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Abstract

The regulatory roles of sphingolipids in diverse cell functions have been characterized extensively. However, the dynamics
and interactions among the different sphingolipid species are difficult to assess, because de novo biosynthesis, metabolic
inter-conversions, and the retrieval of sphingolipids from membranes form a complex, highly regulated pathway system.
Here we analyze the heat stress response of this system in the yeast Saccharomyces cerevisiae and demonstrate how the cell
dynamically adjusts its enzyme profile so that it is appropriate for operation under stress conditions before changes in gene
expression become effective. The analysis uses metabolic time series data, a complex mathematical model, and a custom-
tailored optimization strategy. The results demonstrate that all enzyme activities rapidly increase in an immediate response
to the elevated temperature. After just a few minutes, different functional clusters of enzymes follow distinct activity
patterns. Interestingly, starting after about six minutes, both de novo biosynthesis and all exit routes from central
sphingolipid metabolism become blocked, and the remaining metabolic activity consists entirely of an internal
redistribution among different sphingoid base and ceramide pools. After about 30 minutes, heat stress is still in effect
and the enzyme activity profile is still significantly changed. Importantly, however, the metabolites have regained
concentrations that are essentially the same as those under optimal conditions.
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Introduction

Cells and organisms are regularly exposed to small fluctuations

in their environments and have developed effective mechanisms of

tolerance. Stronger perturbations lead to stresses, which are not as

easily tolerated and require the cells to mount well-coordinated,

multi-scale responses. These stress responses are very intriguing,

because they offer superb windows into the complex strategies and

mechanisms with which cells manage to live and thrive in a

changing world. Heat is a particularly useful artificial stressor for

microorganisms as it is easily applied and measured, and because

cells and organisms have regularly experienced changes in

temperature throughout evolution and developed very effective

defenses.

It is well known that yeast reacts to modest heat stress with

responses at several levels of its biological organization [1–3].

Numerous genes are up or down regulated within a few minutes,

heat shock proteins are mobilized, transcription factors relocate

between the cytosol and nucleus, the protective disaccharide

trehalose begins to accumulate to high concentrations, and the

metabolic profile of sphingolipids undergoes drastic changes. All

these changes commence essentially immediately after a sufficient

shift in temperature and may last for an hour or more. Some of

these alterations, in turn, are known to serve as signals effecting

secondary responses, for instance, by activating transcription

factors and stress elements that trigger the expression of genes

associated with heat stress.

An interesting aspect of the collective cellular responses is the

fact that they occur at distinct time scales. Some are effective

immediately, while others require involvement of the entire

sequence of gene expression, transcription, translation and protein

modification before the end result takes effect. We are slowly

beginning to understand how these multi-scale responses are

coordinated, but many details are still unclear. To gain further

insight into the complexity of the response, Fonseca and

collaborators recently presented strategies for designing mathe-

matical models capable of capturing the multi-scale nature of heat

stress responses in yeast [4,5]. In particular, combining experi-

mental information and computational techniques, these authors

analyzed the trehalose heat stress system and demonstrated how it

is organized at different biological levels and in different time

domains.

In this article, we focus on the particular dynamic roles of

sphingolipids in the heat stress response of the baker’s yeast

Saccharomyces cerevisiae. Specifically, we investigate how the cell

establishes the observed alterations in sphingolipid profiles within a

few minutes of heat stress. It is clear that these altered metabolite

profiles are the result of changes in the activities of some or all

enzymes of sphingolipid metabolism. We demonstrate that critical

changes in activity can be inferred with a novel computational
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approach that uses measured times series of different sphingolipid

concentrations, combined with a customized optimization strategy

and a dynamic model that we have been developing and fine-

tuning over the past decade [6–8].

Heat Stress Responses and the Roles of Sphingolipids
Any substantial increase in temperature has a direct effect on

the macromolecules in a cell. Among them, proteins and lipids are

most strongly affected. Nucleic acids can denature upon exposure

to heat, but this process requires much higher temperatures of

about 75uC–100uC [9], which are outside the realm of tolerable

heat stress.

Heat affects proteins in three ways. First, high temperature can

modulate their synthesis from gene expression. In this context,

Castells-Roca and colleagues investigated transcription rates and

the stability of various mRNAs in S. cerevisiae following a

temperature shift from 25uC to 37uC, and concluded that both

were affected [10]. Second, processes of protein inactivation are

temperature dependent. And third, heat can change a protein’s

folding state, which in turn may affect its function, as well as its

removal by the proteasome. In particular, if the protein is an

enzyme, its activity is influenced directly by its ambient

temperature, according to an empirical relationship commonly

called the Arrhenius effect or the Q10 effect.

Lipids are major constituents of membranes, and although the

effects of heat are not completely understood, it appears that

changes in temperature have an impact on membrane stiffness and

fluidity [11]. Jenkins and coworkers [12] were among the first to

connect sphingolipids to heat stress responses in yeast, demon-

strating that these lipids play several particularly important roles

(see also [13–17]). They subdivided the heat stress response into

two phases. During the first phase, the cell needs to gain

thermotolerance, which is at least partially accomplished with an

accumulation of trehalose and the induction of heat shock

proteins. Furthermore, the cell arrests its cell cycle in G0/G1,

and this arrest lasts for approximately one hour, during which time

there is no growth. Once thermotolerance is achieved, the cell

culture starts growing again in the second phase of the response,

even if the temperature is still elevated.

The first response phase is directly associated with two distinct

features of sphingolipids. First, the structural characteristics of

complex sphingolipids, together with sterols, contribute to the

physical organization of specific membrane microdomains within

membranes, called lipid-rafts. These rafts are known to be

associated with membrane fluidity, protein compartmentalization,

and protein sorting and trafficking through membranes (e.g., [18–

20]). As core components of rafts, sphingolipids are thus directly

involved in organizational structures with potential signaling

functions, and alterations in these functions are effective at a

short time scale [21].

