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Abstract: Vertebrate intestine appears to be an excellent source of proteolytic bacteria for industrial 

and probiotic use. We therefore aimed at obtaining the gut-associated proteolytic species of Nile 

tilapia (Oreochromis niloticus). We have isolated twenty six bacterial strains from its intestinal tract, 

seven of which showed exoprotease activity with the formation of clear halos on skim milk. Their 

depolymerization ability was further assessed on three distinct proteins including casein, gelatin, and 

albumin. All the isolates could successfully hydrolyze the three substrates indicating relatively broad 

specificity of their secreted proteases. Molecular taxonomy and phylogeny of the proteolytic isolates 

were determined based on their 16S rRNA gene barcoding, which suggested that the seven strains 

belong to three phyla viz. Firmicutes, Proteobacteria, and Actinobacteria, distributed across the 

genera Priestia, Citrobacter, Pseudomonas, Stenotrophomonas, Burkholderia, Providencia, and 

Micrococcus. The isolates were further characterized by a comprehensive study of their 

morphological, cultural, cellular and biochemical properties which were consistent with the 

phylogenetic annotations. To reveal their proteolytic capacity alongside substrate preferences, 

enzyme-production was determined by the diffusion assay. The Pseudomonas, Stenotrophomonas 

and Micrococcus isolates appeared to be most promising with maximum protease production on 

casein, gelatin, and albumin media respectively. Our findings present valuable insights into the 

phylogenetic and biochemical properties of gut-associated proteolytic strains of Nile tilapia. 
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1. Introduction 

Proteolytic enzymes, also called proteases, catalyze degradation of proteins and peptides by 

hydrolytic cleavage of peptide bonds [1]. Being essential for cell growth and differentiation, the 

proteolytic enzymes are ubiquitous in biological systems [2]. Microorganisms produce a vast 

diversity of intracellular and extracellular proteases. While the intracellular proteases play essential 

functions in cellular biochemistry, physiology, and regulatory aspects, the extracellular proteases 

provide carbon and nitrogen sources to cells by degrading extracellular proteins into small peptides 

and amino acids that can be transported into the cells [3]. Aside from their importance from 

biological point of view, the proteolytic activity is sought in numerous industrial processes, for 

example, in the detergent, leather, fabric and food industries, in pharmacology and drug manufacture, 

waste management, animal feed preparations etc. [4,5]. Furthermore, proteases are commonly used 

as basic research tools in many biochemical investigations. For example, in protein identification, 

unknown proteins are subjected to trypsin digestion into small peptides for their subsequent analysis 

by mass spectrometry [6]. Other important applications in research include peptide synthesis, peptide 

sequencing, digestion of unwanted proteins in purified samples as in the DNA and RNA purifications, 

Klenow fragment production and so on [7–10]. With the total annual sales of about 1.5–1.8 billion 

USD, proteases, therefore, account for about 60% of the global enzyme sales constituting the largest 

product-segment of industrial enzymes [11]. Although the proteolytic enzymes can be obtained from 

many of the organisms, those derived from microbes especially bacteria are preferred for the large-

scale production since bacteria are the easiest, cheapest and fastest to grow in a relatively small and 

simple set-up and are also suitable to genetic manipulation for increased production. Microbial 

proteases were also found more active and stable at extreme conditions than those of the plant or 

animal origin [12]. Therefore, the microbial enzymes can be obtained in abundant quantities on a 

regular basis and with a uniform quality [13]. Hence, many commercially important enzymes 

including proteases are generally obtained from a variety of bacterial species. 

Recently, use of the protease producing bacteria is gaining increasing acceptance in aquaculture 

industry, world’s fastest growing food production sector [14]. The proteolytic bacteria if included in 

aquaculture may serve multiple purposes such as (1) improved digestion of protein-rich substances 

present in the host’s natural diet and in commercial feed resulting in an increased growth of the 

host [15]; (2) enhancement of nonspecific immune response in the host [16]; (3) reduction of organic 

pollutants produced in aquaculture from the undigested feed [17] etc. Besides, as compared to 

exogenous proteases, use of the protease producing microbes are more ecofriendly and easy in the 

application in aquaculture [18].  

