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ABSTRACT: Theoretical studies on molecule−metal surface reactions have so far been
limited to small surface unit cells due to computational costs. Here, for the first time molecular
dynamics simulations on very large surface unit cells at the level of density functional theory
are performed, allowing a direct comparison to experiments performed on a curved crystal.
Specifically, the reaction of D2 on a curved Pt crystal is investigated with a neural network
potential (NNP). The developed NNP is also accurate for surface unit cells considerably larger
than those that have been included in the training data, allowing dynamical simulations on very
large surface unit cells that otherwise would have been intractable. Important and complex
aspects of the reaction mechanism are discovered such as diffusion and a shadow effect of the
step. Furthermore, conclusions from simulations on smaller surface unit cells cannot always be
transfered to larger surface unit cells, limiting the applicability of theoretical studies of smaller
surface unit cells to heterogeneous catalysts with small defect densities.

Heterogeneous catalysis is vitally important to many
industrial processes. To improve these processes,

fundamental insights can be gained by performing molecule−
metal surface reaction (MMSR) experiments and simulations.
For instance, the shape of the metal surface is important for the
overall reactivity of anMMSR as different surface facets can yield
different elementary reaction rates. Fortunately, the overall
reactivity tends to be dominated by one or only a few rate-
controlling states such as the dissociative chemisorption
transition state (TS) at specific metal surface facets.1−4

Especially defects such as steps and kinks are often dominant
locations for reactions in industrial processes.5 However,
research involving MMSRs tends to focus on surfaces with
small unit cells,6 which are not always the same as the surfaces
that are relevant to heterogeneous catalysis. Computational
research is particularly limited by the unit cell size of the
investigated surface because the computational cost scales
rapidly with the cell size and concomitant number of atoms.
Experiments, on the contrary, can more easily investigate
MMSRs on large unit cells, e.g., by employing well-defined
stepped surfaces or curved crystals.7−12

Fortunately, advances in machine learning have enabled
previously intractable computational studies. For example, high-
dimensional neural network potentials (HDNNPs)13 can be
employed to accurately describe reactive scattering of diatomic
molecules from flat metal surfaces, while explicitly modeling
surface atom motion.14−17 Furthermore, HDNNPs allow the
use of more accurate but also computationally more demanding
density functionals (DFs) such as meta-generalized gradient
approximation (MGGA) DFs,17 which are currently intractable
for density functional molecular dynamics (DFMD) studies of
MMSRs. Furthermore, polyatomic molecules reacting on metal

surfaces can also be accurately described, e.g., CO2 + Ni(100)18

and CHD3 + Cu(111).19 With respect to the metal surface,
HDNNPs are accurate for describing not only flat surfaces with
small unit cells but also nanoparticles20 and clusters.21

However, so far, reactive scattering of molecules from metal
surfaces with large unit cells has not been computationally
investigated at the level of density functional theory (DFT).22

The large amount of atoms in such surfaces prohibits the use of
DFMD. Furthermore, developing an HDNNP for a large surface
unit cell is not straightforward because a large DFT training set is
required, which, although cheaper than DFMD, is still a
computationally expensive endeavor. Also, such an HDNNP
would be able to describe only a single surface facet, precluding a
direct comparison with experiments on curved crystals.
Recently, it has been shown that the embedded atom neutral
network (EANN) approach23 can be transferred between
different surface facets by describing reactive scattering of H2
+ Cu(100), Cu(111), Cu(110), and Cu(211)24 and of CH4 +
Ir(111) and Ir(332).25 Unfortunately, its applicability and
accuracy with respect to surface unit cells considerably larger
than those included in the training data remain unclear, which is
also true for other approaches such as kernel-based regres-
sion,26−28 reactive force fields,29−33 and deep neural net-
works.34,35 Another complicating factor is that neural networks
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are generally terrible at extrapolating, where the extrapolation is
a consequence of evaluating structures in a phase space that is
not included in the training data of the HDNNP, although it
should also be noted that an HDNNP has been found to be able
to extrapolate in the case of protonated water clusters, but still
with an accuracy one magnitude lower than in the interpolation
regime, i.e., for structures in the phase space that has been
included in the development of the HDNNP.36 For a further
overview of machine learning approaches for MMSRs, see the
reviews in refs 37−47. In this work, I will show that it is possible
to develop an accurate HDNNP that is trained on smaller
surface unit cells and that can be transferred to considerably
larger surface unit cells.
For the reaction of low-energy H2 on stepped Pt surfaces,

there has been a long-standing lack of clarity with regard to the
reaction mechanism: Does H2 react directly on the step without
major trapping, or is the reaction mediated by trapping?48−52