The second role of sphingolipids in the early heat stress response

is their capacity to serve as bioactive signaling molecules. This

signaling function influences the regulation of the cell cycle

response, nutrient uptake, and the synthesis of proteins, which can

have important secondary effects, especially if heat shock proteins

are not available to serve as protectors of other proteins [22,23].

Indeed, the groups of Ferguson-Yankey and Meier demonstrated

that sphingolipid synthesis is required for an efficient initiation of

translation, especially during heat stress [24,25]. Specifically, the

translation rate is increased if sphingoid bases are synthesized and

accumulate. Jenkins and collaborators [26] and Dickson and co-

workers [13] showed that ceramides and other simple sphingolip-

ids, such as dihydrosphingosine and phytosphingosine (DHS and

PHS), accumulate during heat stress in yeast. It appears that the

short-term signaling role of sphingolipids is biphasic. In the first

phase, sphingoid bases are required to regulate translation of heat

shock mRNAs, a process that depends strongly on Pkh kinase, but

not on Ypk kinases, which act downstream of Pkh. The second

phase consists of a general increase in translation, which is

dependent on the function of heat shock proteins. Without these

heat shock proteins, the cell would run a severely elevated risk of

protein aggregation or misfolding [25].

Sphingolipids also play roles over a longer time horizon. It has

been known for a while that DHS induces the expression of a

STRE-LacZ reporter gene, suggesting that the global stress element

STRE can be activated by sphingolipid signals [13]. In particular,

genes associated with the important trehalose stress response

contain multiple copies of STRE. Knock-outs or overexpression of

genes coding for the synthesis of dihydrosphingosine-1-phosphate

(DHS-1P) show changes that resemble thermotolerant and heat

sensitive yeast phenotypes, indicating that DHS-1P is an important

regulator of heat stress [27]. Phytosphingosine-1-phosphate is

involved with the regulation of genes required for mitochondrial

respiration [28]. More generally, modulations in any of the

sphingolipid enzymes cause ripple effects that change the

concentrations of many sphingolipids and, possibly, the expression

of a variety of genes. Futerman and Hannun [29] summarized the

long-term signaling mechanisms of simple sphingolipids including

sphingosine-1-phosphate, sphingosine, ceramide and ceramide-1-

phosphate in yeast.

Taken together it is evident that sphingolipids exert important

roles within the coordinated heat-stress responses of a cell, and

that these roles are pertinent over short and long time horizons.

However, it is so far unclear how the cell is able to establish an

appropriate sphingolipid profile very quickly in response to heat

stress. To answer this question, we propose a computational

analysis based on observed heat stress time courses and a dynamic

model of sphingolipid biosynthesis and degradation that allows us

to investigate the dynamic profiles of critical enzymes involved in

the sphingolipid pathway.

Author Summary

Sphingolipids play dual roles by serving as components of
membrane rafts and by regulating numerous key cell
functions. Although sphingolipids have been studied
extensively, the details of their functioning are difficult to
understand, because their synthesis, pathways of inter-
conversion, and utilization constitute a complex, dynam-
ically changing system. We analyze the role of yeast
sphingolipids in the response to heat stress. Data show
that the profile of these lipids changes almost immediately
with the initiation of the stress, but it is a priori unclear
how this response is organized. Using experimental data, a
sophisticated dynamic model, and a novel optimization
strategy, we show how changes in enzyme activities are
temporally organized. Intriguingly, the results show that
the cells take up as much material as possible in the first
few minutes of heat stress and then shut down entry and
exit routes of the biosynthetic pathway system. After
about 30 minutes, when heat stress is still in effect, the
enzyme activity profile is still significantly changed, but the
metabolites have regained concentrations that are essen-
tially the same as those under optimal conditions. The
results demonstrate how novel insights are achievable
with an effective combination of experimental and
theoretical research.

Sphingolipid Responses to Heat Stress in Yeast
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Results

If changes in enzyme activities, for instance in response to heat,

could be measured directly, the altered values could readily be

entered into computational model equations [7,8], and solving the

equations would show the time trajectories of all pertinent

metabolites. Our task here requires the opposite task, which is

much more complicated. Namely, we ask: can we infer from the

metabolite time courses which enzymes have to be altered

dynamically, and by how much, in order for the model to

generate the observed time-dependent metabolic profile? The

optimization-simulation strategy proposed for this analysis, as

detailed in the Methods section, answers this question and reveals

for the first time how the activities of key sphingolipid enzymes are

adjusted by the cell during the heat stress response. Specifically, we

performed over 4,400 Monte-Carlo optimizations with random

instantiations and selected from among these the 2,004 best

models, based on the sum of squared errors (SSEs). To test the

validity of these results, we also used the Akaike Information

Criterion (AICc) for model selection and found that models

selected based on SSEs and AICc were highly similar. Specifically,

over 99% of the models identified through SSE were also

identified with AICc; Text S1 contains further information on

this comparative analysis. The thus selected models yielded

dynamic trends for each sphingolipid enzyme during the heat

stress response, These sets of individual trajectories reveal

interesting insights. Namely, the trajectories collectively form

tight, time-dependent activity ranges for those enzymes that

control the influx to, and efflux from, the core of the sphingolipid

biosynthetic pathway system. In other words, these enzymes

always exhibit essentially the same dynamic activity patterns,

independent of the randomly initialized start values. Most of the

enzymes at the periphery of the pathway system, by contrast,

exhibit widely varying activity profiles that are thus not identifiable

from the available metabolic time series data. These results are

described and discussed in detail in the following sections.

As a first validation of the collective results, we calculated the

average of each computationally inferred enzyme activity at each

time point and entered it into the pathway model (see Methods

section) to check whether we were able to recoup the observed

sphingolipid dynamics. The reconstructed sphingolipid dynamics

indeed matches the original data quite well (Figure 1). This good

match is by no means a priori guaranteed, because it is known that

averages of parameter values from different good data fits do not

necessarily correspond to good data fits themselves [30]. The

averaged model was subsequently used for further interpretations

of our results.