Nile tilapia is the third most important aquaculture species by volume having an enormous 

economic value [19]. For its high popularity among consumers and its easy and inexpensive method 

of farming, tilapia has become the most widely cultivated fish worldwide [20,21]. The fish has a 

versatile eating habit and consumes phytoplankton, zooplanktons, macrophytes, insects, detritus, 

nematodes etc. in its diet [22]. Being a herbivorous-omnivorous fish without a true stomach, and 
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with phytoplankton and plant debris comprising a major portion of its diet, Nile tilapia generally 

lacks pepsin and the role of pepsin is taken over by alkaline proteases which are more active in an 

alkaline environment [23]. Supplementing its feed with bacteria secreting extracellular proteases, 

therefore, appears highly beneficial to its cultivation.  

To address the increasing demand of protease producing bacteria in industry, research and 

aquaculture, we focused on obtaining proteolytic strains from the gastrointestinal tract (GIT) of Nile 

tilapia. Fish GIT has been recognized as an excellent source of bacteria producing extracellular 

hydrolytic enzymes [15], and there is also a general consensus that the bacteria to be included in the 

animal feed should be isolated from GIT of the animals where they will be applied [18]. 

Consequently, we have isolated cultivable GI bacteria from Nile tilapia and screened them for 

protease production. The positive isolates were all identified and extensively characterized based on 

their genetic and biochemical properties and sugar fermentation abilities. Moreover, their substrate 

preferences as well as depolymerization capacities on various protein substrates were also studied.  

2. Materials and methods 

2.1. Preparation of intestinal sample 

For isolation of bacteria, intestinal sample was prepared from two healthy fish of 21.5 and 17.1 cm 

in length and 193.8 g and 170.2 g in weight respectively, purchased from a local market near 

Chittagong University campus, Bangladesh. Entire digestive tract of each fish was removed by 

aseptic surgery and its external surface was thoroughly washed with autoclaved distilled water and 

then sterilized using 70% v/v ethanol. Internal contents of the digestive tract were squeezed out and 

collected in a beaker. Inside of the digestive tract was then rinsed well with sterile water which was 

also added to the internal contents. 

2.2. Isolation of bacteria 

Bacteria present in the intestinal sample were isolated as previously described with minor 

modifications [15]. Briefly, 100 μL of the intestinal sample and its 10-fold serial dilutions (10
0
 

through 10
−6

) were spread on nutrient agar (NA; 5 g/L peptone, 3 g/L yeast extract, 5 g/L NaCl, 18 

g/L agar; pH 7) and Luria-Bertani (LB) agar (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, 18 

g/L agar; pH 7) [24] plates and incubated at 30 ℃ for 24 to 48 h. All morphologically distinct 

colonies were selected and streaked on fresh NA and LB agar plates to obtain pure cultures [25].  

2.3. Preparation of stock culture 

Cells from the colony of pure culture was inoculated to nutrient and LB broth and incubated 

at 37 ℃. After 24 h of growth, 500 μL of the culture was transferred to a cryo-vial, sterile glycerol 

was added to the final concentration of 20% v/v and preserved at −80 ℃ for further analysis.   
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2.4. Culture conditions 

The isolates were routinely maintained in LB media at 30 ℃, unless otherwise noted. Each 

isolate was revived from its glycerol stock by transferring cells to 2 to 5 mL LB broth by a sterile 

loop and grown overnight in an orbital shaker at 180 rpm at 30 ℃. 1% v/v of this activated overnight 

culture was transferred to 10 mL fresh broth, incubated at 30 ℃ for 24 h and used for subsequent 

analysis. 

2.5. Screening for proteolytic activity 

To detect presence of extracellular proteolytic activity, 10 l of a 0.8 OD600 culture of each 

isolate was spot-inoculated on the surface of skim milk agar media (5 g/L peptone, 2.5 g/L yeast 

extract, 1 g/L dextrose, 28 g/L skim milk powder, 18 g/L agar; pH 7) as well as NA and LB media 

each supplemented with 1% (w/v) skim milk powder and incubated at 30 ℃ for 24 to 48 h. Isolates 

that showed zones of clear halo surrounding the colonies were considered positive for protease 

production. 

2.6. Morphological, cultural and biochemical characterization 

Determination of morphological, cultural and biochemical properties of the isolates and their 

fermentation of various carbohydrates were carried out by methods described previously [25,26].  

