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diction of molecular optical peaks
with deep learning†

Kevin P. Greenman, a William H. Green a and Rafael Gómez-Bombarelli *b

Optical properties are central to molecular design for many applications, including solar cells and

biomedical imaging. A variety of ab initio and statistical methods have been developed for their

prediction, each with a trade-off between accuracy, generality, and cost. Existing theoretical methods

such as time-dependent density functional theory (TD-DFT) are generalizable across chemical space

because of their robust physics-based foundations but still exhibit random and systematic errors with

respect to experiment despite their high computational cost. Statistical methods can achieve high

accuracy at a lower cost, but data sparsity and unoptimized molecule and solvent representations often

limit their ability to generalize. Here, we utilize directed message passing neural networks (D-MPNNs) to

represent both dye molecules and solvents for predictions of molecular absorption peaks in solution.

Additionally, we demonstrate a multi-fidelity approach based on an auxiliary model trained on over

28 000 TD-DFT calculations that further improves accuracy and generalizability, as shown through

rigorous splitting strategies. Combining several openly-available experimental datasets, we benchmark

these methods against a state-of-the-art regression tree algorithm and compare the D-MPNN solvent

representation to several alternatives. Finally, we explore the interpretability of the learned

representations using dimensionality reduction and evaluate the use of ensemble variance as an

estimator of the epistemic uncertainty in our predictions of molecular peak absorption in solution. The

prediction methods proposed herein can be integrated with active learning, generative modeling, and

experimental workflows to enable the more rapid design of molecules with targeted optical properties.
1 Introduction

Dye molecules are used in many applications ranging from
sensitizers for solar cells to biomedical imaging and diagnos-
tics.1,2 The optical properties of dyes, namely their absorption
and emission characteristics, must be known to determine their
suitability for particular applications. Although numerous
theoretical and statistical methods exist to predict these prop-
erties, many of these methods are not sufficiently accurate or
general, or require signicant computational cost, all of which
hinder their application to large and diverse sets of molecules.
Herein, we propose new deep learning methods that use
learned dye and solvent representations and multi-delity data
to improve prediction accuracy and generalizability on rigorous
splits of several of the largest open-source datasets. Our models
are publicly available for making predictions with correspond-
ing uncertainty estimates.
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Many theoretical methods have been developed for predict-
ing molecular optical properties, including empirical tables,
semi-empirical methods, time-dependent density functional
theory (TD-DFT), and wavefunction-based methods.3,4 TD-DFT
has been the most widely used method for at least the past
decade because of its favorable accuracy/cost trade-off and its
capacity to be coupled with continuum solvents approxima-
tions,5 and it has been benchmarked and reviewed exten-
sively.6,7 In parallel to theoretical methods, researchers have
also developed surrogate statistical models that predict UV/Vis
spectra from molecular structure at a lower computational
cost than TD-DFT. ML studies for predicting properties related
to the electronically excited states of molecules have been
reviewed recently.8,9

Limitations in previous statistical modeling efforts can be
classied into three categories: data sparsity, molecular repre-
sentations, and solvent representations.10 Many studies have
focused on a narrow part of chemical space (e.g. a single dye
family) because of the limited availability of large UV/Vis data-
sets. This data sparsity has been addressed recently with the
publication of several experimental datasets,1,11–18 described in
Table 1. There are also several large computed datasets of
excitation energies available (Table 2). However, studies are still
lacking on how the chemical diversity of the training data
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Existing datasets of experimental UV/Vis spectroscopic properties. The properties listed for each dataset are not necessarily present for
every measurement. “Full” refers to the full absorption/emission spectrum as xy-coordinate pairs, lmax is the peak wavelength, 3max is the peak
molar attenuation coefficient (also called the molar extinction coefficient or molar absorptivity), s is the peak FWHM (bandwidth), F is the
quantum yield, and s is the fluorescence lifetime. A subset of the data in the ChemFluor16 set was extracted from the Fluorophores12 set. The
number of entries for the UV/Vis+ dataset includes the count of the dye entries only, and the entries for NIST do not include ions

Dataset Entries Dye Solvent Absorption Emission Other

ChemDataExtractor14 8467 SMILES Name lmax, 3max — —
ChemFluor16 4386 SMILES Name lmax lmax F

Deep4Chem17 20 236 SMILES SMILES lmax, sabs, 3max lmax, semi F, s
DSSCDB1 5178 SMILES Name lmax lmax —
Dye aggregation15 4043 SMILES Name lmax — —
Fluorophores.org12 955 Name Name Full, lmax Full, lmax F, s
NIST11 2306 MOL le — Full — —
PhotochemCAD13 552 Name Name lmax, 3max — F