As a second, independent validation experiment, we explored

changes in the concentrations of the complex sphingolipids IPC,

MIPC, and M(IP)2C with the computationally inferred enzyme

activities after a shift in temperature. In contrast to the profiles of

simple sphingolipids (Figure 1), these trend lines are essentially flat,

indicating that the complex sphingolipids do not change much

during the heat stress response (Figure 2). This finding is directly

consistent with experimental data [12] that were not used in our

optimization.

As a final validation approach, and quasi as a negative control,

we fixed those key enzymes that were inferred to have tight activity

ranges (X34, X36, X41, X43, X50, X54, X57 and X59, see Figures 3 and

4) at their nominal steady-state values and optimized all other

enzyme activity profiles with the same methods as before. The

resulting fit (Figure S7) is not good and much inferior to that in

Figure 1; further details regarding this negative control are given

in Text S1.

More interesting than these overall validation results are the

trends in the individual enzyme activities (Figures 3–8). Each panel

in each of these figures shows grey lines, which are often so dense

that they seem to form shaded areas. Each line is one of 2,004

simulated trend lines and represents the computationally inferred

activity of the given enzyme at time points 1, …, 30, given a

random initialization at t = 0. The red line in each panel shows the

mean of the trend lines, while the dotted blue lines enclose 95% of

the grey trend lines. The collective results from these panels are

visualized in a different manner in Figure 9, where they are

superimposed on the sphingolipid pathway system.

The first enzyme of interest, serine palmitoyltransferase (SPT;

X57) is the key bottleneck through which all de novo biosynthesis

must pass (see red zone in Figure 9). The results show that the

computationally inferred solution has SPT activity increasing

briefly and then converging essentially to zero within a few

minutes (Figure 3). This pattern is seen in essentially all 2004

simulations with random initial settings (see Methods Section. The

representation of fold changes seems most intuitive. However, the

same results are also presented in Text S1 on a log2 scale, which

stretches reduced activity levels. Changes in the subsequent, very

fast step (3KDHS reductase; X27) are less defined. A possible

explanation is that the substrate of this reaction is toxic [31] and

therefore never present in large concentrations, so that the

capacity of the enzyme is not limiting. As a consequence, this

enzyme activity does not contribute much to the error function

that is to be minimized.

Similarly well defined as SPT are enzymes that catalyze the

redistribution of material within the core of sphingolipid metab-

olism as well as the steps of sphingolipid removal (blue zone in

Figure 9). These enzyme activities again rise quickly but approach

a very small value shortly after (Figure 4). The very long chain

fatty acid synthase and elongase (ELO1p; X59) is responsible for

the delivery of fatty acid-CoA to the sphingolipid system, while

sphingosine-phosphate lyase (X50) and GPI remodelase (X43) are

the only true exit routes out of central sphingolipid metabolism.

The remaining enzymes in this group redistribute material within

the pathway. Ceramide synthase (X34) shows the same pattern as

X59, X50, and X43, while sphingoid base kinase (X36), sphingoid-1-

phosphate phosphatase (X41), and 4-hydroxylase (X54) exhibit the

Figure 1. Data fit of the model with inferred enzyme activities.
Using averaged trends in enzyme activities leads to simulated
metabolic profiles (lines) that reflect the observations (symbols;
averaged from two experiments) quite well. The lines are segmented,
because the model is solved with enzyme activities that are constant
from each time point to the next, when they are dynamically reset. The
fold changes in DHS-P do not seem to be modeled very well. The
reason is that the absolute concentration of this metabolite is very small
(Figure 11) and any fold change becomes vastly amplified.
doi:10.1371/journal.pcbi.1003078.g001

Sphingolipid Responses to Heat Stress in Yeast
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same initial phase, but begin to rise more or less strongly after

about 25 to 28 minutes of heat stress. These late increases in

activity apparently indicate the first consequence of heat-induced

gene expression. Among these enzymes, sphingoid-1-phosphate

phosphatase (X41) shows the strongest peak at 28 to 30 minutes by

far. This enzyme is known to be a key regulator of sphingolipid

metabolism and, in particular, of stress responses [15]. It plays an

important role in regulating the crucial balance between ceramide

and phosphorylated sphingoid base levels and thereby modulates

later stress responses.

The two alkaline ceramidases exhibit rather different patterns.

As with the previous enzymes, the activity of dihydroceramide

alkaline ceramidase (dihydro-CDase; X29), which converts dihy-

droceramide into dihydrosphingosine, decreases to almost zero,

but much later and in a less defined manner. By contrast, the

activity of phytoceramide alkaline ceramidase (Phyto-CDase; X53)

shows tight trends consisting of three peaks, before returning to

normalcy after about 30 minutes (Figure 5). These differences

indicate that there is no ‘‘symmetry’’ between the function of

dihydro- and phyto-forms of sphingolipids.

The activity patterns of enzymes associated with complex

sphingolipids are different; they are shown in Figure 6 (green zone

in Figure 9). They all indicate a sustained level of hyper-activity for

about 20 minutes, before becoming very low between about 20

and 28 minutes. These enzymes are inositol phosphorylceramide

synthase (IPC synthase; X33), mannosyl inositol phosphoceramide

synthase (MIPC synthase; X35), and mannosyl di-inositol phos-

phorylceramide synthase (M(IP)2C synthase; X55), as well as

inositol phosphosphingolipid phospholipase C (IPCase; ISC1 X51),

which returns IPC, MIPC and M(IP)2C to the dihydroceramide

(DHC) and phytoceramide (PHC) pools.