Recently, Lent et al. concluded from reactive scattering of H2
from a curved Pt crystal that low-energy H2 always reacts on the
step, either directly on impact or via dynamical trapping in the
cusp of the step toward the top step edge, but without long-range
diffusion.53 In subsequent experimental work by Jansen and
Juurlink, the step sticking cross section has been determined.54

Interestingly, Jansen and Juurlink found that at a low incidence
energy the step sticking cross section was dependent on the step
density. The reason for this step density dependence was
unknown, and it was suggested that theoretical dynamical
studies are required to understand the dependence. Therefore,
in this work, the HDNNP is developed specifically for the
reaction of H2 on a large variety of Pt surface facets, including
large surface unit cells. Because high-fidelity experimental
sticking probability data are available for the dissociation of
H2 on a curved Pt crystal and molecular beam experiments
remain the gold standard for benchmarking theory involving
MMSRs to experiment,6 this reaction will also serve as an
excellent benchmark for the approach presented here.
The HDNNP is trained on Pt surfaces containing (111)

terraces and (100) steps, e.g., Pt(211). Specifically, the training
data include the (111), (211), (533), (322), (755), (433), and
(977) surfaces, adding up to∼88000 structures (see also section
S1 of the Supporting Information). Note that the stepped
surfaces are similar, where the step is always the same [i.e., a
(100)-like step] but where the (111) terrace length varies.
Furthermore, one important detail of the construction of the
HDNNP is that surface atom motion is omitted from the
training data and concomitantly in the molecular dynamics
(MD) simulations, but it is also expected that this omission does
not influence the results presented in this work (see section S4).
As I will show, the HDNNP is accurate not only for the surface
unit cells included in the training but also, more importantly, for
quasi-classical trajectory (QCT)55 MD simulations performed
for larger surface unit cells not included in the training. This
makes (a large number of) MD simulations on very large surface
unit cells at the accuracy of DFMD tractable. In this work, QCT-
MD simulations are performed up to Pt(171515), which is twice
as large as the largest surface unit cell included in the training
data [i.e., Pt(977)] and contains 240 “unique” surface atoms in
the MD simulations.
The HDNNP reproduces DFT calculations excellently

(Figure 1a), where the HDNNP reproduces 99.3% of the
DFT energies within chemical accuracy (i.e., 4.2 kJ/mol) and
99.98% within 2-fold chemical accuracy, yielding an RMSE of
0.024 kJ mol−1 atom−1 for the energies. Furthermore, in panels b

and c of Figure 1, QCT-MD simulations for H2 + Pt(111) and
Pt(211) with the HDNNP yield sticking probabilities in good
agreement with MD simulations employing corrugation
reducing procedure (CRP)58,59 potential energy surfaces
(PESs).56,57 Also, the outstanding fit quality of the HDNNP is
underlined by the excellent agreement with DFMD calculations
for H2 + Pt(211) using the same computational setup (Figure
1c). Note that the DFT calculations on which the CRP PESs are
based employed computational setups slightly different than
those of the DFT calculations in this work on which the
HDNNP is based. Nevertheless, the same DF is used (i.e.,
PBEα57-vdW-DF256,60,61) and, therefore, PESs based on DFT
calculations from either this work or that of Ghassemi and co-
workers56,57 should yield similar sticking probabilities. More-
over, the PBEα57-vdW-DF2 DF has been shown to be
chemically accurate for H2 + Pt(111) and Pt(211).56,57 Because
these two surfaces can be considered the two extremes of the
probed surfaces in this work in terms of the step density, it is
likely that the employed DF is chemically accurate for all
surfaces considered in this work, which, as I will show below, is
found to be the case. For technical details regarding the MD
simulations, see section S2.
Figure 2a compares the computed and measured54 sticking

probability of D2 on stepped Pt surfaces as a function of step
density. Throughout this work, theoretical results correspond to
a specific Miller index and concomitant step density, whereas
experimental results correspond to an ensemble of facets,
yielding an average step density. Fortunately, the experimental

