. In
a three dimensional isotropic s-wave superconductor, it was
found that the Shiba states decay over a very short distance of the
order of �1 nm37,38, but extends one order of magnitude further,
as far as �10 nm, if the impurity is placed on the surface of a two-
dimensional superconductor39,41.

Shiba states were widely studied in two different types of sys-
tems: (a) in STM measurements, when magnetic particles are
deposited on the surface of a superconductor37–48, and (b) in
nanocircuits, when a quantum dot is attached to the super-
conductor49–69. The STM geometry allows for the spatial map-
ping of the Shiba state37–40, but the strength of the coupling
between the magnetic adatom and the substrate is mostly deter-
mined by the microscopic details and its tuning remains quite
challenging43,45. In contrast, the quantum dot realization enables
the tuning of the energy of the Shiba state via the level position or
the tunnel couplings by using external gate voltages61,62. Another
advantage of the latter setup is the potential to apply an external
magnetic field without stability issues.

In this work, we investigate the spatial extension of the Shiba
state formed when an artificial atom is strongly coupled to a
superconductor. The Shiba state is observed at a remarkably large
distance of more than 50 nm. Furthermore, we explore the effect
of an external magnetic field on the extension of the Shiba state,
as it is relevant to access topological superconducting states.
Remarkably, with increasing magnetic field, the spatial extension
increases significantly further.

Results
Implementation of the Shiba device. In this paper, we imple-
ment a combined approach of systems (a) and (b), where a tunnel
probe is attached to a superconductor–quantum dot hybrid. The
schematics of the used device are shown on Fig. 1a. A quantum
dot (QD in gray) is strongly coupled to a superconductor (SC in
red), leading to the formation of a Shiba state. An additional
tunnel electrode (N in yellow) is coupled weakly to the super-
conductor at a fixed distance from the dot. Applying a small bias

between SC and N, the tunnel current, IT and the corresponding
differential conductance, GT are measured, while the energy of
the Shiba state is tuned by the plunger gate gP.

The device is implemented in an InAs semiconducting
nanowire (gray), contacted by a 250 nm wide Pb superconducting
electrode in the middle (SC in red), and one normal contact (N in
yellow) on the left side (see the scanning electron microscope
(SEM) image in panel b and the cross section in panel c of Fig. 1).
The electron density in the nanowire is tuned by an array of gates
fabricated below the nanowire. The nanowire was cut by focused
ion beam (FIB) prior to the deposition of the superconducting
contact to suppress the direct tunnel coupling between the two
arms70,71. The width of the FIB cut is about ~50–60 nm. The
quantum dot is formed in the right arm of the wire and its level
position is tuned by the voltage VP on the plunger gate gP. The
tunnel coupling to the right side can be turned on and off by the
barrier gate gB. Although not displayed in Fig. 1, there is a normal
electrode to the right of gB, which allows us to measure direct
transport through the quantum dot (see Methods). The bulk
coherence length for Pb is about ξ0 ’ 80 nm, however, in e-beam
evaporated, disordered layers, where the elastic mean free path is
considerably reduced72, the coherence length is limited to ξ0 =
20–40 nm. An in-plane magnetic field B is applied perpendicular
to the nanowire axis. Further details on the fabrication and the
experimental techniques are presented in the Methods.

Observation of the Shiba state in the tunnel current. First we
present the results of transport measurements for the strongly
coupled superconductor–quantum dot setup isolated from the
rest of the device on the right by gB. The differential conductance
of the tunnel probe, GT is shown in Fig. 2 as a function of VB and
VP for different values of the magnetic field. In the absence of
magnetic field (see panel a), two pairs of resonances with
enhanced conductance are present on top of a smooth con-
ductance background of about 0:1G0 (with G0 ¼ 2e2=h the con-
ductance quantum). The conductance increment along the lines is
about 0:005G0. We use the plunger gate voltage VP to tune the
level position and subsequently the charge on the quantum dot,
while the barrier gate voltage VB is used to isolate the dot from
the rest of the nanowire on its right side. The barrier gate gB has a
cross capacitance to the dot, resulting a tilt of the otherwise
horizontal resonances. As we explained below, the enhanced
conductance lines are the signatures of the zero-energy Shiba
state. The presence of the current enhancement is striking, since
in usual STM setups the Shiba wavefunction is observed only up
to a distance of 10 nm. In contrast, we observe the Shiba state
more than 50 nm away from the quantum dot.