UV/Vis+18 112 Name Name Full Full —

Table 2 Existing large datasets of computed excitation energies. Each
dataset contains additional properties beyond excitation energies,
such as oscillator strengths, highest occupied molecular orbital
(HOMO), and lowest unoccupiedmolecular orbital (LUMO), but the set
of reported properties is different for each dataset. Some datasets
report results from multiple levels of theory (ranging from semi-
empirical to coupled cluster), but all were calculated in vacuum. Many
smaller datasets and datasets containing only ground-state properties
(e.g. HOMO and LUMO) exist that are not referenced here

Dataset Entries Molecule

QM7b19,20 7211 Coulomb matrix
QM8 (ref. 21 and 22) 21 786 XYZ le
QM-symex23 172 736 XYZ le
PubChemQC24 3 411 649 MOL le
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impacts model performance on new, unrelated chemical space.
Many prediction methods have created molecular representa-
tions based on generic structure-based ngerprints or human-
selected descriptor features. Most previous studies did not
consider solvent effects, but many leveraged descriptors derived
from quantum chemical calculations. The issue of data sparsity
is related to the shortcomings of solvent representations in
previous models; with relatively few examples of dyes measured
in more than one solvent, it was sometimes easier to train
a model only on data in the most commonly reported solvent to
remove this complexity from the model.

Among the previous studies on predicting absorption peak
wavelengths or excitation energies, the work of Ju et al.,16 Kang
et al.,25 and Joung et al.26 is particularly noteworthy because of
the size of their training datasets and the accuracies this
enabled them to achieve. Ju et al. trained a gradient boosted
regression tree (GBRT) algorithm on composite ngerprints to
predict the maximum absorption and emission wavelengths
and photoluminescence quantum yield (PLQY) using a large set
of experimental data they compiled from the literature. Kang
et al. trained a random forest algorithm on a subset of the
PubChemQC database24 to predict B3LYP/6-31G* excitation
energies and oscillator strengths in a vacuum from molecular
ngerprints. Joung et al. used their previously compiled exper-
imental dataset17 to train a model that uses graph-convolutional
© 2022 The Author(s). Published by the Royal Society of Chemistry
networks (GCN) to predict multiple molecular optical proper-
ties, including the absorption and emission peak wavelengths.

Although these recent works achieved impressive accuracies,
their reported performance may be more representative of how
they would perform in substituent-selection applications as
opposed to de novo design tasks with unseen chemistries.
Recent reviews of ML best practices in chemistry and materials
science have warned against data leakage from the same
compound or composition being present under multiple
measurement conditions.27,28 Random splitting into training/
test or training/validation/test sets based on dye–solvent pair
may not be sufficient for assessing model generalizability on
this task because test error may be spuriously low if a dye
appears in both training and test sets in different solvents or
even if the molecules in the test set are too chemically similar to
the training data. We set out to explore how these decisions
impact model performance.

Additionally, previous work has not attempted to leverage
a combination of computed and experimental data in predic-
tions of optical spectra. This multi-delity approach is desirable
because of the lower cost and greater availability of calculations
with respect to experiments. Multi-delity methods have been
demonstrated in several other applications for integrating data
from multiple levels of theory or from theory and experi-
ments.29–31 Furthermore, theoretical methods do not have
a domain of applicability constrained by a training set, so they
are more reliable for making predictions on chemistries with
low similarities to existing data. These factors suggest that
a multi-delity approach may improve model accuracy and
generalizability on experimental predictions and may be more
useful in active learning.

In this work, we leverage recently-compiled experimental
datasets and directed message passing neural networks (D-
MPNN)32 to address previous limitations with molecular and
solvent representations. The D-MPNN approach learns repre-
sentations for the dye and solvent that are optimized for pre-
dicting absorption properties. We compare our optimized
representations to a state-of-the-art ngerprint-based method
and to alternative solvent descriptors. Our method produces
interpretable representations and estimates the uncertainty in
Chem. Sci., 2022, 13, 1152–1162 | 1153
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its predictions. We emphasize the importance of using rigorous
splitting techniques for assessing the ability of a model to
generalize to unseen chemistries, and we show that incorpo-
rating results from physics-based calculations into model
training improves performance across several large datasets.
The predictive capability of our techniques will enable more
rapid design of molecules with target optical properties.
2 Methods
2.1 Data sources and preprocessing

We compiled experimental UV/Vis absorption data from several
of the largest openly-available datasets: Deep4Chem,17 Chem-
Fluor,16 Dye Aggregation (DyeAgg),15 ChemDataExtractor
(CDEx),14 and the Dye-Sensitized Solar Cell Database (DSSCDB).1