Figure 1. (a) Absolute error of the energies in the training and test data
predicted by the HD-NNP compared to DFT calculations. The dashed
line indicates chemical accuracy, i.e., 4.2 kJ/mol. (b and c) Sticking
probability of H2 on Pt(111) and Pt(211), respectively, as a function of
incidence energy. The orange circles and green diamonds indicate
results obtained from the HDNNP and DFMD, respectively. The blue
squares indicate results obtained from the CRP PESs of refs 56 and 57.
Note that the DFT calculations used for the CRP PESs employ
computational setups slightly different than those in this work, but the
same DF, i.e., PBEα57-vdW-DF2.
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variance is sufficiently low to compare experimental results
obtained from an ensemble of facets with theoretical results
obtained from specific facets.8 At intermediate (2.9 kJ/mol) and
high (13.9 kJ/mol) incidence energies, the HDNNP yields
sticking probabilities in good agreement with experiment. At a
low incidence energy (0.7 kJ/mol), the HDNNP seems to
overestimate the sticking probability considerably, but the
agreement is actually chemically accurate for a wide variety of
step densities and incidence energies (Figure S3). Because the
sticking probability decreases rapidly at a low incidence energy,
even a small shift along the incidence energy axis can yield large
differences in the sticking probability, as is the case here. It
should also be emphasized that this shift is considerably smaller
than 4.2 kJ/mol; i.e., the experimental sticking probability is
reproduced well within chemical accuracy (Figure S3).
Furthermore, previous computational work on H2/D2 +
Pt(211)57 also yielded sticking probabilities considerably higher
than those from experiment at a low incidence energy. Possibly
the employed DF or the QCT approach is the cause of the
overestimation, but additional future work is required to
understand this discrepancy. Nevertheless, the discrepancy
shown here between experiment and theory is not an intrinsic
part of the HDNNP, nor is it large. Therefore, I can consider the
HDNNP to be not only accurate in reproducing DFT
calculations but also accurate in reproducing experimental
results. This fact is important because even though step densities
of <0.53 nm−1 have not been included in the training of the
HDNNP, the HDNNP still yields accurate results for low step
densities that would have been intractable to simulate with
DFMD and difficult to include in the training data of the
HDNNP.

Figure 2. (a) Sticking probability of D2 on stepped Pt surfaces as a
function of step density for several incidence energies. The filled
(empty) circles with solid (dashed) lines indicate theory (experiment).
The incidence energies shown are 0.7 kJ/mol (blue), 2.9 kJ/mol
(orange), and 13.9 kJ/mol (green). Note that surfaces with a step
density of <0.53 nm−1 are not included in the training data of the HD-
NNP. (b) Same as panel a but showing the step sticking cross section
(computed with eq 2) instead of the sticking probability.

Figure 3. (a−f) Initial location (i.e., t = 0, left panels) and the location at the moment of reaction (defined as r = 1.5 Å, right panels) of D2 reacting on
Pt(433) for several incidence energies. The colors indicate the probability density, where integration over the entire unit cell yields unity. The circles
indicate the top layer atoms, where the black circles indicate step atoms and the red and pink circles indicate terrace atoms. Furthermore, the pink (red)
circles indicate that the top site (does not) lies in the shadow of the step top sites. The shaded area associated with the step is indicated by the black
lines, whereas the nonshaded area is associated with the terrace. (g) Side and (h) top views of Pt(433). The black, red, and pink atoms correspond to
the circles in panels a−f. Moreover, the gray atoms correspond to sublayer terrace atoms.
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Jansen and Juurlink have also determined the step sticking
cross section of the (100)-like step in a curved Pt crystal.54 At a
low incidence energy, the sticking probability of D2 on Pt
presumably originates solely from the steps and only from
molecules impacting the surface on or close to the step53 and
rapidly decays with the incidence energy. Therefore, site specific
sticking probabilities (i.e., S0

step and S0
terrace) can be determined

from the overall sticking probability S0 as a function of incidence
energy Ei as follows:

54

  = − + + ßS E a E b c E( ) exp( / ) d

f S E

f S E
0 i i

( )

i
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step 0
step

i

terrace 0
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where a−d are parameters fitted to the sticking probability and
fstep and f terrace are the fractions of the surface unit cell covered in
steps and terraces, respectively. Then, the step sticking cross
section (AstepS0

step) can be determined as follows:54
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where wstep is the width of the unit cell along the step edge and
dstep is the step density. Note that the site specific sticking
probabilities obtained from eq 1 are employed only when
calculating the step sticking cross section with eq 2 (e.g., in
Figure 2b). In all other cases, the location at the moment of
reaction (i.e., r = 1.5 Å) is taken from the MD simulations and
assigned to the step (terrace) as indicated by the (non)shaded
areas in Figure 3.
A comparison between the theoretical and experimental step

sticking cross section (Figure 2b) yields results similar to those
for the sticking probability. At low incidence energies, the
agreement is qualitative, and at higher incidence energies, the
agreement is improved. In general, the agreement for the step
sticking cross section is lower than for the sticking probability,
which is caused by the slight overestimation of the sticking
probability at low incidence energies. Because the model
assumes that at a low incidence energy D2 sticks only near the
step, an overestimation of the sticking probability at a low
incidence energy causes an overall overestimation of the step
sticking cross section, even at higher incidence energies (see also
section S5). Fortunately, again this is not an intrinsic problem of
the HDNNP (vide supra) and the HDNNP can reproduce
experimental trends.
Interestingly, Jansen and Juurlink observed a dependence of

the step sticking cross section on the step density at low
incidence energies, for which the reason was unclear.54 They
mentioned that, among others, short-range diffusion of D2 on
the surface might play a role in the step density dependence but
that they had no way of confirming this hypothesis. With the
simulations presented in this work, the reaction dynamics can be
investigated to test this hypothesis, which I will do now. Panels
a−f of Figure 3 show the initial location (beginning of the
simulation, i.e., t = 0; panels a, c, and e) and the location at the
moment of reaction (defined as r = 1.5 Å; panels b, d, and f) of
reacting D2 on Pt(433), and panels g and h of Figure 3 show side
and top views, respectively, of the Pt(433) surface. Furthermore,
Figure 4 shows the step/terrace ratio of the initial and reaction
locations as a function of the step density. At the lowest
incidence energy (0.7 kJ/mol), the initial location is slightly
more concentrated at the step, but most of the distribution is
delocalized (Figures 3a and 4a). When the incidence energy

increases, the initial location is increasingly more concentrated
at either the step or near a top layer surface atom (Figures 3c,e
and 4b,c). In contrast, the location at the moment of reaction is
always strongly concentrated at the top step edge and top layer
surface atoms (Figures 3b,d,f and 4); i.e., the reactive sites are
the top step edge and the terrace top sites. Moreover, it is clear
that dynamical trapping occurs not only through the cusp near
the step, as was previously thought,50,53 but also on the entire
surface [which is also confirmed visually for a few trajectories on
Pt(877)]. In short, at a low incidence energy a considerable
amount of diffusion of D2 can occur prior to the dissociation,
whereas at a high incidence energy only a small amount of
diffusion is observed, independent of the step density.
The observations regarding the diffusion of D2 and the

reactive sites also offer an explanation for why at a low incidence
energy the step sticking cross section depends on the step
density. Because the molecule can travel across the terrace and
find a favorable location with respect to dissociation (i.e., the top
step edge or a terrace top site), the terrace contributes to the
overall reactivity, even at a low incidence energy, and effectively
increases the step sticking cross section in Figure 2b computed
with eq 2 when the step density decreases. Furthermore, even at
the lowest incidence energy, the reaction partly takes place on
the terrace instead of the step (Figure 4), increasing the step
sticking cross section even further (see also section S5). Also, the
reactivity of the terrace top sites scales inversely with the step
density, again increasing the step sticking cross section for lower
step densities. In contrast, the minimum barrier height and
geometry on the step, which is an indicator of the reactivity of
the step in the absence of diffusion, are hardly affected by the
terrace length. For instance, the minimum barrier height on