2.7. 16S rRNA gene amplification and sequencing 

16S rRNA gene of each isolate was amplified from its genomic DNA using GoTaq G2 Hot Start 

Master Mix (Promega) and the purified PCR products were sequenced  using BigDye Terminator 

v3.1 Cycle Sequencing Kit according to a previous report [15].  

2.8. Sequence deposition 

The 16S rRNA genes sequenced in the present study have been deposited in the GenBank 

database under the accession numbers OK287066 to OK287072.  

2.9. Taxonomic analysis  

Taxonomic annotation of the proteolytic isolates was carried out by analysis of their 16S rRNA 

gene sequences with nucleotide BLAST of NCBI [27], RDP classifier and seqmatch [28] and Silva 

ACT: Alignment, Classification and Tree Service [29]. All parameters were set to default values with 

the only exceptions made in BLAST searches where the ‘Max target sequences’ was set to 1000. 

Phylotypes in the BLAST searches were determined by considering the query coverage, percent 

identity, maximum score, total score, and the total number of hits obtained for the query sequence 

against a particular genus or species. Organisms with an ambiguous taxonomic description such as 

enrichment culture clones, uncultured bacteria or unclassified bacteria were not taken into 
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consideration [30]. NCBI taxonomy browser was followed to obtained taxonomic hierarchy of the 

isolates [31]. 

2.10. Phylogenetic analysis 

Phylogenetic analysis of the isolates was performed essentially as previously described [32]. 16S 

rRNA gene sequence of the isolates, and 700 bp of their nearest type strains, and the top hit strains in 

BLAST results were aligned by Muscle [33] algorithm in Molecular Evolutionary Genetics Analysis 

(MEGA) software, version X [34]. The closest type strain for each isolate was found by using 

EzBioCloud’s 16S-based ID [35], and their sequences were collected from the EzBioCloud database 

having the accession numbers CP001628, LASD01000006, FLYB01000015, JJMH01000057, 

HQ888847, BAMA01000316, LDJN01000038. Two additional strains used in the alignment for 

each isolate were selected from the top hits in BLAST search results and their sequences were 

obtained from GenBank database with the accession numbers MW198159.1, MT509874.1, 

MT509997.1, MK033338.1, MN420979.1, MH341969.1, MT533939.1, MT033093.1, MK571729.1, 

MK640708.1, KY913809.1, EU307934.1, MT555731.1, MT649753.1. A phylogenetic tree of the 

aligned sequences was built by maximum likelihood (ML) method [36] using Tamura-Nei model [37] 

with 1000 bootstrap replications in MEGA as described in [30]. 

2.11. Determination of substrate specificity 

Ability of the proteolytic isolates to hydrolyze casein, gelatin and bovine serum albumin (BSA) 

was examined based on the formation of clear halos around colonies streaked on NA and LB media 

supplemented with 1% (w/v) of each substrate as described above.  

2.12. Estimation of relative activity  

To determine relative proteolytic activity, the isolates were grown on media containing 1% (w/v) 

of casein, gelatin or BSA at 30 ℃ for 48 h. The diameter of the zone of clearance and that of the 

colonies were measured. Relative activity (RA) was then calculated using the formula, RA  =  (colony 

diameter  +  halo zone diameter)/colony diameter [15].  

2.13. Statistical analysis 

All experiments were performed at least three times separately, averaged and the standard 

deviation was generated. The data were presented as the mean ± standard deviation displayed as 

error bars. 

3. Results 

3.1. Proteolytic activity of the gut associated bacteria  

In this study, we aim to isolate and characterize proteolytic strains in the gut flora of nilotica. To 

this end, 26 of its gut associated culture-dependent strains were isolated and screened for their ability 
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to produce extracellular proteases on skim milk agar plates. Only 7 of the isolates (designated as 

TGB1 to TGB7) showed proteolytic activity as indicated by the formation of clear halos on media 

due to the depolymerization of casein in skim milk (Figure S1). To further evaluate their proteolytic 

aptitude, enzyme activity was assessed on three different protein substrates including casein, gelatin 

and BSA. All the seven isolates were found capable of degrading the three substrates which indicate 

relatively broad specificity of their secreted proteases.  