The remaining enzyme activities are not identifiable with our

analysis. Some appear to be essentially unchanged throughout the

measurement period of 30 minutes, during which the temperature

remains elevated. Examples are fatty acid synthase (X52), acetyl-

coenzyme A carboxylase (X60), and synthase (X63) (Figure 7; yellow

zone in Figure 9). Other enzyme activity patterns (X26, X39, X42,

X44, X46, X40, X45, X49, X31, X32, X38, and X56) exhibit larger

degrees of variation (Figure 8; pink and tan zones in Figure 9). On

average, each pattern exhibits an individual Q10 effect, and

subsequently stays more or less constant, decreases somewhat, or

continues to increase slightly, but the trends are not clear. One

reason for the large variability in these trends may be that the

available metabolite data are not informative enough. It is also to

be expected that the different processes catalyzed by these

enzymes allow for a large degree of redundancy. For instance,

serine is not only used in the SPT reaction, but also for the

production of phosphoserine and in the serine hydroxymethyl

transferase reaction, so that computationally inferred excesses in

one reaction may be compensated numerically by a lower activity

of one of the other two. Finally, as we discussed elsewhere [7], it is

possible that these processes are not as well modeled as those at the

core of sphingolipid biosynthesis, because they also participate in

other pathway systems, such as phsopholipid or ergosterol

metabolism.

The computationally inferred patterns in enzyme activities are

collectively depicted as colored zones in Figure 9. Most interesting

are the red and blue zones, which control the influx to,

redistribution within, and efflux out of the core of sphingolipid

Figure 2. Concentration trends in complex sphingolipids. While the sphingoid bases and ceramides exhibit strong responses to heat stress
(Figure 1), the complex sphingolipids IPC, MIPC, and M(IP)2C remain almost constant. The left and right panels show levels of members of the IPC
family, derived from dihydroceramide and phytoceramide, respectively.
doi:10.1371/journal.pcbi.1003078.g002

Figure 3. Trends in activities of enzyme at the entry point of
sphingolipid biosynthesis. Serine palmitoyltransferase and 3-KDHS
reductase are enzymes responsible for the production and degradation
of 3-KDHS, which is the key initial metabolite of sphingolipid
biosynthesis. The enzymes are located in the red zone of Figure 9.
Grey lines are results of 2,000 individual iterations in the large-scale
simulation. Red lines are ensemble averages, and dotted blue lines
enclose 95% of the results.
doi:10.1371/journal.pcbi.1003078.g003

Sphingolipid Responses to Heat Stress in Yeast
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bipsynthesis. The green zone contains the complex sphingolipds,

which provide material for activities in the blue zone, even though

their concentrations do not change much throughout the thirty

minutes of heat stress (see Figure 2). The yellow, pink, and tan

zones at the periphery contain fatty-acid CoAs, serine compounds

and phospholipids, respectively. These are necessary for sphingo-

lipid biosynthesis, but also for other pathways. Due to their

multiple roles, they are presumably not modeled comprehensively,

and their enzyme activities are not identifiable with the data and

methods used here.

The trend lines, as well as their averages, collectively suggest

that the sphingolipid heat stress response is achieved with quite

moderate changes in many enzymes rather than very extensive

changes in just a few key enzymes. This result is consistent with

earlier studies in the context of the diauxic shift, which implied

that cells probably satisfy altered metabolic demands with many

small, rather than a few large, adjustments [6,32]. While it is

impossible to identify the true advantage of this strategy

unambiguously, the avoidance of large changes in any of the

system components might be expected to reduce the risk of

undesired side effects in neighboring pathways.

All trends in enzyme activities follow distinct patterns, which are

the results of a balance among three forces induced by the shift in

temperature from 30uC to 39uC: first, an essentially immediate

increase in activity to a level of up to about four times the baseline,

according to the enzyme’s (typically unknown) Q10 value, which

quantifies the Arrhenius effect (see Table S3); second, a possibly

diminished activity due to partial protein unfolding and/or an

altered half-life of the corresponding protein and/or mRNA; and

third, changes in enzyme activity due to regulation and/or gene

expression. These forces may be active to different degrees in

overlapping time windows.

The three forces lead to different activity patterns. Most striking

is the set of enzymes controlling the influxes and effluxes associated

with the core of sphingolipid biosynthesis. Their pattern of heat

responses consists of enzyme activities that first exhibit a Q10

effect, which is subsequently counteracted by deactivation

mechanisms that could be due to changes in RNA amounts,

changes in half-lives or degradation rates of proteins or mRNAs,

post-translational modifications, or heat induced gene depression

Figure 4. Trends in activities of enzymes in the core region of sphingolipid metabolism. After an initial spike, all enzyme activities in this
region are reduced to almost nil. The enzymes are located in the blue zone of Figure 9. Grey lines are results of 2,000 individual iterations in the large-
scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of the results.
doi:10.1371/journal.pcbi.1003078.g004

Figure 5. Trends in activities of the two alkaline ceramidases.
Dihydroceramide alkaline ceramidase and phytoceramide alkaline
ceramidase, which convert the ceramide form into sphingosines,
exhibit distinct activity patterns. The enzymes are shown with light
blue circles in Figure 9. Grey lines are results of 2,000 individual
iterations in the large-scale simulation. Red lines are ensemble averages,
and dotted blue lines enclose 95% of the results.
doi:10.1371/journal.pcbi.1003078.g005

Sphingolipid Responses to Heat Stress in Yeast
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[33]. Thus, after a few minutes, these enzyme activities essentially

disappear.

Overall Heat Stress Response Strategy
Without any computational analysis, the measured data directly

show which sphingolipids are apparently needed under heat stress

at different points in time. Measured as absolute quantities, PHS

increases by far the most in concentration, whereas PHS-P

increases most relative to its baseline value. Interestingly, both

adjustments are much stronger than in the corresponding dihydro-

forms. For instance, the concentration of DHS-P remains very low

throughout the observation period of 30 minutes (Figure 10). DHS

reaches its modest peak earlier than PHS and PHS-P, whereas

PHC reaches its peak later. It is difficult to discern the rationale for

this timing and the differences in peak heights.