Among the datasets listed in Table 1, these were the largest and
most easily machine-readable, and they included solvent infor-
mation for each measurement. All of these data sources reported
the dyes in the form of SMILES,33 but only the Deep4Chem set
reported the solvents in this form. For the other four sets, we
converted the solvent names and abbreviations to SMILES
through a manually-constructed dictionary mapping because
automatic tools did not recognize the necessary variety of names
and abbreviations for many solvents. We extracted all measure-
ments that included a valid dye SMILES string, solvent SMILES
string, and peak wavelength of maximum absorption. We deter-
mined the validity of the SMILES strings using RDKit34 and
dropped measurements with invalid dye or solvent SMILES (105
measurements) and those containing “.” to represent clusters of
molecules (373measurements). The remaining dataset contained
28 734 measurements. We removed any dye–solvent pairs with
duplicate measurements within the same dataset that disagreed
by more than 5 nm. For those that agreed within 5 nm, the mean
of the values was used. This resulted in datasets of size 1825
(CDEx), 3840 (ChemFluor), 14 771 (Deep4Chem), 1720 (DSSCDB),
3025 (DyeAgg), and 24 580 (a combined set of ChemFluor,
Deep4Chem, DSSCDB, and DyeAgg).
2.2 TD-DFT calculations

For each dye molecule in the combined experimental dataset, as
well as a set of molecules with dye-like substructures parsed
from USPTO patents and commercial vendors, initial geome-
tries were generated using RDKit to convert the SMILES strings
into Cartesian coordinates.35 These geometries were rened
using semi-empirical tight-binding density functional theory
(GFN2-xTB)36 in the ORCA soware,37 followed by geometry
optimizations at the BP86 (ref. 38)-D3 (ref. 39)/def2-SVP40 level
of theory. Finally, TD-DFT calculations were performed with the
Tamm–Dancoff approximation (TDA)41 at the uB97X-D3 (ref.
42)/def2-SVPD level of theory in Orca. This pipeline was
completed for 28 772 molecules, of which 10 409 had a corre-
sponding experimental measurement in at least one solvent
from one of the aforementioned datasets. The total number of
experiments with a corresponding TD-DFT calculation in
vacuum was 19 409 (including measurements of the same
molecule taken in more than one solvent).
1154 | Chem. Sci., 2022, 13, 1152–1162
For a subset of the complete dataset (only ChemFluor,
DyeAgg, CDEx, and DSSCDB), we began with the optimized
geometry calculated with BP86-D3/def2-SVP in ORCA and per-
formed an additional TD-DFT calculation at the uB97XD/def2-
SVP level with solvent corrections in Gaussian.43 The solvent
calculations were done using the integral equation formalism
polarizable continuum model (IEFPCM) and Gaussian defaults
for excited state solvation. This pipeline was completed for 6707
dye–solvent pairs.

We extracted the peak vertical excitation energy from each of
these calculations according to the following procedure: (1) if
none of the energies were in the range of 1–4 eV, choose the
lowest energy; (2) if only one energy is in the visible range,
choose that one; (3) if multiple peaks are in the visible range,
choose the one with the highest oscillator strength. While the
vertical excitation energy is not exactly analogous to lmax,abs

because it does not account for nuclear vibronic effects, it is
a relatively cheap computational surrogate that should improve
the capability of a model to predict lmax,abs.
2.3 Dye and solvent representations

We compared three representation methods for the dye mole-
cules and four for solvents. Two of the dye representations were
derived from the open-source Chemprop D-MPNN framework,32

and we compared these representations to the ChemFluor
Functionalized Structure Descriptor (FSD) representation
developed by Ju et al.16 The FSD representation is a composite
ngerprint created by concatenating the E-state, CDK extended,
and substructure presence and count ngerprints calculated by
the PaDEL soware44 through PaDELPy.45 Ju et al. found FSD to
be superior in an extensive benchmark against other xed
ngerprint representations for predicting molecular absorption
and emission peak energies. One Chemprop representation
uses the D-MPNN framework “as is” to create a ngerprint
embedding that is optimized for predicting absorption peak
energies. The second Chemprop representation (which we call
ChempropMultiFidelity) is similar to the rst, but it uses
a second Chemprop model trained on TD-DFT results to predict
the TD-DFT peak vertical excitation energy and concatenates
this predicted value onto the rst Chemprop ngerprint
embedding.