3.2. Taxonomic and phylogenetic characteristics 

Molecular taxonomy of the protease producing strains was determined by homology and 

phylogeny analysis of their 16S rRNA gene sequences to those in various databases. The sequences 

were subjected to a battery of 16S rRNA gene based methods for their identification. Results of the 

sequence analysis and subsequent phylotype assignments are presented in Table 1. Nucleotide blast 

of the sequences against those in GenBank and EzBioCloud databases showed a high sequence-

similarity, with the percent identities higher than 99% to the respective sequences of Priestia, 

Citrobacter, Pseudomonas, Stenotrophomonas, Burkholderia, Providencia and Micrococcus (Table 1). 

The taxonomic assignment was also supported by other classification platforms such as RDP 

classifier, EzBioCloud 16S-based ID and Silva ACT (Table 1) confirming the taxonomic annotations 

to at least genus level. Phylotypes of the isolates each belonging to a separate genus indicates a very 

high diversity among the isolates without a single genus found predominant over the others. 

Considering their phylotypes along the taxonomic hierarchy, it was observed that the isolates belong 

to the phyla Firmicutes, Proteobacteria and Actinobacteria, with Proteobacteria being highly 

dominant (~72%).   
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Table 1. Taxonomic affiliations of the isolates based on analysis of their 16S rRNA gene sequences. 

 TGB1 TGB2 TGB3 TGB4 TGB5 TGB6 TGB7 

Accession numbers OK287066 OK287067 OK287068 OK287069 OK287070 OK287071 OK287072 

Taxonomy 

Annotationa Genus Priestia Citrobacter Pseudomonas Stenotrophomonas Burkholderia Providencia Micrococcus 

Hierarchy Family Bacillaceae Enterobacteriaceae Pseudomonadaceae Xanthomonadaceae Burkholderiaceae Morganellaceae Micrococcaceae 

Class Bacillales Enterobacterales Pseudomonadales Xanthomonadales Burkholderiales Enterobacterales Micrococcales 

Order Bacilli Gammaproteobacteria Gammaproteobacteria Gammaproteobacteria Betaproteobacteria Gammaproteobacteria Actinomycetia 

Phylum Firmicutes Proteobacteria Proteobacteria Proteobacteria Proteobacteria Proteobacteria Actinobacteria 

Sequence analysis 

BLASTb Top 

hitc 

(AN) 

Priestiad 

megaterium 

(MT509997.1) 

Citrobacter 

freundii (MN420979.1) 

Pseudomonas 

aeruginosa 

(KY913809.1) 

Stenotrophomonas 

maltophilia. 

(MN732977.1) 

Burkholderia 

contaminans 

(MW198159.1) 

Providencia  

stuartii 

(CP048621.1) 

Micrococcus 

luteus 

(MT533939.1) 

Query cover 100% 100% 100% 100% 100%  100% 100% 

Percent identity 99.1% 100% 100% 99.83% 100%  99.67% 100% 

RDP SeqMatch Bacillus Citrobacter Pseudomonas Stenotrophomonas  Burkholderia Providencia Micrococcus 

Score 0.957 1.0 0.998 0.991 0.998 0.986 1.0 

Silva ACT Taxonomy Bacillus Citrobacter Pseudomonas Stenotrophomonas  Burkholderia  Providencia Micrococcus 

Identity 98.92 99.15 99.84 99.83 99.65 98.33 99.81 

Score 98 99 99 99 99 99 99 

EzBioCloud 

(Type strains) 

Top  

Hitd 

Priestia 

megaterium 

NBRC 15308 

Citrobacter europaeus 

97/99 

Pseudomonas 

aeruginosa 

JCM 5962 

Stenotrophomonas 

pavanii  

DSM 2513  

Burkholderia 

contaminans 

LMG 233  

Providencia 

thailandensis 

C1112  

Micrococcus 

luteus 

NCTC 26  

Similarity 99.82% 99.32% 99.51% 99.66% 99.65% 99.83% 98.86% 
a 
Based on query cover, % identity, number of hits in BLAST, and results of RDP, Silva and EzBioCloud; 

b 
E-values were 0.0 in all BLAST results; 

c 

Accession numbers (AN) are given inside parentheses; 
d
 previously known as Bacillus megaterium. 
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Table 2. Morphological and cultural characteristics of the protease producing strains. 