Figure 4.Ratio with whichD2 reacts on the step instead of the terrace as
a function of the step density for several incidence energies. The blue
circles indicate the initial location (i.e., t = 0), whereas the orange circles
indicate the location at the moment of reaction (i.e., r = 1.5 Å). The
black dashed line indicates the statistical ratio of the unit cell. The error
bars represent 68% confidence intervals.
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Pt(877) is only 2.2 kJ/mol lower than on Pt(533) (see also
section S3). As such, the approximate model overestimates the
step sticking cross section (especially for larger surface unit
cells) because it relies on the assumption that at a low incidence
energy all reaction occurs near the step and that diffusion does
not play a significant role. In fact, the step sticking cross section
at themoment of reaction even seems visually to be independent
of the step density (Figure S5).
As stated earlier, Lent et al. concluded that at a low incidence

energy D2 always reacts directly on the step or via dynamical
trapping in the cusp of the step toward the top step edge, but
without long-range diffusion.53 The significance of the diffusion
of D2 across the entire surface in the reaction mechanism found
here might lead one to think that both are possible: D2 reacts
directly or via long-range diffusion (i.e., trapping-mediated) on
the step. However, because the diffusion occurs within a rather
short time (<20 ps) and length (<100 Å) scale before the
molecule either reacts or desorbs (see also Figure S2), the
reaction is not trapping-mediated because this would involve
considerably longer time and length scales. Furthermore, Lent et
al. also concluded that the reaction at a low incidence energy
occurs only on the step. However, reaction takes place at the step
and on the terrace. Therefore, I conclude that the reaction of
low-energy D2 occurs both on the step and the terrace (although
still predominantly on the step), either directly on impact or via
short-range diffusion across the terrace.
Another intriguing aspect of the reaction mechanism is that

the terrace reactivity at a low incidence energy is not uniform
due to a shadow effect of the step. Panels a−c of Figure 5 show
that the terrace top sites that lie on the line perpendicular to the
step edge “in the shadow” of the step top sites are less reactive
than the terrace top sites that do not lie in the shadow of the step
top sites [see Figure 3 for a visualization of which terrace top
sites are in the shadow of the step top sites; here, the pink (red)
terrace circles/atoms (do not) lie in the shadow of the step top
sites, i.e., the black circles/atoms]. Although still present for
larger surface unit cells, this effect is considerably less
pronounced when the terrace length is increased. Also, at
higher incidence energies this shadow effect is still noticeable for
large step densities (Figure 5b,c). The shadow effect is caused by
a considerable difference between the top site barriers that lie in
or out of the shadow of the step top sites on smaller stepped
surface unit cells, whereas the difference in barrier heights and
concomitantly the shadow effect largely disappear on larger
stepped surface unit cells (Figure 5d). Furthermore, as
mentioned above, in general the terrace top site barrier heights
decrease with an increase in terrace length (Figure 5d). As such,
one can argue that extrapolation of conclusions from reaction
dynamics on small stepped surface unit cells might not always be
valid in describing catalysts with low defect densities (i.e., low
step density), even though doing so is the present norm,
requiring simulations on large unit cells instead.
In summary, in this work I perform for the first time a large

number of MD simulations at the level of DFT that can be
directly compared to a molecular beam experiment performed
on a curved crystal, i.e., the reaction of D2 on a curved Pt crystal.
The MD simulations are made tractable by developing an
HDNNP with DFT data consisting of H2 interacting with a flat
(111) surface and with several smaller stepped surface unit cells
with (100) steps and (111) terraces [from (211) to (977)]. The
developed HDNNP can accurately describe not only the
reaction of H2 on surface unit cells that have been included in
the training data but also on considerably larger surface unit cells

that have not been included in the training data, allowing
dynamical simulations on very large surface unit cells that
otherwise would have been intractable. Moreover, our under-
standing of the reaction mechanisms of H2 on stepped Pt
surfaces is improved. One of the reaction pathways was thought
to be dynamical trapping in the cusp of the step before the
molecule is attracted by the step and can dissociate, but here it is
observed that the dynamical trapping occurs on the entire
terrace before the molecule dissociates on the step or, more
rarely, on a terrace top site. Furthermore, previous experimental
work determined the step sticking cross section, where a
dependence of the step sticking cross section on the step density
of the surface was observed. With the help of the MD
simulations performed in this work, the underlying cause for
the step density dependence is identified. At a low incidence
energy, H2 can easily travel large distances across the surface
prior to the dissociation of the molecule, even at stepped
surfaces with very large terrace lengths. Due to assumptions
made in the approximate model employed to obtain the step
sticking cross section, the computed step sticking cross section
increases substantially with a decrease in step density, even