What the computational analysis shown here suggests is how

these observed adjustments are implemented by the cell. Initially,

de novo biosynthesis increases quickly, but only for the first three or

four minutes. The model actually allows us to quantify and

compare the total amount of biosynthesis under optimal and heat

stress conditions. Namely, we can record in the dynamic

simulation the total production of 3-KDHS, while computationally

omitting its degradation (Figure 11). Under optimal conditions,

and with a constant influx of palmitate and serine, this

accumulation is linear (blue line), and considering consumption

as well, the concentration of 3KDHS is constant (results not

shown). By contrast, under heat stress, the accumulation is faster

for the first few minutes (red line), but it is increasingly reduced

subsequently. Considering consumption as well, the concentration

of 3KDHS decreases (results not shown).

In the next five to ten minutes, the patterns diverge strikingly.

Probably most intriguing, both the input to, and the exit from,

central sphingolipid metabolism are almost completely shut down.

During this time period, the cell not only counteracts the

unavoidable Q10 effect in SPT, but down-regulates this enzyme

to a mere residual amount, as shown in top left panel of Figure 3.

Similarly, the exit routes through the lyase and remodelase steps

lose activity about 5 minutes into the heat stress (Figure 3). The

second step of de novo biosynthesis, KDHS reductase, is less

dramatically affected (right panel in Figure 3), but deprived of

substrate. This substrate deprivation appears to be safer than

enzyme down-regulation, as 3KDHS is toxic [34] and any

accumulation could be dangerous.

The computational deductions imply that de novo sphingolipid

biosynthesis appears to be up-regulated only for the first few

minutes [12]. To establish the needed changes in sphingolipid

profile under heat stress, the cell appears to absorb and process

residual substrate as vigorously as possible, but subsequently seems

to count on the much more reliable use of existing complex

sphingolipids for the generation of signaling molecules such as

Figure 6. Trends in activities of enzymes associated with complex sphingolipids. Enzymes interconverting complex sphingolipids are at
first hyper-active, but tend to lose most activity at some point between 20 and 30 minutes. The enzymes are located in the green zone of Figure 9.
Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 95%
of the results.
doi:10.1371/journal.pcbi.1003078.g006

Figure 7. Trends in activities of enzymes associated with fatty acid CoA. The enzymes shown here are responsible for CoA enlongation. The
enzymes are located in the yellow zone of Figure 9. Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red lines are
ensemble averages, and dotted blue lines enclose 95% of the results.
doi:10.1371/journal.pcbi.1003078.g007

Sphingolipid Responses to Heat Stress in Yeast
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PHS, PHS-P and, to a lesser degree, DHS and DHC, and on a

subsequent redistribution among the simple sphingolipid pools.

This conclusion is based on the inferred reduction in biosynthesis

after about five minutes, the shutting off of the lyase and

remodelase steps, as well as three additional observations. First,

IPCase (Figure 6) is strongly upregulated in a sustained manner for

about 15 minutes. Second, the hydroxylase, which converts DHC

into PHC and DHS into PHS, loses almost all activity throughout

the measured time period (Figure 4). Third, processes leading to

the synthesis of complex sphingolipids, including IPC synthase and

the synthesis of PI and DAG, are down-regulated after about

15 minutes (Figure 6), thereby slowing down the genesis of new

complex sphingolipids from simple sphingolipids. Several of the

enzymes associated with complex sphingolipids begin to become

active again about 28 minutes into the heat stress, which may be a

consequence of changes in gene expression.

After 30 minutes, the six measured sphingolipid concentra-

tions essentially return to their baseline levels. In stark contrast,

the enzyme system has not returned to its original state, and

several enzymes still exhibit an activity that is quite distinct

from the profile under optimal temperature conditions. Thus,

the cell, which is still under heat stress, is regaining a close

resemblance of normalcy with respect to its metabolites, but

this state is achieved with a significantly different flux and

enzyme profile.

Discussion

In this work, we have proposed a computational approach to

analyze heat stress response strategies in yeast. Specifically, we

have inferred how cells adjust their enzyme activities within

sphingolipid metabolism, which has been demonstrated in

numerous earlier reports as a heat sensitive signaling system.

Using experimental measurements of metabolite concentrations

following a shift in temperature, combined with a detailed

dynamical model, we computationally inferred adjustments in

enzyme activities that appear to be both sufficient and necessary

for mounting the observed metabolic response. Rather than

computing a single solution to the inverse task, we computed a

comprehensive ensemble of over 4400 independent solutions and

selected from among them the best 2004 solutions, based on SSE

and AICc metrics. These 2004 solutions led to very similar trends

Figure 8. Trends in the remaining enzyme activities. Activities of enzymes at the periphery of the pathway system are not identifiable, mainly
due to insufficient information and the fact that these enzymes are also involved in other pathways. Enzymes in the two upper panels are related to
the phospholipid metabolism and enzymes in the lower panel are related to serine metabolism. The enzymes are located in the tan and pink zones of
Figure 9. Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red lines are averages, and dotted blue lines enclose 95% of
the results.
doi:10.1371/journal.pcbi.1003078.g008
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in the activities of key enzymes, although not of enzymes at the

periphery of the pathway system.