Isolates Colony on NA medium Colony color Appearance in broth culture Oxygen requirement 

TGB1 Irregular, raised with undulate edge Dull white Turbidity with pellicle and sediment in the bottom of the tube Aerobic 

TGB2 Irregular, raised with undulate edge Dull white Turbidity with pellicle and sediment in the bottom of the tube Facultative anaerobe 

TGB3 Circular, entire, low convex with regular edge  Yellowish white Dense turbidity and sediment in the bottom of the tube. Facultative anaerobe 

TGB4 Circular, raised with regular edge  Dull white Uniform turbidity Aerobic 

TGB5 Punctiform, flat with regular edge on Nutrient Medium Dull white Turbidity with pellicle and sediment in the bottom of the tube Facultative anaerobe 

TGB6 Punctiform, convex with regular edge  Yellowish Uniform Turbidity and sediment in the bottom of the tube. Facultative anaerobe 

TGB7 Circular, raised with regular edge Yellowish Uniform Turbidity and sediment in the bottom of the tube. Facultative anaerobe 

Phylogenetic tree based on homology of the 16S rRNA genes of the isolates with their closest GenBank strains and type strains is depicted in 

Figure 1. The phylogenetic analysis showed a clear congruence with taxonomic assignments of the isolates. Each isolate formed a separate cluster with 

its nearest type strain and GenBank strains of the same species, located at similar distances. 
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Figure 1. Phylogenetic orthogonal tree depicting distribution and relationships in the 

protease producing isolates and their closest type strains and GenBank strains. Species 

names are followed by strain names and accession numbers separated by underscores. 

Type strains are indicated by (T). The percentage of trees in which the associated taxa 

clustered together is shown next to the branches. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a 

matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 

approach, and then selecting the topology with superior log likelihood value. The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site. 

There were a total of 842 positions in the final dataset. Evolutionary analyses were 

conducted in MEGA, version X. 

3.3. Morphological, cellular and biochemical properties 

Morphological, cultural and cellular characteristics of the proteolytic isolates and their 

biochemical properties are summarized in Tables 2, 3 and 4. Cell morphology showed that most of 

the isolates were Gram negative rods although TGB1 and TGB7 appeared Gram positive and TGB7 

was found to be a coccus (Table 3). All isolates could produce catalase and most of them also 

produced H2S. The isolates were found negative in the MR-VP tests. Extracellular amylase activity 

was detected in three of the isolates including the Priestia (TGB1), Citrobacter (TGB2) and 
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Stenotrophomonas (TGB4) strains. Fermentation tests with carbohydrates including various mono, di, 

tri and polysaccharides showed that the isolates had a rather limited metabolic capacity. Glucose was 

the sugar fermented by most (5/7) isolates. A maximum of five sugars could be fermented by the 

Burkholderia (TGB5) isolate. Overall, the cultural and biochemical properties of the isolates largely 

complied to their phylogenetic affiliations as described in the Bergey’s manual of systematic 

bacteriology [38]. 

Table 3. Cellular characteristics of the isolates. 

Isolates Cell shape Cellular arrangement Motility Gram staining 

TGB1 Straight rod Single or pairs Motile Gram positive 

TGB2 Straight rod Single Motile Gram negative 

TGB3 Straight/slightly curved rod Single Motile Gram negative 

TGB4 Straight rod Single Motile Gram negative 

TGB5 Rod Single Non-motile Gram negative 

TGB6 Straight rod Single Non-motile Gram negative 

TGB7 Cocci Tetrads/pairs Non-motile Gram positive 

Table 4. Biochemical properties and sugar fermentation of the protease producing strains. 

Isolates TGB1 TGB2 TGB3 TGB4 TGB5 TGB6 TGB7 

Basic biochemical properties 

Catalase + + + + + + + 

Oxidase + - + - - - + 

Indole - - - + - - - 

H2S + + - + + - Weekly + 

MR - - - - - Weekly + - 

VP - - - - - - - 

Starch hydrolysis + + - + - - - 

Sugar fermentation 

Arabinose - + - - - - - 

Glucose + + + + + - - 

Fructose - - - + + - - 

Galactose + - - - + - + 

Sucrose - - - + + - - 

Starch + - - - - - - 

Mannitol - + + - - - + 

Raffinose - - - - - - - 

+ = positive result, - = negative result 

3.4. Protease producing capacity and substrate preferences 

To evaluate protease producing capacity of the isolates on different substrates, a general 

estimate of their protease production was performed based on diffusion of the secreted proteases 

across culture medium and presented as relative activity (RA) [18] in Figure 2. Three different 

isolates, Pseudomonas (TGB3), Stenotrophomonas (TGB4) and Micrococcus (TGB7), were found 
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producing the maximum amount of protease on the casein, gelatin and albumin media respectively. 