Figure 5. (a−c) Ratio of D2 reacting near terrace top sites that lie in the
shadow of the top layer step atoms compared to the total sticking
probability at the terrace. Blue, orange, and green indicate incidence
energies of (a) 0.7, (b) 2.9, and (c) 13.9 kJ/mol, respectively. The black
dashed line indicates the statistical ratio of the unit cell. The error bars
represent 68% confidence intervals. (d) Terrace top site barriers of the
dissociation of H2 on several stepped Pt surfaces. Several step densities
are shown (see the legend; the corresponding Miller index is indicated
in parentheses). The empty circles are top sites that lie in the shadow of
the step top sites, whereas the solid circles do not. The first and last
terrace top sites correspond to the sites next to the bottom and top step
edge, respectively (see also Figure 3g,h).
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though the actual cross section observed in the MD simulations
seems to be independent of the step density. Furthermore, the
step changes the reactivity across the surface in a complex
fashion, of which the effect is dependent on both the incidence
energy of the molecule and the step density of the surface.
Therefore, reaction dynamics obtained on small stepped surface
unit cells are not always the same as those on large stepped
surface unit cells. Similarly, fundamental understanding of
catalysts with a low defect density might not always be possible
through simulations or experiments performed on small stepped
surface unit cells, especially when diffusion plays an important
role, but requires studies on large stepped surface unit cells
instead.

■ COMPUTATIONAL METHODS
Here, I provide a short summary of the computational details for
the DFT calculations used to construct the HDNNP with
RuNNer.38,40,62 All DFT calculations have been performed with
a user-modified version of the Vienna Ab-initio Simulation
Package (VASP version 5.3.5)63−68 to allow the use of the
PBEα57-vdW-DF2 DF.56,60,61 A plane wave kinetic energy
cutoff of 400 eV has been used. Furthermore, a Γ-centered k-
point grid is employed, ranging from 6 × 6 × 1 [Pt(111)] to 4×
6× 1 [Pt(977)] to ensure that a reasonably consistent basis set is
employed between the different facets. For the (111) facet, a 3×
3 supercell is employed, whereas for the stepped surfaces, a 1× 3
supercell is employed. A vacuum distance of 15 Å and five layers
have been used, where the top three layers have been relaxed in
all directions.
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(61) Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C.
Higher-Accuracy van Der Waals Density Functional. Phys. Rev. B:
Condens. Matter Mater. Phys. 2010, 82, 081101.
(62) Behler, J. RuNNer - A Neural Network Code for High-Dimensional
Neural Network Potential-Energy Surfaces; Universita ̈t Göttingen:
Göttingen, Germany, 2018 (http://www.uni-goettingen.de/de/
560580.html).
(63) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation
of the Liquid-Metal−Amorphous-Semiconductor Transition in Ger-
manium. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251−
14269.
(64) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid
Metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558−561.
(65) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab
Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys.
Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186.
(66) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy
Calculations for Metals and Semiconductors Using a Plane-Wave Basis
Set. Comput. Mater. Sci. 1996, 6, 15−50.
(67) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the
Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter
Mater. Phys. 1999, 59, 1758−1775.
(68) Román-Pérez, G.; Soler, J. M. Efficient Implementation of a van
Der Waals Density Functional: Application to Double-Wall Carbon
Nanotubes. Phys. Rev. Lett. 2009, 103, 096102.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.1c03395
J. Phys. Chem. Lett. 2021, 12, 12157−12164

12164

https://doi.org/10.1063/1.1446852
https://doi.org/10.1063/1.1446852
https://doi.org/10.1103/PhysRevB.75.195108
https://doi.org/10.1103/PhysRevB.75.195108
https://doi.org/10.1103/PhysRevB.82.081101
http://www.uni-goettingen.de/de/560580.html
http://www.uni-goettingen.de/de/560580.html
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.103.096102
https://doi.org/10.1103/PhysRevLett.103.096102
https://doi.org/10.1103/PhysRevLett.103.096102
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c03395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