Remarkably, applying a magnetic field smaller than the critical
field, the conductance enhancement significantly increases (see
Fig. 2b, being measured in 150 mT). The largest conductance
peak we observe is of size ΔGTðB ¼ 150 mTÞ ’ 0:1G0, approxi-
mately 20 times larger than the zero magnetic field value.

In a 250 mT magnetic field, above the critical field of the
superconductor, Bc ¼ 230 mT, the resonances vanish (see Fig. 2c),
indicating that the origin of the signal is related to super-
conductivity. To further illustrate the strong dependence of the
signal on the magnetic field, we present in panel c line-cuts at a
fixed VB’ �1:5 V for the same magnetic fields as in the other
panels.

In the following, let us understand what condition of the
quantum dot is linked to the tunnel current enhancement. As
discussed in the Methods, our device is equipped with an extra
normal electrode NQD on the right of the quantum dot, which
was previously isolated from the rest of the device by the large
negative VB voltage. Increasing VB to more positive values opens
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up the barrier to NQD, which allows for a direct transport
characterization of the quantum dot. In this way, we were able
to measure in parallel both the differential conductance through
the quantum dot itself, GQD, and the conductance through the
tunnel probe, GT. Figure 3a and b show the conductance of the
tunnel probe and the quantum dot, respectively, in a larger
gate voltage window in the absence of an external magnetic field.
The region marked by a white dotted rectangle is the particular
voltage window in Fig. 2a. Let us follow the resonances (marked
by circle and triangle) in the plot of the tunnel current as VB
increases.

For VB ≳�1:1 V the tunnel barrier becomes sufficiently small,
and transport through the quantum dot also sets in (see panel b
of Fig. 3). The similarities between the resonances in GT and
those in GQD indicate that the two conductances are related; the
tunnel conductance enhancement is linked to the level position of
the quantum dot, i.e. the enhancement is observed when the dot
is on resonance with the Fermi level of the superconductor. (See
Supplementary Note 1 for transport characterization of the
quantum dot in an even larger gate voltage window.)

To gain further insight to the level structure of the quantum
dot, a finite bias measurement was performed along the white
dashed line on Fig. 3b, at VB ¼ �0:83 V. The results are shown in
Fig. 3c. The eye-shaped crossing of the subgap conductance lines
are the usual fingerprints of the Shiba state (see e.g. ref. 50). The
results presented in Fig. 3 show that there is strong coupling
between superconductor and quantum dot. In the previously
shown measurements of Figs. 2, 3a and 3b, the enhanced
conductance lines correspond to the Shiba state when its energy is
tuned to zero by VP. These resonances (marked by white triangle
and circle) correspond to the singlet-doublet and doublet-singlet
transitions of the Shiba state. Since the position of the GT
enhancement lines coincides with these transitions, we conclude
that—even in the case of large tunnel barriers when the quantum
dot is coupled only to the superconductor (i.e. for VB <�1:1 V)—
the conductance enhancement takes place when the energy of the
Shiba state is tuned to zero. These results provide direct evidence
that the tunneling electrode N indeed probes the Shiba state, and
implies that the Shiba state extends in real space over the distance
between the dot and the tunnel probe, separated by an impressive
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Fig. 1 Schematics of the setup. a The normal metal-superconductor-quantum dot (N–SC–QD) setup used in our measurements. The QD is strongly
coupled to the s-wave superconductor, giving rise to the Shiba state. The normal lead N is coupled to the superconductor at a finite distance xT from the
dot, and acts as a tunnel probe and measures the current as the energy of the Shiba state is tuned. The external magnetic field B is applied in-plane of the
wafer. b False color SEM image of the device, and c cross section of the device. The QD is formed in an InAs nanowire (gray) by applying voltages on the
bottom gate electrodes (yellow). The plunger gate gP controls the level position of the dot, the barrier gate gB isolates the QD. Tunneling to N is controlled
by a series of gates. The width of the superconductor is 250 nm and below the superconductor a segment with length of 50–60 nm is cut from the
nanowire.
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for B> Bc.
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distance of 50–250 nm. Here the width of the FIB cut gives the
lower and the entire width of the superconducting lead the upper
bound (see Fig. 1c).