A relatively higher production on casein media was also exhibited by the Providencia (TGB6) and 

Micrococcus (TGB7) isolates, and on gelatin media by the Pseudomonas (TGB3), Burkholderia (TGB5) 

and Micrococcus (TGB7) isolates. The Micrococcus (TGB7) strain, therefore, appeared to be the 

only isolate efficient in degrading any of the three substrates. In general, most of the isolates showed 

substrate degrading capacity in the order of gelatin > casein > BSA; exceptions were the 

Pseudomonas (TGB3) and Providencia (TGB6) isolates in which the order was casein > gelatin > 

BSA. Such a pattern suggests that protease released by the bacteria might have relatively higher 

preferences for casein and gelatin over albumin.  

 

Figure 2. Protease producing capacity of the isolates on (a) casein, (b) gelatin and (c) 

albumin used as substrates in the medium, presented as relative activity (RA). Error bars 

represent standard deviation of the mean (n = 3). 

4. Discussion 

We carried out this study to obtain proteolytic bacteria from the GIT of Nile tilapia since 

bacteria producing extracellular proteases are demonstrated to have the potential to be used as 

probiotic agents in fish feed; moreover they also comprise a valuable source of the enzymes for 
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research and industrial use. We have discussed importance of the protease producing bacteria in 

research, aquaculture and industries in the introduction section. The beneficial gastrointestinal flora 

has been recognized in recent research as the most suitable candidates intended for probiotic use [39]. 

Accordingly, we have isolated and studied gut bacteria of tilapia and detected proteolytic activity in 

about 27% of the isolates. The fact that the major fraction (73%) of the isolates lacked protease 

producing ability is not unusual considering that Nile tilapia has a herbivorous-omnivorous feeding 

habit. In our previous research on microbial hydrolytic enzymes, we found proteolytic activity in 50% 

of the intestinal bacteria in Bombay duck which, however, is a carnivore [15]. The diet of a carnivore 

is supposed to be rich in protein substances and largely devoid of plant based materials. As a result 

the proteolytic strains are expected to be dominant among the GI flora of a carnivorous fish. 

Consistent with this perception, Bairagi et al. reported relatively high densities of cellulolytic and 

amylolytic strains in tilapia although proteolytic isolates were also found in considerable numbers [40]. 

Similarly, Kar and Ghosh found higher populations of proteolytic bacteria in the carnivorous fish 

Channa punctatus than that in the herbivore Labeo rohita [41]. Although all these previous studies 

including ours arrived at the same conclusion suggesting it to be a general phenomenon, to fully 

confirm if it is indeed the case for Nile tilapia to have relatively lower proportion of proteolytic 

strains, an extensive study should be performed with large number of samples analyzed individually 

by both culture-dependent and metagenomic methods. But the primary objective of this work being 

obtaining proteolytic strains for downstream applications, it was outside of the scope.  

The protease producing isolates of the present study were all identified genetically from their 

16S rRNA gene analysis which was further supported from their morphological and biochemical 

properties. The isolates appeared taxonomically diverse at the genus level each belonging to a 

separate phylotype. Few of the similar phylotypes have been previously documented in the GIT of 

Nile tilapia. For example, species of Bacillus (B. megaterium; reclassified as Priestia megaterium), 

Citrobacter, and Burkholderia were commonly isolated from Nile tilapia [39,42–45], and therefore 

seems to be autochthonous to this fish.  Moreover, these three species which were recovered from 

tilapia intestine had also been reported to possess extracellular protease activity and other beneficial 

properties, and are, therefore, considered as probiotic candidates for Nile tilapia [39,46,47]. Although 

not frequently, but the other four genera identified in our analysis, Pseudomonas, Stenotrophomonas, 

Micrococcus and Providencia, have also been described among the intestinal bacteria of Nile 

tilapia [44,48–50]. Whatever the source of their isolation is, species of all the seven genera were 

reported producing extracellular protease enzymes [51–58]. At the phylum level, Proteobacteria were 

found dominant over the other two phyla, Firmicutes and Actinobacteria in our study. Species of 