The computed results suggest, first, that the response to heat is

not achieved by drastic changes in a few ‘‘key’’ enzymes, but that

numerous enzymes are involved. Second, the dynamic alterations

in activities differ substantially in both, magnitude and timing, as

well as in the general shape of the enzyme activity trends

throughout the observed 30-minute time window following the

Figure 9. Zones of similar changes in enzyme activities. The zones correspond to enzyme profiles in Figures 3 (red), 4 and 5 (blue), 6 (green), 7
(yellow) and 8 (tan and pink) respectively. Abbreviations are: Green boxes (sphingolipid metabolism): KDHS (3 Ketodihydrosphingosine), DHS
(Dihydrosphingosine), DHS-P (Dihydrosphingosine 1-phosphate), PHS (Phytosphingosine), PHS-P (Phytosphingosine 1-phosphate), DHC (Dihydrocer-
amide), PHC (Phytoceramide), IPC-g (Inositol phosphorylceramide), MIPC-g (Mannosylinositol phosphorylceramide), M(IP)2C-g (Mannosyldiinositol
phosphorylceramide), IPC-m (Plasma membrane inositol phosphorylceramide), MIPC-m (Plasma membrane mannosylinositol phosphorylceramide),
M(IP)2C-m (Plasma membrane mannosyldiinositol phosphorylceramide). Yellow boxes (phospholipid metabolism): DAG (Sn-1,2-diacylglycerol), CDP-D
(Cytidine diphosphate DAG), PS (Phosphatidylserine), PA (Phosphatidic acid), PI (Phosphatidylinositol), CDP-E (Cytidine diphosphate ethanolamine).
Blue boxes (fatty-acid metabolism): Pal-CoA (Palmitoyl-Coenzyme), C26-CoA (Very long chain fatty acid), Mal-CoA (Malonyl coenzyme), Ac-CoA (Acetyl
coenzyme). The base diagram was adapted from Alvarez-Vasquez et al., Nature 433(7024): 425–430, 2005.
doi:10.1371/journal.pcbi.1003078.g009
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initiation of heat stress. The main surprise in our results is the

deduction that the changes in sphingolipid profile are apparently

not achieved by sustained increases in de novo biosynthesis but

through a brief initial spike, followed by the retrieval of simple

sphingolipids from membrane-associated complex sphingolipids,

as well as a complicated redistribution scheme among the different

ceramide and sphingosine forms. While this strategy was not

expected, its seems to have merit, because the cell cannot be sure

that new resources are quickly available for de novo synthesis of

sphingolipids, while complex sphingolipids such as IPC, MIPC

and M(IP)2C are integral components of membranes and therefore

always available, with the possible exception of the most deprived

situations. Thus, it seems that the cell sacrifices some of its

membrane structures and recreates them once the stress situation

is under control. This sacrifice, however, is not very substantial, as

the concentrations of complex sphingolipids change very little

during the heat stress response (Figure 2). These results are

consistent with experimental finding of Jenkins et al. [12], who

studied different roles of sphingolipids during the heat stress

response. Using isotope labeling, they showed that sphingoid bases

and ceramides increase early on via de novo synthesis, but that IPC,

MIPC and M(IP)2C remain essentially constant over a period of

more than one hour. Wells et al. [17] also studied the formation of

ceramide in response to heat stress and, using labeled phospho-

sphingolipids, and concluded that ceramide formation from IPC,

MIPC, and M(IP)2C through the IPCase reaction was unlikely.

However, the concentration profiles these authors observed were

very different from those obtained by Cowart et al. [28], which we

used here. In particular, under Wells’ 39uC treatment, ceramide

remained elevated at a level five times its baseline throughout the

two-hour measurement period. Outside the fact that these authors

studied a temperature shift from 24uC to 39uC, the differences in

concentration profiles to those used here (Figure 1; Cowart et al.

[28]) remain unexplained.

Although the computational results were obtained without any

particular assumptions, some uncertainties are associated with the

fact that many of the intermediate sphingolipids had not been

measured and that the mathematical approach may not have

revealed the one truly optimal solution. For instance, all results are

obtained from large-scale simulations with a dynamical model that

has been validated to some degree but could certainly be

improved. Given the present data, it is unlikely that further

simulations of the same type as shown here would lead to different

results. However, if other metabolite concentrations could be

measured, or if it were possible to determine some internal

metabolic fluxes independently of the metabolite concentrations,

the degree of reliability of our results would greatly increase.

Figure 10. Smoothed time series data. Absolute changes in six key
sphingolipid metabolites in response to a temperature shift from 30uC
to 39uC at time 0. The raw data were smoothed with a standard spline
technique. See also Figure 1.
doi:10.1371/journal.pcbi.1003078.g010

Figure 11. Changes in 3KDHS production under optimal and heat stress conditions. The model allows the computation of 3KDHS
accumulation without 3KDHS degradation. The accumulation patterns are distinctly different under optimal (blue) and heat stress (red) conditions.
doi:10.1371/journal.pcbi.1003078.g011
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The study presented here elucidates a systemic strategy with

which the cell establishes the observed sphingolipid profile, but it

does not address the specific roles of the various sphingolipids in

the heat stress response. Interestingly, some of the simple

sphingolipids that are known to have signaling roles do not

change all that much, while others do. In particular, DHS, which

activates the stress element STRE in the expression of stress

related genes, maximally rises to only about twice its normal level,

about 5 minutes into the heat stress. Apparently, this increase is

sufficient. By contrast, PHS-P, which was recently identified as an

important gene regulator, rises to a level that corresponds to

almost 10 times its baseline level and exhibits a sustained response

that lasts over 20 minutes. PHS rises to a four-fold level. No direct

signaling role is known, and it may just be that this compound is

needed as a precursor of PHS-P.

The experiments generating the data used here exposed the cells

to persistent heat stress. At the end of the 30-minute observation

period, all six key sphingolipids have essentially returned to their

normal levels, except for DHC, which still seems to be very slightly

elevated. By contrast, many of the enzyme activities are not ‘‘back

to normal.’’ Expressed differently, the cell manages to mount a

strong transient response, which is known to lead to longer-term

genomic responses. Subsequently, within a total of just 30 minutes,

it is able to adjust its catalytic machinery to the persistent heat

conditions in such a manner that the fluxes exhibit a distinctly

different activity pattern which, nevertheless, re-establishes a

favorable metabolic state that is remarkably close to that under

optimal conditions.

Our focus on sphingolipids sheds light on just one aspect of the

well-coordinated, complex responses with which yeast adjusts to a

new environmental condition. Nonetheless, this particular aspect is

of special interest, as the roles of sphingolipids and their

biosynthetic pathways have been preserved throughout evolution,

from yeast to humans, where they are involved in numerous

differentiation and disease processes (e.g., [35–38]).