The four solvent representations compared herein are
Morgan ngerprints, ChemFluor Comprehensive General
Solvent Descriptors (CGSD), Minnesota solvent descriptors,46

and Chemprop D-MPNN embeddings (SolventMPNN). We
calculated the Morgan ngerprints with a radius of 4 and 256
bits. The ve CGSD descriptors (developed by Ju et al.16 in
conjunction with the FSD dye representation) were extracted
from the work of Reichardt47 and Catalán48 and represent the
polarity (ET(30)), acidity (SA), basicity (SB), dipolarity (SdP), and
polarizability (SP) of a solvent. We also matched solvents with
their seven corresponding descriptors from the Minnesota
Solvent Descriptor Database:46 index of refraction (n), Abra-
ham's H-bond acidity (a), Abraham's H-bond basicity (b),
surface tension (g), dielectric constant (3), aromaticity (f), and
electronegative halogenicity (j). The solvent D-MPNN
© 2022 The Author(s). Published by the Royal Society of Chemistry
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embeddings were optimized using a separate D-MPNN along-
side that of the dye; this approach was previously shown to be
successful in predicting solvation free energies.49 This is also
similar to the “direct-solvent” approach of Chen et al.,50 except
that our dye and solvent D-MPNNs are not connected to one
another until their embeddings are concatenated before the
fully-connected feed-forward neural network (FFNN).

All dye–solvent pairs for which any of the above features
could not be calculated were dropped from the dataset.
2.4 Models

We compare the performance of three types of models, each
corresponding to one of the dye representations described
above. The FSD representation was used with the gradient
boosted regression tree (GBRT) algorithm51 as implemented by
Ju et al.16 For both D-MPNN representations described above,
the resulting ngerprint embedding is passed to a feed-forward
neural network (FFNN) to accomplish the regression task. The
three types of models are illustrated in Fig. 1. The Chem-
propMultiFidelity model is a variation of the hybrid physics-ML
models reviewed by Jia et al.52

D-MPNN hyperparameters (including hidden sizes, numbers
of layers, dropout, batch sizes, learning rates, and warm-up
epochs) were tuned using SigOpt.53 The GBRT used the hyper-
parameters reported by Ju et al., while all D-MPNN models used
Fig. 1 Model architectures for predicting experimental absorption peak i
the FSD and CGSD, which are concatenated and used as input for a gra
MPNN networks to obtain fingerprint embeddings for the dye and s
propMultiFidelity model is similar to Chemprop, except with the additio
absorption peak from TD-DFT data. This value is concatenated with the t
weight sharing between any of the D-MPNN networks. The Chempro
fingerprints, Minnesota descriptors, or CGSD to represent the solvent in
descriptors as alternatives to CGSD.

© 2022 The Author(s). Published by the Royal Society of Chemistry
hyperparameters that were tuned on the same ChemFluor
dataset used by Ju et al. The details of the model architectures,
training, and predictions are given in the ESI.†
2.5 Train-validation-test splits

The type of splitting strategy used during the development of
machine learning models is a crucial consideration when evalu-
ating the accuracy and generalizability of a model.27,28 We
compare three splitting strategies to illustrate this principle and
to encourage the use of rigorous splitting strategies in subsequent
work. In our regression task, the dye molecule and solvent
molecule are both inputs to predict the peak wavelength of
maximum absorption. The most naive splitting strategy, there-
fore, is to split randomly by dye–solvent pairs. If there are no
duplicate measurements in a dataset, this splitting strategy
makes it trivial to ensure that no pair is present in more than one
of the training, validation, and test sets. Although the solvent
effect can sometimes cause a substantial shi in the peak wave-
length, the peaks measurements of the same dye in different
solvents will be correlated. In other words, knowing the peak
absorption wavelength of a particular dye in one solvent will likely
improve the predictions of that same dye in a different solvent.
This suggests a more rigorous splitting strategy where measure-
ments are split by dye molecules rather than by dye–solvent pairs.
This method ensures that any given dye molecule is restricted to
n solvent. GBRT uses the PaDEL software and a table lookup to arrive at
dient boosted regression tree algorithm. Chemprop uses separate D-
olvent, then concatenates these for input to a FFNN. The Chem-
n of a secondary D-MPNN and FFNN that are trained to predict the
wo fingerprint embeddings before being passed to a FFNN. There is no
p and ChempropMultiFidelity models can alternatively use Morgan
place of a D-MPNN; GBRT can use Morgan fingerprints or Minnesota

Chem. Sci., 2022, 13, 1152–1162 | 1155
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either the training, validation, or test set, regardless of how many
different solvent measurements are available. The nal and most
rigorous strategy discussed in this work is a scaffold split using
the Bemis–Murcko scaffold54 implemented in RDKit through
Chemprop. Scaffold splits ensure that any dye molecules that
possess the same scaffold are restricted to a single set, which
makes the regression taskmore challenging and provides a better
evaluation of model generalizability. This splitting strategy is
most reective of performance on de novo design tasks with
unseen chemistries. We used 80-10-10 training-validation-test
proportions for all splits.