Further increased extension in magnetic field. A detailed ana-
lysis of the finite magnetic field behavior is presented on Fig. 4.
Panel a shows the reduction of the superconducting gap, Δ with
the magnetic field measured on the quantum dot. The gap
smoothly decreases in magnetic field and continuously vanishes
at Bc ¼ 230 mT, the critical field. The white dashed line is a fit,
discussed below.

The detailed evolution of the tunnel current enhancement with
the magnetic field—measured along the dashed line in Fig. 3a at
VB ¼ �1:25 V—is shown on Fig. 4b. While close to B ¼ 0, the
peaks are barely visible, they are strongly enhanced with
increasing magnetic field, particularly between 100 and 200 mT.
For higher field values the peaks decrease and they disappear
above Bc. Note that the increasing separation of the conductance
peaks with magnetic field is consistent with the Zeeman splitting
of the Shiba state61.

Discussion
To explain the magnetic field dependence of the conductance
enhancement and to probe the spatial extension of the Shiba
state, we have set up a theoretical framework that allows us to
compute the tunneling current though the normal lead N in a
N–SC–QD geometry in a non-perturbative fashion. We assume
that the quantum dot is coupled to the superconductor at x ¼ 0,
while the normal lead is contacted to the superconductor further
away at a coordinate xT. Moreover, we consider that the tunnel
probe acts as an STM tip and measures the local density of states
by injecting electrons at xT. Electrons entering the super-
conductor propagate to the quantum dot, scatter on it, and
propagate back to be extracted at a later time but at the same
position (The model is detailed in the Methods).

For a practical calculation, we need to determine the T-matrix
that describes the scattering of the conduction electrons on the
artificial atom. In our model, this is related to Green’s function of
the creation operators on the quantum dot, as first discussed by
Langreth73. Close to the parity changing transition and close to
zero bias, the quasiparticles’ contribution is irrelevant, and only
the subgap states contribute. Using field theoretical methods, we
computed the total current flowing from the normal lead through
the Shiba state by performing a numerical renormalization group
(NRG) calculation.

Figure 4c and d compare the experimental and NRG results as
a function of magnetic field. In panel c the spectral weight for the
experimental data is evaluated along the two dashed lines in panel
b. The VP independent conductance background was subtracted
from GTðVPÞ, and the excess tunnel conductance ΔGTðVPÞ was
integrated for the enhancement peaks (marked by circle and
triangle) to get the total excess current/spectral weight induced by
the Shiba state. The NRG-computed excess currents (see Eq. (14)
of Methods) are displayed for different ratios of xT and ξ0 in
panel d, and show a close resemblance to the experimentally
observed field dependence. For both panels and for low magnetic
fields, the excess current strongly increases with the magnetic
field, has a maximum, and linearly decreases at higher fields to
vanish at the critical field, Bc ¼ 230 mT.

In order to understand this field dependence, it is instructive to
display the results obtained for a classical spin on the dot (see
Methods). This minimal model captures most of the experi-
mentally observed features and it is in good agreement with the
NRG results (see Methods). In the classical case, the current
carried by the Shiba state at the transition reads

IClShiba ¼
e
h

gNS ðjuSðxTÞj
2 þ jvSðxTÞj

2Þ=ϱS: ð1Þ

Here gNS stands for the dimensionless conductance of the N–SC
contact in the normal state (in units of 2e2=h), uSðxTÞ and vSðxTÞ
denote the electron and hole parts of the bound Shiba state’s
wavefunction, and ϱS is the density of states in the super-
conductor. The amplitude juSðxTÞj

2 þ jvSðxTÞj
2 can be easily

computed for a spherical Fermi surface, yielding

IClShiba ¼ e gNS
vF
2πξ

e�2xT=ðπξÞ AðxTÞj j2; ð2Þ

with AðxTÞ a geometry, position, and spatial dimension depen-
dent dimensionless amplitude, and ξ ¼ _vF=πΔ the super-
conducting coherence length of the Pb with vF the Fermi velocity.