Methods

Data
The data, previously obtained in one of our labs, were described

in the literature (see Supplements of [28]). They consist of

duplicate 30-minute time courses of six key sphingolipids, collected

following a step increase in temperature from 30uC to 39uC.

Specifically, changes in metabolite concentrations were measured

at baseline (t = 0; normal temperature) and at 5, 10, 15, 20, 25, and

30 minutes of heat stress. We used these measurements, averaged

the duplicates, and then applied a smoothing spline technique to

interpolate the trend of each time course so that concentration

values at 31 time points (0, 1, …, 30 minutes) became available for

each sphingolipid. The smoothed transients are shown as absolute

concentrations in Figure 11 (see also Figure 1 for fold changes,

which shows the smoothed data as symbols, along with a model fit

based on averaged enzyme activities). For our computational

analysis we used relative changes in each sphingolipid with respect

to the baseline steady state before heat stress, which we directly

obtained from the time series measurements, and scaled these with

steady-state values, which were described in earlier work [8], to

obtain actual concentrations.

Mathematical Model
The biosynthesis, metabolic conversions, and degradation of

sphingolipids constitute a complex, highly regulated pathway

system (Figure 9) that exceeds intuitive capabilities and suggests

computational modeling for quantitative systemic analyses. Over

the past decade, we have developed a series of such models using a

General Mass Action (GMA) formulation within the modeling

framework of Biochemical Systems Theory (BST) [6–8,39].

Because these models have been described in detail elsewhere,

we can keep their description here to a minimum.

The simple and complex sphingolipids, as well as other

pertinent metabolites, are represented in the model as dependent

variables, each of which satisfies an ordinary differential equation

(ODE). Each ODE contains representations of the processes that

produce or degrade this metabolite. According to the tenets of

BST, each process is represented as a product of power-law

functions, which consists of a rate constant and of every variable

directly affecting this process, raised to an exponent, called a

kinetic order. Variable names and equations are presented in Text

S1 and an SBML implementation can be found in the file Model

S1.

As an example for how to design a system equation, consider the

dependent variable X2, which represents dihydrosphingosine

(DHS). This metabolite is generated from three possible sources.

First, KDHS reductase (X27) catalyzes the reduction of 3-keto-

dihydrosphingosine (KDHS; X1). The formulation of this process

consists of a rate constant c21, which is multiplied by X1, raised to

the kinetic order f2,1,1, and by X27, raised to the kinetic order

f2,27,2. Thus, the reduction process is modeled as c21X
f2,1,1

1 X
f2,27,2

27 .

Second, DHS can be produced from dihydrosphingosine-1-

phosphate (DHS-P; X4), a process catalyzed by sphingoid 1-

phosphate phosphatase (X41). In analogy to the first process, this

step is represented with its own rate constant, as well as the

substrate and enzyme, which are both raised to appropriate kinetic

orders. Third, dihydroceramide alkaline ceramidase (X29) converts

dihydroceramide (DHC; X3) into DHS, and this process is

formulated in an analogous manner. DHS is subject to three

possible metabolic fates, namely through the ceramide synthase

reaction toward DHC, through the 4-hydroxylase reaction toward

phytosphingosine (PHS), and through the sphingoid base kinase

reaction toward DHS-P. Taken together, the ODE equation

describing the dynamics of DHS contains three influx terms and

three efflux terms as shown in Eq. (1).

dX2

dt
~c21X

f2,1,1
1 X

f2,27,2
27 zc22X

f2,3,3
3 X

f2,29,4
29 zc23X

f2,4,5
4 X

f2,41,6
41

{c24X
f2,2,7
2 X

f2,23,8
23 X

f2,34,9
34 {c25X

f2,2,10
2 X

f2,28,11
28 X

f2,36,12
36

{c26X
f2,2,13
2 X

f2,54,14
54

ð1Þ

All differential equations for dependent variables are formulated in

this manner. Values for all parameters were determined from the

literature [8,40]. The complete model consists of 25 ordinary

differential equations, including those representing the six key

sphingolipids of interest here, namely dihydrosphingosine, dihy-

droceramide, dihydrosphingosine 1-phosphate, phytosphingosine,

phytosphingosine 1-phosphate and phytoceramide. The model

furthermore contains 41 independent variables, which represent

enzyme activities and metabolites such as ATP, palmitate, acetate

and phosphoserine, which were assumed to be constant or

considered unaffected by the dynamics of the pathway system.

The model was rigorously tested and validated against data not

used for model construction [7]. It was also recently combined

with a model of the sterol pathway, which has relevance for the

composition of membrane rafts [39]. An SBML version of the

model can be found in zip file Model S1.
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Piecewise Optimization Approach
As stated at the beginning of the Results section, it is our task to infer

from the measured metabolite time courses which enzymes have to

be altered dynamically, and by how much, in order for the model to

generate the observed time-dependent metabolic profile? Mathemat-

ically, this inverse problem is underdetermined and furthermore

complicated by the fact that the pathway is described by a system of

nonlinear differential equations, as discussed before. If we were only

concerned with a baseline steady state and the move of the system to a

new steady state appropriate for heat stress conditions, we could use

methods of linear algebra and pseudo-inverses, as we have

demonstrated elsewhere [32]. However, here we are interested in

the entire trajectories between stimulus (i.e., the beginning of heat

stress) and the cell’s metabolic adjustments over 30 minutes.