3 Results and discussion

We performed our analysis on a combination of ve data
sources, which comprised a total of 28 734 measurements (of
which 26 623 were unique dye–solvent pairs). Of these 28 734,
there were 1870 included in more than one data source. The
combined dataset contained 15 157 unique dyes and 364
unique solvents. Ten of the solvents were used in 1000 or more
measurements. The breakdown of our data by source and by
solvent is represented in Tables 3 and S1.†
Table 3 Dataset composition by data source. The numbers for dye–
solvent pairs correspond to the number of measurements after
filtering. These numbers do not account for the aggregation of
duplicate measurements either within or across datasets. There were
1870 measurements present in more than one data source

Dataset Measurements

Deep4Chem 16 585
ChemFluor 4170
DyeAgg 3626
CDEx 1915
DSSCDB 2438
Total 28 734

Fig. 2 Dataset composition: peak location and common scaffold match
from the combined dataset span the entire visible spectrum and extend
a wide variety of common dye scaffolds/families, as determined by SMA

1156 | Chem. Sci., 2022, 13, 1152–1162
The maximum absorption wavelengths of the dyes repre-
sented in our dataset cover the entire visible spectrum and
extend into the ultraviolet and near-infrared regions. The
molecules in the dataset include many of the common dye
substructures and families. Fig. 2 illustrates the distribution of
wavelengths and the prevalence of each substructure. The peak
wavelength distributions of the individual datasets are different
from that of the combined dataset and from each other, as
shown in Fig. S1.†

The ve datasets differ in their coverage of chemical dye
space, as shown in Fig. 3. The largest single data source
(Deep4Chem) also has the most dense coverage of the chemical
space. The smaller data sources, while covering a relatively large
area of space, display more outliers that have few or zero close
neighbors. Quantitatively, the mean Tanimoto similarities to
nearest neighbor (based on RDKit ngerprints) are 0.760, 0.917,
0.937, 0.891, and 0.884 for the CDEx, ChemFluor, Deep4Chem,
DSSCDB, and DyeAgg sets, respectively. Histograms of the
pairwise Tanimoto similarities for each dataset are shown in
Fig. S3.†

We used TD-DFT to calculate the vertical excitation energies
for 10 947 molecules in vacuum and 6707 molecules with
solvent corrections corresponding to the solvent measurements
available in the experimental dataset. Since some molecules
were measured in multiple solvents experimentally, the total
number of experimental measurements with a corresponding
vacuum TD-DFT calculation was 19 409. The results of these
calculations are compared to experiments in Fig. 4. Solvent
corrections applied to TD-DFT yield results that have a smaller
error than vacuum calculations with respect to the experimental
ground truth. However, aer tting a linear regression to both
sets of calculations, the error for the vacuum calculations is
lower. Therefore, this systematic error of the vacuum calcula-
tions makes it suitable to use the results of the vacuum calcu-
lations as features for building our models.
es. (Left) The experimental peak wavelengths of maximum absorption
into the infrared and ultraviolet, (Right) the combined dataset covers
RTS pattern matching.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 UMAP of Morgan fingerprints by data source. A UMAP dimensionality reduction on the Morgan fingerprints shows a difference in the
coverage and density of each dataset in chemical space.

Fig. 4 TD-DFT calculations in vacuum and solvent vs. experiments. (Left) Vertical excitation energy with maximum oscillator strength from
solvent-corrected TD-DFT versus peak wavelength of maximum absorption from experiment, (Center) vertical excitation energy with maximum
oscillator strength from vacuum TD-DFT versus peak wavelength of maximum absorption from experiment, (Right) vertical excitation energy
with maximum oscillator strength from solvent-corrected TD-DFT versus vertical excitation energy with maximum oscillator strength from
vacuum TD-DFT. In each plot, MAEreg refers to the adjusted MAE value after performing a simple linear regression. Similar plots are shown in
Fig. S4†with data points across all three plots corresponding to the samemeasurements. The linear regression equations for each plot above are
as follows: (Left) lexpt,solv ¼ 1.69ltddft,solv � 238.24, (Center) lexpt,solv ¼ 1.82ltddft,vac � 226.82, and (Right) ltddft,solv ¼ 1.18ltddft,vac � 32.86.

Edge Article Chemical Science
Although the combination of vacuum TD-DFT and a simple
linear model performs well with respect to the experimental
ground truth (MAE ¼ 24.9 nm), the computational cost of TD-
DFT may limit its applicability on large datasets. Nevertheless,
this sets a baseline for the accuracy of computational methods
in general when predicting this property.

We trained a D-MPNN and FFNN on 80-10-10 random splits
of 28 772 vertical excitation energies from our full set of vacuum
TD-DFT calculations. This model achieved a test MAE of 0.12 eV
(14.99 nm), and the predictions are shown in Fig. S12.† This
© 2022 The Author(s). Published by the Royal Society of Chemistry
model became the auxiliary model used in the Chem-
propMultiFidelity approach for the remainder of this work.