Apparently, the magnetic field dependence of the gap and thus
that of the correlation length, ξ0 ! ξðBÞ, is mostly responsible for
the unusual magnetic field dependence observed in our experi-
ment. In the framework of Ginzburg–Landau theory, the order
parameter in an external magnetic field is given by
ΔðBÞ ¼ Δ0ð1� B2=B2

cÞ
1=2, where Δ0 � 0:25 meV is the zero-field

gap, B the magnetic field, and Bc stands for the critical magnetic
field at which superconductivity vanishes. Experimentally, how-
ever, we find a slightly different functional form for the sup-
pression, qualitatively similar to that observed in thin films72,74
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(dashed line on Fig. 4a), as

ΔðBÞ � Δ0 1� B2

B2
c

� �
; ð3Þ

with Δ0 ¼ 250 μeV and Bc ¼ 230 mT. Note that this value of the
induced gap is smaller than the bulk, 1.1 meV gap of Pb75, but
comparable to the ones measured in similar films64,76. For
xT > ξ0, Eq. (3) together with Eq. (2) implies an exponential
increase in the current with increasing magnetic field and then a
suppression close to Bc due to the prefactor ξ

�1. This is consistent
with the upturn of measured current enhancement at low fields,
below 120 mT (see Fig. 4c), and its suppression close to the
critical field. According to Eq. (2), the current should be maximal
for xT � πξðBÞ=2. Using B � 180 mT – where the total excess
current is maximal (see Fig. 4c)—this condition yields to
xT � 3ξ0. Note, however, that the theory slightly overestimates
the magnetic field value where the excess current is maximal –
and so underestimates the ratio of xT=ξ0. This deviation may
originate from the fact that our model idealizes the setup, i.e.
neglects the presence of quasiparticles and a possibly finite subgap
density of states. Keeping this deviation in mind, the obtained
ratio is still roughly consistent with our geometrical parameters,
the separation of the quantum dot and the normal electrodes
xT � 50–250 nm, and a reduced coherence length, ξ0 � 20–40
nm, compatible with a diffusive superconductor.

Let us turn to differences compared to typical STM measure-
ments of Shiba states: In STM characterization of the Shiba
wavefunction, IShiba is significantly weaker. Moreover, it oscillates
upon varying the tip-adatom distance, xT, and becomes unob-
servable at distances larger than 10 nm for 3D superconductors.
These characteristic differences originate in the quite different
geometries used in our setup and in STM experiments.

In STM measurements, the amplitude jAðxTÞj
2 is responsible

for the spatial oscillations. It has a modulation of j sinðkFxTÞj
2,

which originates in the point-like nature of the tunnel probe30,39,
and the fact that one usually tunnels either to the electron- or
hole-like states with amplitudes juSðxTÞj

2 and jvSðxTÞj
2, respec-

tively. In contrast, in our setup, two effects seem to eliminate
these oscillations. First, the N–SC interface has a large tunnel
surface (�d2 where d is the nanowire diameter, d � 80 nm), and
the nanowire contains many conductance channels. Therefore,
averaging for different distances and tunneling paths is expected
to reduce oscillations both in distance (not accessible in our
setup) as well as in the B field dependence77. We remark that to
observe magnetic field-induced quantum fluctuations, one would
need to pierce more than a flux quantum through the tunneling
area, which would require a field comparable or larger than the
critical field, Bc. Second, possibly more importantly, at the tran-
sition point the electron and hole-like contributions add up and,
surprisingly, the combination juSðxTÞj

2 þ jvSðxTÞj
2does not con-

tain any oscillating term in any dimension. This indicates that the
interference effects probably play little role right at the transition,
where our measurements were carried out. Note, that away from
the transition point, where the Shiba state is at finite energy, the
Shiba-related conductance enhancement of the tunnel probe was
also observed, but it was weaker in accordance with the argument
above (for details see Supplementary Note 2).