We solved this dynamic inverse problem with an iterative,

piecewise optimization approach. Specifically, we estimated

optimal enzymatic profiles by minimizing the distance between

the smoothed sphingolipid data and the simulation results at each

time point, with 1-minute time intervals, from 0 to 30 minutes. At

each time point, the optimization engine searched for the best set

of enzyme activities, which were modeled as independent

variables. To satisfy the specified objective function, we algorith-

mically minimized the distances between the six observed

sphingolipid concentrations and the solutions produced by each

trial set of independent variables. We executed this strategy 4144

times, using different random values for initial settings. We then

selected the 2004 best models based on residual errors (SSEs). In

order to test the performance of this metric, we also selected

models based on the Akaike criterion (AICc), and both criteria

produced very similar results. Please see Text S1 for a detailed

comparison of results using these two criteria. Subsequently,

scanning all solutions throughout the 30-minute time period

yielded dynamic alteration profiles in all enzymes as well as

corresponding metabolite profiles that were consistent with the

observed profiles throughout the experimental time period.

Further details of this procedure are presented in the Text S1.

Each optimization run produced a dynamic enzymatic profile

throughout the time period from 0 to 30 minutes. Due to the

randomization of initial values and to the fact that the system is

underdetermined, the solutions from different runs were different.

Thus, instead of searching for a single unique solution, we studied

an entire large ensemble of solutions and asked whether the

solutions would reveal consistent trends of enzymatic profiles with

in the potentially large solution space. Indeed, the overall result of

this strategy was a set of surprisingly tight ranges for the key

enzymes of sphingolipid biosynthesis.

Supporting Information

Figure S1 Trends in activities of enzyme at the entry
point of sphingolipid biosynthesis. Serine palmitoyltransfer-

ase and 3-KDHS reductase are enzymes responsible for the

production and degradation of 3-KDHS, which is the key initial

metabolite of sphingolipid biosynthesis. Grey lines are results of

2,000 individual iterations in the large-scale simulation. Red lines

are ensemble averages, and dotted blue lines enclose 95% of the

results. The figure corresponds to Figure 3 of the main text.

(TIF)

Figure S2 Trends in activities of enzymes in the core
region of sphingolipid metabolism. After an initial spike, all

enzyme activities in this region are reduced to almost nil. Grey

lines are results of 2,000 individual iterations in the large-scale

simulation. Red lines are ensemble averages, and dotted blue lines

enclose 95% of the results. The figure corresponds to Figure 4 of

the main text.

(TIF)

Figure S3 Trends in activities of the two alkaline
ceramidases. Dihydroceramide alkaline ceramidase and phy-

toceramide alkaline ceramidase, which convert the ceramide form

into sphingosines, exhibit distinct activity patterns. Grey lines are

results of 2,000 individual iterations in the large-scale simulation.

Red lines are ensemble averages, and dotted blue lines enclose

95% of the results. The figure corresponds to Figure 5 of the main

text.

(TIF)

Figure S4 Trends in activities of enzymes associated
with complex sphingolipids. Enzymes interconverting com-

plex sphingolipids are at first hyper-active, but tend to lose most

activity between 20 and 30 minutes. Grey lines are results of 2,000

individual iterations in the large-scale simulation. Red lines are

ensemble averages, and dotted blue lines enclose 95% of the

results. The figure corresponds to Figure 6 of the main text.

(TIF)

Figure S5 Trends in activities of enzymes associated
with fatty acid CoA. The enzymes shown here are responsible

for CoA elongation. Grey lines are results of 2,000 individual

iterations in the large-scale simulation. Red lines are ensemble

averages, and dotted blue lines enclose 95% of the results. The

figure corresponds to Figure 7 of the main text.

(TIF)

Figure S6 Trends in the remaining enzyme activities.
Activities of enzymes at the periphery of the pathway system are not

identifiable, mainly due to insufficient information and the fact that

these enzymes are also involved in other pathways. Enzymes in two

upper panels are related to the phospholipid metabolism and

enzymes in the lower panel are related to serine metabolism. Grey

lines are results of 2,000 individual iterations in the large-scale

simulation. Red lines are averages, and dotted blue lines enclose 95%

of the results. The figure corresponds to Figure 8 of the main text.

(TIF)

Figure S7 A negative control experiment. When the key

enzymes are locked into their normal activity values and all other

enzyme activities are allowed to be optimized, the fit of the best

model to the experimental data is not very good.

(TIF)

Figure S8 Sums of squared errors for individual
optimizations. Upper panel: SSEs for 2,000 simulations with

the original model. Lower panel: SSEs for 200 simulations with the

constrained model. The X-axis shows the index of each individual

simulation, while the Y-axis shows the corresponding sum of

squared errors (SSE); note different scales.

(TIF)

Figure S9 Distributions of sums of squared errors for
individual simulations. The distribution on the left contains

SSEs for the model in which all enzymes are allowed to change.

The distribution on the right contains the corresponding SSE

values for the constrained model.

(TIF)

Figure S10 Comparison of data fits. Left panel: Data fitted

with the unconstrained averaged model (identical to Figure 1 of

the text). Right panel: 179 data fits with individual model

simulations that resulted in SSE , 1.2561025 (cf. Figure S8).

(TIF)
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Figure S11 The histogram of AICc values of the 4144
initial models clearly indicates that the 2018 models in
the left-most column are superior to all other parame-
terizations. 99.35% (1991) of the 2004 models identified by SSE

fall into this column, thereby demonstrating very strong

consistency between the two measures of quality.

(TIF)

Table S1 Metabolites, enzymes, abbreviations, and
variable names.

(DOCX)

Table S2 Summary of identifiable dynamic changes in
enzyme activities in response to heat stress.

(DOCX)

Table S3 Estimated Q10 values, based on the initial
increases in enzyme activities.
(DOCX)

Model S1 This file contains different components of an

implementation of the base model in SBML format.

(ZIP)

Text S1 This file contains model equations, model details in

Tables S1, S2, S3, details regarding the optimization procedure,

an alternative representation (Log2) of trends in enzyme activities,

an estimation of Q10 values for enzymes of the sphingolipid

pathway, an assessment of simulation results with a ‘‘negative

control,’’ comments on the Akaike Information Criterion, and

additional references.

(DOCX)
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