The three ML methods we benchmarked are all able to
match or exceed the accuracy of the linear regression on the
vacuum TD-DFT result, but their ability to do so is heavily
inuenced by the strategy used to split the data into training,
validation, and test sets (Fig. 5). All three methods achieve
a MAE under 10 nm when splitting by dye–solvent pair. For
GBRT, this is similar to what Ju et al. observed in their predic-
tions on the ChemFluor dataset (test set MAE of 10.46 nm).
Chem. Sci., 2022, 13, 1152–1162 | 1157



Fig. 5 Dye and solvent representations. (Left) Comparison of three different molecular representations (GBRT, Chemprop, and Chem-
propMultiFidelity) across different methods for splitting into training, validation, and test sets on the Deep4Chem dataset. The CGSD is used to
represent the solvent for all molecule representations. The ChempropMultiFidelity and Chempropmethods perform better than GBRT on all split
types, and the difference in performance is more pronounced for themore rigorous split types. ChempropMultiFidelity performs best on the two
more rigorous splits. (Right) Comparison of four different solvent representations (CGSD,Minnesota Solvent Descriptors, Morgan Fingerprint, and
SolventMPNN) using scaffold splits of the Deep4Chem dataset. Regardless of which molecular representation is used, the CGSD and Sol-
ventMPNN representations outperform the others, albeit only slightly.

Chemical Science Edge Article
Performance worsens to MAEs of 13–21 nm when splitting by
dye molecule and to 18–27 nm when splitting by dye scaffold.
ChempropMultiFidelity achieved a test RMSE of 27.47 nm using
the SolventMPNN representation and scaffold splits. This
outperforms the graph-convolutional networks (GCN) approach
of Joung et al., who reported a test RMSE of 31.6 nm on random
splits. Across all three splitting strategies, Chem-
propMultiFidelity and Chemprop perform better than GBRT.
ChempropMultiFidelity performs better than Chemprop on the
two more rigorous splitting strategies. This indicates that the
Chemprop and ChempropMultiFidelity methods have general-
izability superior to that of GBRT.

Ju et al. report that when they partitioned their data into
training and test sets based on dye molecules rather than dye–
solvent pairs, their test MAE in emission peak wavelength
increased only slightly from 14.09 nm to 15.25 nm, but they did
not report similar numbers for absorption predictions. Joung
et al. do not report results for splitting by dye molecules, and
neither report results when splitting by dye scaffold. Splitting
more rigorously results in a wider error and ensemble variance
distributions (Fig. S9†), but this is a better assessment of the
ability of the model to generalize and is thus more reective of
performance for de novo design tasks. When using the random
splitting strategy, dye molecules that appear in both the train
and test set in different solvents have narrower error and
ensemble variance distributions than those that only appear in
the test set (Fig. S10†). As shown in Fig. S11,† we can also
compare the splitting strategies by calculating the similarity
(based on Morgan ngerprints or latent space coordinate) of
each molecule in the test set to its nearest neighbor in the
training set and plotting the test set error as a function of this
similarity. When the similarity scores (which range from 0 to 1)
are grouped into bins of size 0.1, this illustrates the error
distributions as a function of similarity. The maximum
prediction error should be lowest for the bin of test molecules
that are most similar to the training set, but this was not true for
the random splitting strategy. This indicates that the model
1158 | Chem. Sci., 2022, 13, 1152–1162
may be relying too much on the training data and failing to
learn the solvent effect. In contrast, the more rigorous splitting
strategies exhibited the expected behavior.

The improved generalizability of the two D-MPNN approaches
over the GBRT method may be the result of the automatically-
learned dye representations. ChempropMultiFidelity outper-
forms Chemprop because in addition to this automatically-
learned representation, it also incorporates additional physical
knowledge through the inclusion of a predicted TD-DFT value in
the learned embedding. It should be emphasized that this pre-
dicted TD-DFT value comes from an additional Chempropmodel
rather than an actual TD-DFT calculation, so there is no need to
perform an additional calculation to predict on an unseen dye
molecule. The ChempropMultiFidelity method achives a MAE of
18.3 nmon scaffold splits, an improvement over the TD-DFT plus
linear regression approach at a fraction of the cost.

We compared our ChempropMultiFidelity approach of
incorporating a TD-DFT feature predicted by an auxiliary model
to using true TD-DFT values. As shown in Fig. S13,† the detri-
mental effect of the noise introduced using the D-MPNN TD-
DFT feature may be outweighed by the dramatic savings in
computational cost and time from no longer needing to
perform a new TD-DFT calculation for an unseen molecule.