In an STM geometry IShiba is a small signal (�pA)39, while in
our measurement, it can reach values as large as IShiba;max �
0:7 nA (at the excitation of VAC ¼ 10 μV), even though the
normal electrode is at a separation xT � 50–250 nm away from
the quantum dot. According to Eq. (2), IShiba is directly propor-
tional to gNS jAj

2. The small IShiba for typical STM experiments is
a result of two factors: the weak tunnel coupling gNS � 1 and also
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the fast, 1=ðkFxTÞ
2 decay of jAðxTÞj

2 in a 3D superconductor. In
our case, gNS is relatively large, in the range of 0.1–1. Addition-
ally, the N–SC tunneling area is very large, �d2 � x2T, compen-
sating the decay of jAðxTÞj

2, in close resemblance to lower
dimensional superconductors. A combination of these effects can
explain how the Shiba state can be observed even from a remote
position, significantly larger than the one in STM measure-
ments37–40. In our quantum dot based setup, the observation
distance is determined essentially only by the coherence length of
the superconductor, and the coupling between Shiba states hosted
around quantum dots can be achieved at significantly larger
distances than in case of adatoms.

Finally, let us contrast our findings with the results of Cooper
pair splitter measurements, where two quantum dots are attached
to both sides of the superconductor, and contrary to our setup,
current flows from the superconductor through both quantum
dots towards the normal leads. Current correlations between the
two arms are induced by splitting up Cooper pairs78–82. There,
electronic correlations extend over distances of about 50–200 nm,
comparable with the separation xT � 50–250 nm in our experi-
ment. However, while the Shiba current, IShiba increases in a
magnetic field, the Cooper pair splitting signal gets strongly
suppressed83.

In conclusion we have studied the Shiba state in a SC–QD
hybrid device by measuring the differential conductance in a
tunnel probe attached to the superconductor at distance of
50–250 nm away from the quantum dot. A large current
enhancement has been observed when the Shiba resonance is
tuned to zero energy. In an external magnetic field, the signal is
further enhanced, implying an exponential growth for the
extension of the Shiba state. The observed behavior is consistent
with our microscopic theoretical model and field theoretical
calculations. In our device, we can access the Shiba state from a
remarkably large distance compared to previous experiments on
magnetic impurities on superconducting substrates. These results
establish an important milestone towards the realization of Shiba
chains implemented by a series of quantum dots attached to
superconductors.

Methods
Sample fabrication and measurement details. An SEM micrograph of the
measured device is shown in Fig. 1b. First, 9 bottom gate electrodes were defined by
electron beam lithography and evaporation of 4 nm Ti and 18 nm Pt. Two 1:3 μm
wide gates were used below the normal contacts and one, 250 nm wide below the
superconductor. The remaining 3+ 3 bottom gates are 30 nm wide with 100 nm
period. The gates were covered by 25 nm SiNx, using plasma enhanced chemical
vapor deposition, to serve as an insulating layer70. The SiNx was removed at the
end of bottom gate electrodes by reactive ion etching with CHF3/O2

84, to contact
the gate electrodes. The InAs nanowire was deposited by micro-manipulator onto
the SiNx layer, approximately perpendicular to the bottom gates. The NWs were
grown by gold catalyst assisted MBE growth85,86, using a two-step growth method
to suppress the stacking faults87. The normal (N and NQD), Ti/Au (4.5/100 nm)
and superconducting (SC), Pd/Pb/In (4.5/110/20 nm) contact were defined in
further e-beam lithography and evaporation steps76. The later has a width of 250
nm. Prior to the evaporation, the nanowire was passivated in ammonium sulfide
solution to remove the native oxide from the surface88.

Prior to the deposition of the superconducting contact the nanowire was cut by
FIB to prevent direct tunneling between the NW segments, which can lead to
spurious effects70,71. The width of the FIB cut was about 50 nm, giving a lower
bound for the distance of the quantum dot and the tunnel probe.