Proteobacteria have also been described among the most common gut microbiota of other freshwater fish 

such as common carp (Cyprinus carpio), grass carp (Ctenopharyngodon idella), goldfish (Carassius 

auratus), bluegill (Lepomis macrochirus), largemouth bass (Micropterus salmoides) etc. [59–61], 

and also in marine fish such as shorthorn sculpin (Myoxocephalus scorpius), lumpfish (Cyclopterus 

lumpus) arctic flounder (Liopsetta glacialis), Atlantic salmon (Salmo salar L.), cod (Gadus morhua), 

herring (Clupea pallasii) etc. [62,63]. Generally, all the three phyla i.e. Proteobacteria, Firmicutes 

and Actinobacteria identified in our study have been commonly reported among the gut flora of Nile 

tilapia. For example, similar to our findings, Wu et al. also identified species which belonged only to 

the above three phyla where species of Firmicutes were found more dominant in the gut of Nile 

tilapia fed with woody forages [44]. In a culture-independent study using metagenomic approach 
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Bereded et al. reported that the gut microbiota of Nile tilapia were dominated by two more phyla 

Cyanobacteria, Fusobacteria in addition to the above three [64].  

The gut flora of Nile tilapia had also been demonstrated being influenced by the environment 

and diet. Even the dietary supplementation of exogenous proteases was found to have a significant 

influence on the gut bacteria. Recently, Hassaan et al. showed that the gut microbiota of Nile tilapia could 

be qualitatively improved by the addition of probiotics and/or exogenous protease in its diet [65]. They 

reported that inclusion of B. pumilus and exogenous protease in the diet inhibited nitrogenous 

hydrocarbon degrading bacteria which was otherwise present in its gut when fed with the control diet. 

This suggests that the probiotic and protease supplements might be sufficient for the complete 

digestion of dietary proteins and peptides present in the feed. They also showed that the probiotic 

diet without the exogenous protease could also inhibit the pathogenic bacterium Citrobacter koseri. 

Findings of Wang et al. also indicated that probiotic microbes could improve the gut microflora of 

Nile tilapia [66]. They found that addition of B. cereus to the tank water resulted in the stimulation of 

potentially beneficial bacteria including Acetobacterium and Bacillus spp. In another study on the 

effects of dietary probiotic supplementation, Xia et al. showed that feed supplemented with two 

probiotic species, B. cereus and B. subtilis, resulted in a significant improvement of autochthonous 

bacterial communities in the gut of the juvenile tilapia and also had a stimulatory effect on a variety 

of potential probiotics after 6 weeks of feeding [67]. Zeng et al. studied the effect of various woody-

forage diets on Nile tilapia and observed a positive impact of 30% Moringa oleifera Lam on its 

growth, feed utilization as well as microbiota composition [44]. The gut microbiota of Nile tilapia 

can be affected by the rearing environment as well. The optimum temperature of water for rearing 

Nile tilapia is 27 to 32 ℃ and the fish cannot survive in temperatures below 8 ℃. Previously, a 

strong correlation was revealed between the bacterial communities of the rearing water and those in 

the gut [68]. Moreover, seasonal fluctuation of water temperature was also found to change the 

composition of gut microbiota in Nile tilapia. Bereded et al. in a recent study demonstrated 

modifications of both the diversity and composition of gut bacteria with seasonal and spatial 

variation [69]. 

All the isolates of our study showed ability to degrade three different proteins including casein, 

gelatin and albumin with different degrees of degradation efficiencies and substrate preferences. 

However, albumin turned out to be relatively less preferred. Most isolates showed higher affinity for 

gelatin followed by casein and albumin as also previously reported, for example, in proteases from a 

Photobacterium sp. and a Brevibacillus brevis isolate [70,71]. Three of our isolates, on the other 

hand, showed highest preference for casein which has been commonly observed in previous studies 

as well [72–76].  

In summary, we have isolated and identified protease producing bacteria in the gut of Nile 

tilapia. We revealed morphological, cellular and biochemical properties of the proteolytic isolates 

and showed that their secreted proteases could hydrolyze casein, gelatin and albumin with different 

depolymerization capacities. Further investigations on ability of the proteases to digest proteins in 

aquaculture feed, elucidation of their structural and catalytic properties for industrial exploitations, 

and occurrence of additional beneficial properties in the proteolytic isolates, are needed. 
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