In our comparison of four different solvent representations,
we found that none substantially and consistently outperform
the others. It is necessary to represent the solvent in some way
to achieve good predictions, but the CGSD, Minnesota
descriptors, Morgan ngerprints, and SolventMPNN
approaches all achieve similar results. The Morgan ngerprint
and SolventMPNN approaches do, however, have the advantage
that they are computable for any solvent since they are not
restricted to look-up tables as are the CGSD and Minnesota
methods.

We used several additional datasets to further evaluate the
performance of the three dye representations. Chem-
propMultiFidelity and Chemprop outperform GBRT on the
ChemFluor, DSSCDB, and DyeAgg datasets and achieve MAEs of
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Performance of dye representations across datasets. Perfor-
mance of three different molecular representations (GBRT, Chem-
prop, ChempropMultiFidelity) on several large, public datasets using
scaffold splits and the CGSD solvent representation. Chemprop
outperforms GBRT across all datasets. ChempropMultiFidelity is the
best performer on all datasets except CDEx, for which all methods
show substantially worse performance compared to the other
datasets.

Table 4 Comparison of dye representations on a combined dataset.
5-Fold cross-validation on a dataset comprised of the union of the
ChemFluor, Deep4Chem, DSSCDB, and DyeAgg dataset using scaffold
splits and the D-MPNN solvent representation. The values represent
themean of the five cross-validation folds, while the error bars indicate
the standard error

Model MAE (nm) RMSE (nm) R2

Chemprop 30.23 � 5.62 52.08 � 12.19 0.75 � 0.08
ChempropMultiFidelity 27.78 � 5.07 47.13 � 11.10 0.80 � 0.07

Fig. 7 MPNN Embedding Interpretability through t-SNE. (Left) t-SNE
scaffold-split test set of the Deep4Chem dataset, using the Chemprop
colored by the experimental peak wavelength of maximum absorption. C
(Left), but colored by dye family scaffold. The same plots are shown in F

© 2022 The Author(s). Published by the Royal Society of Chemistry
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17–23 nm, as shown in Fig. 6. All models perform substantially
worse (55–62 nm) on the CDEx dataset, and the inclusion of the
TD-DFT feature degrades performance. This may be a result of
errors introduced by the automatic extraction method used to
construct this dataset. The results of the aforementioned and
additional experiments across different combinations of
molecular and solvent representations and datasets are re-
ported in terms of MAE, RMSE, and R2 in the ESI Fig. S5–S8 and
Tables S4–S12.†

We explored the effect of combining datasets together and
performed 5-fold cross-validation to draw more rigorous
conclusions. Aer observing the exceptionally poor perfor-
mance of all models on the CDEx dataset, we excluded it from
the combined dataset. The GBRT method was excluded from
this analysis to compare the Chemprop and Chem-
propMultiFidelity models using the D-MPNN solvent represen-
tation (which cannot be integrated into the GBRT method).
ChempropMultiFidelity achieved a mean MAE, RMSE, and R2 of
27.78 nm, 47.13 nm, and 0.80, respectively. These scores out-
performed Chemprop in all metrics, but there was overlap in
the standard errors of all three scores. The complete results are
shown in Table 4. The prediction errors on this larger,
combined dataset are larger than those on the smaller datasets
because of the different coverage of chemical space represented
within each dataset. This is illustrated in Fig. S14–S18,† which
show the results of training and predicting on different data-
sets. These results indicate that the ChemFluor and Deep4-
Chem datasets are relatively similar to one another, as are the
DSSCDB and DyeAgg. Combining all four datasets together
results in an inhomogeneous chemical space and thus lowers
performance.

Having demonstrated the effectiveness of the D-MPNN
models for modeling the peak wavelength of maximum
absorption, we used dimensionality reduction to examine the
plot (perplexity ¼ 100) of molecule D-MPNN embeddings from the
molecule representation and SolventMPNN solvent representation,
olors outside the visible spectrum are shown as black. (Right) Same as
ig. S20† for a UMAP dimensionality reduction.

Chem. Sci., 2022, 13, 1152–1162 | 1159



Fig. 8 Uncertainty in D-MPNN models. (Left) The epistemic uncertainty in test set predictions of an D-MPNN model estimated from the
ensemble variance using an ensemble of fivemodels. Predictions are for scaffold splits of the Deep4Chemdataset using the Chempropmolecule
representation and SolventMPNN solvent representation. Error bars represent the square root of the ensemble variance for consistency in units.
Many poorly-predicted points have a high ensemble variance. (Right) Epistemic uncertainty compared to absolute error between prediction and
experiment. The Spearman rank correlation is 0.52.
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interpretability of these models. We extracted the ngerprint
embeddings from one of the Chemprop models and applied the
t-SNE algorithm to reduce them to two dimensions. When these
plots are colored by the experimental peak absorption wave-
length and by the dye scaffolds present in the dataset, some
patterns and clustering emerge, as shown in Fig. 7. The number
of dye scaffolds that are known to absorb light at lower visible
(green-violet) and ultraviolet wavelengths is much greater than
those known to absorb in the red-yellow range of the spectrum.
This is apparent in the t-SNE plots, as the red points clustered
on the right of the scaffold plot (corresponding to the BODIPY
dye family) comprise nearly all of the red-green points on the
wavelength plot.