The measurements were done in a Leiden Cryogenics CF-400 top loading cryo-
free dilution refrigerator equipped with a 9+3 T 2D vector-magnet. The
measurements were done at a bath temperature of 35 mK. Prior to the cool down,
the sample was pumped overnight to remove the adsorbed water contamination
from the surface of the nanowire. The currents were measured by standard lock-in
technique at 237 Hz. The AC signal of VAC ¼ 10 μV was applied to the
superconducting electrode. The currents in the left and right arm were measured
simultaneously via the two normal leads by home-built I/V converters. The DC
bias was applied symmetrically to the normal leads. An in-plane magnetic field was
applied parallel to the superconducting electrode, perpendicular to the nanowire.
The circuit diagram is shown in Fig. 5. In most of the measurements presented in

the main text, NQD was electrically isolated from the rest of the device by applying a
large negative voltage on gate gB.

Shiba bound state and the parity crossing transition. We model the super-
conductor using the s-wave BCS theory89

HSC ¼
X
kσ

εkc
y
kσckσ þ Δ cyk"c

y
�k# þ h:c:

� �
; ð4Þ

where cykσ is the creation operator of a spin σ and momentum k and Δ is the
superconducting order parameter, which can be considered real.

The QD can be described by means of the Anderson model,

HQD ¼
X
σ

εdd
y
σdσ þ Un"n#; ð5Þ

with εd is the single particle energy and U is the on-site Coulomb energy. The
operator dyσ here creates an electron with spin σ on the dot, and nσ ¼ dyσdσ . In our
geometry the dot is located at the position x ¼ 0 and is tunnel-coupled to the
superconductor (See Fig. 6a), as described by the Hamiltonian

HSC�QD ¼ tS
X
σ;k

αk cykσdσ þ h:c:
� �

: ð6Þ

The factor αk , normalized to one at the Fermi surface, hjαk j
2iF:S: ¼ 1, accounts for

the directional dependence of the tunneling, and prefers tunneling directions
perpendicular to the SC–QD interface in our geometry.

In the local moment regime, we can neglect charge fluctuations of the dot, and
describe it in terms of a simple Kondo model,

Himp ¼
1
2

X
k;k0

Jkk0S cykσσσσ 0 ck0σ 0 ; ð7Þ

with Jkk0 ¼ αkαk0 J0, and J0 / t2S=U the exchange coupling to the spin of the
quantum dot, S.
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Fig. 5 Device geometry. Schematics of the cross-section of the device
together with the circuit diagram.
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Fig. 6 Phase diagram. a Schematics with all the energies involved. b The
typical phase diagram. The dome is the boundary for the stability of the
magnetic doublet state (inside) versus the singlet ground state (outside).
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This latter Hamiltonian can be solved exactly in the classical limit28, where one
finds a subgap resonance at an energy:

E0 ¼ Δ
1�~j

2

1þ~j
2 ; ð8Þ

where ~j ¼ πj=2, and j ¼ J0ϱS stands for the standard dimensionless Kondo
coupling. With increasing coupling strength the bound state energy E0 eventually
crosses zero, and the impurity binds to itself a quasiparticle of opposite spin
direction.

Although this classical calculation captures the parity changing transition,
determines its location incorrectly. In reality, the phase transition originates from
the competition between the superconducting correlations and the Kondo
screening of the spin, and the transition takes place when Δ ’ T� , with T� a
characteristic Fermi liquid temperature scale. Deep in the local moment regime, T�

can be identified as the Kondo temperature, T� ’ TK, but it becomes of the order
of the tunneling rate ΓS between the dot and the superconductor close to the mixed
valence regime. For T�<Δ, the spin of the dot remains unscreened down to zero
temperature, resulting in a doublet ground state Dj i= { *j i; +j i} and a first excited
singlet state, Sj i, the so-called Shiba state inside the gap. By increasing the
tunneling rate ΓS, the spin in the QD binds a quasiparticle from the
superconductor, and Sj i becomes the ground state. The corresponding qualitative
phase diagram is displayed in Fig. 6b.

In the experiments, changing the voltage VP corresponds to moving along the
red horizontal line in the phase diagram. At the intersections with the “dome”
(denoted by the circle and the triangle), the Shiba state is at zero energy, and is in
resonance with the Fermi energy, EF of the tunneling electrode N, leading to the
observed sudden increase in the zero voltage differential conductance.

Tunnel conductance and current. In our setup, the normal lead acts as an STM
tip measuring the differential conductance across the device at a point xT away
from the dot. In the small SC–N tunneling limit Andreev processes can be
neglected, and tunneling from the normal electrode to the superconductor yields at
T ¼ 0 temperature a current

I ¼ e
h

Z eV

0
jtNj

2dω ϱN ϱðxT;ωÞ; ð9Þ

at a finite voltage bias Vbias ¼ V . Here ϱN denotes the density of states in the
normal lead, tN is the tunneling amplitude between the superconductor and the
normal contact, and ϱðx;ωÞ ¼ �Im Gσðx;ωÞ=π is the energy dependent density
of states in the superconductor at position xT. This latter can be expressed in
terms of the Fourier transform of the retarded Green’s function,
GσðxT;ωÞ ¼ �ihfψσðxT; tÞ;ψy

σðxT; 0Þgi ΘðtÞ.
Green’s function GσðxT;ωÞ can be obtained by means of standard many-body

theory, invoking Nambu spinors, fϕστg � ðψ";ψ#;ψ
y
#;�ψy

"Þ, and corresponding

propagators, G ! Ĝ. In this language, the quantum dot induced part of the
propagator Ĝ can be expressed as

δĜðxT;ωÞ ¼ �ĝðxT; 0;ωÞT̂ ðωÞ ĝð0; xT;ωÞ: ð10Þ

Here ĝðxT; 0;ωÞ describes the propagation of an electron (or hole) in the
superconductor from the dot to the probe at an energy ω,

ĝðxT; 0;ωÞ ¼
Z

d3k

ð2πÞ3
αk eik�xT

ωþ iδ � ðξðkÞτz þ ΔτxÞ
; ð11Þ

with the Pauli matrices τx and τz acting in the Nambu space, while the T-matrix
T̂ ðωÞ describes scattering off the quantum dot.

We focus on transport through midgap states, i.e. jωj<Δ. There the
propagators ĝðxT; 0;ωÞ are real, and the tunneling density of states ϱðx;ωÞ is
related to ImT̂ ðωÞ.

In the classical limit, we can determine T̂ analytically,

ϱST̂ ðωÞ ¼ jS � σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 � ω2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 � ω2

p
þ jπS � σðωþ ΔτxÞ

ð12Þ

and extract the strength of its poles within the gap. At the transition points,
j ¼ 2=π, and expressing furthermore propagator ĝðxT; 0;ω ¼ 0Þ we arrive at Eq.
(2) displayed in the main text.

In the framework of the Anderson model, we first introduce the spinors
fDστg � ðd"; d#;�dy#; d

y
"Þ. Similar to ref. 90, it is easy to show that the T-matrix is

directly related to the d-levels’ Nambu propagator,

ϱST̂ ðωÞ ¼ ϱS t2S ĜDDðωÞ : ð13Þ

The subgap structure of ĜDD is completely determined by the transition matrix
elements α � h* jdy"jSi and β � h* jd#jSi, and the energy difference ES of the
singlet ground state Sj i and the many-body Shiba excitations, *j i and +j i, related
by time reversal symmetry. At the transition point, the electron and hole

contributions add up, and the expression of the tunnel current simplifies to

IQMShiba ¼
e
h

gNS π ΓSðjαj
2 þ jβj2Þ e�2xT=ðπξÞ AðxTÞj j2; ð14Þ

with ΓS ¼ 2πt2SϱS, and ΓS=_ the tunneling rate from the quantum dot to the
superconductor. The results shown on Fig. 4d of the main text are generated by Eq.
(14). Note that the many-body expression differs from the classical one solely by
the factor ΓSðjαj

2 þ jβj2Þ, which replaces the gap Δ ¼ _vF=ðξπÞ in the prefactor of
the classical expression.

The matrix elements α and β can be directly extracted from NRG computations.
A comparison between the two approaches is presented in Fig. 7. They both give
similar results. Small quantitative differences are presumably due to the fact that
the classical picture is not able to capture neither the mixed valence regime nor the
proper Kondo scale, in contrast to the more elaborate NRG approach.

Data availability
The data that support the plots within this paper and other findings of this study are
available at https://doi.org/10.5281/zenodo.3604194.
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