While the accuracy of a model is very important, the ability to
quantify uncertainty in predictions can greatly increase model
utility. The level of condence in a prediction or set of predic-
tions can be used to motivate the selection of candidates that
are most likely to succeed in experimental validation or to
inform the choice of new measurements that will improve the
model through active learning techniques. There are a plethora
of methods available for estimating the uncertainty in NN
models, and reviews of these methods have not found one
method that consistently performs others across datasets and
evaluation metrics.55–57 However, one approach that is oen
used because of its ease of implementation is the ensemble
variance as a measure of epistemic uncertainty. We evaluated
the effectiveness of this method for quantifying the uncertainty
in our Chemprop model. The parity plot in Fig. 8 shows that the
variance of an ensemble of ve models is indeed high for many
of the predictions that fall far away from the parity line.
However, closer examination by plotting the square root of the
ensemble variance versus the absolute prediction error gives
a much more sobering view of the effectiveness of this uncer-
tainty metric. In fact, the Spearman rank correlation for this set
of predictions and uncertainties is only 0.52, suggesting that
1160 | Chem. Sci., 2022, 13, 1152–1162
one should not necessarily consider the rank order of the
prediction uncertainties to be a good approximation of the rank
ordering of the prediction errors.
4 Conclusions

We have leveraged several recently-published datasets to
benchmark models in their prediction of the peak wavelength
of maximum absorption for dye molecules. Our results showed
that D-MPNN models outperformed the best known xed-
ngerprint regression tree method, and the performance gain
was more pronounced when we used more rigorous splitting
strategies to evaluate the generalizability of the models to
unseen chemistries. We also developed a multi-delity method
for incorporating data from TD-DFT calculations to improve the
accuracy of experimental predictions. Vertical excitation ener-
gies from gas-phase TD-DFT calculations have a good linear
correlation with the experimental peak positions (MAE ¼ 24
nm) of dyes (measured in various solvents). TD-DFT PCM
calculations in the solvents do not correlate as consistently with
the experimental data.

Our best method (ChempropMultiFidelity) included a model
trained on the results of previous TD-DFT calculations, and we
used the predictions of this model as inputs to a second model
that accounted for the solvent to predict the experimental peak
wavelength. This multi-delity approach improved the model
generalizability and improved performance for more rigorous
splitting strategies. Our best model achieved a MAE of less than
7 nm on a held-out test set from a random split of dye–solvent
pairs in the Deep4Chem dataset, and near 14 nm and 19 nm
when splitting by dye molecule and dye scaffold, respectively.
This is substantially better than the predictions of TD-DFT
calculations alone, and at much lower cost. Our multi-delity
approach has the advantage that the lower-delity data can
cover a larger area of chemical space than the higher-delity
© 2022 The Author(s). Published by the Royal Society of Chemistry
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data. Future work should compare this approach to additional
methods for training ML models on multi-delity data, such as
transfer learning (e.g. Fig. S19†), imputation, D-ML, and multi-
target weighted-loss-function approaches.

D-MPNN approaches perform well across many of the largest
publicly-available datasets of the peak absorption wavelength.
Additionally, the ChempropMultiFidelity model outperformed
Chemprop on a union of the four largest datasets. It achieved
a MAE of 27.78 � 5.07 nm with 5-fold cross validation on
scaffold splits of this combined dataset.

We also compared several solvent representations and found
that CGSD, Morgan ngerprints, Minnesota descriptors, and D-
MPNN ngerprint representations all performed similarly. The
Morgan ngerprint and D-MPNN approaches may be advanta-
geous, however, because they can be applied to any solvent
because they are not restricted to look-up tables. Future work
could also use nearest-neighbor imputation techniques to
estimate CGSD or Minnesota descriptors that are not present in
the look-up tables.

We demonstrated the qualitative interpretability of our D-
MPNN models using dimensionality reduction on their latent
space ngerprints, which showed some clustering based on dye
scaffold and observed peak wavelength. We also showed that
although ensemble variance can be used as a measure of the
epistemic uncertainty in our D-MPNN model predictions, and
in this case the ensemble errors are comparable in magnitude
to the prediction errors, these uncertainties are not necessarily
well-correlated with true prediction error on these datasets.

This work is a step toward methods to predict full absorption
and emission spectra, and it can enable more rapid design of
dye molecules with targeted optical properties.
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