
Viruses 2010, 2, 939-960; doi:10.3390/v2040939 

 

viruses
ISSN 1999-4915 

www.mdpi.com/journal/viruses 

Review 

Implications of the Nucleocapsid and the Microenvironment  
in Retroviral Reverse Transcription 

Marylène Mougel 1, Andrea Cimarelli 2 and Jean-Luc Darlix 2,* 

1 CPBS, UMR5236 CNRS, UMI, 4 bd Henri IV, 34965 Montpellier, France;  

E-Mail: mmougel@univ-montp1.fr 
2 LaboRetro Unité de Virologie humaine INSERM #758, IFR128, ENS Lyon, 46 Allée d’Italie, 

69364 Lyon, France; E-Mail: acimarel@ens-lyon.fr 

* Author to whom correspondence should be addressed; E-Mail: jldarlix@ens-lyon.fr;  

Tel.: +33 472728169; Fax: +33 472728137. 

Received: 4 February 2010; in revised form: 03 March 2010 / Accepted: 1 April 2010 /  

Published: 2 April 2010 

 

Abstract: This mini-review summarizes the process of reverse-transcription, an obligatory 

step in retrovirus replication during which the retroviral RNA/DNA-dependent DNA 

polymerase (RT) copies the single-stranded genomic RNA to generate the double-stranded 

viral DNA while degrading the genomic RNA via its associated RNase H activity. The 

hybridization of complementary viral sequences by the nucleocapsid protein (NC) receives a 

special focus, since it acts to chaperone the strand transfers obligatory for synthesis of the 

complete viral DNA and flanking long terminal repeats (LTR). Since the physiological 

microenvironment can impact on reverse-transcription, this mini-review also focuses on 

factors present in the intra-cellular or extra-cellular milieu that can drastically influence 

both the timing and the activity of reverse-transcription and hence virus infectivity. 

Keywords: reverse transcriptase; nucleocapsid protein; genomic RNA; viral DNA; strand 

transfers; SEVI 
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1. Retroviruses as mobile elements in nature 

A unique feature of Retroviruses concerns their replication mechanism in host cells and organisms, 

a reverse transcription-integration process whereby the single-stranded viral RNA is copied by the 

viral DNA polymerase to generate the proviral DNA, which is integrated into the host cell DNA [1-9]. 

A genetic insertion such as this can impact on the life of the host and in some instances that of its 

descendants. In that respect, Retroviruses appear to be unique since no other infectious agent of higher 

eukaryotes is capable of integrating its genes into the host genome, of acquiring cellular genes into its 

own genome or has played such seminal roles in modern biology, biotechnology and in gene therapy 

[10-13]. 

Among Retroelements, the LTR-containing retrotransposons such as yeast retrotransposons (Ty) 

and human endogenous retroviruses (HERV) resemble simple retroviruses such as the 

gammaretrovirus murine leukemia virus (MuLV). In fact, these mobile elements encode the virion 

structural Gag proteins and Pol enzymes and contain non-coding regulatory sequences essential for 

genome replication, integration and expression such as the LTR (long terminal repeats). The 

endogenous retrotransposons that are abundant genetic elements in the host genetic make-up are 

probably playing key roles in genome reshuffling and variability. Thus, the replication of mobile 

retrotransposons by a transcription/reverse-transcription/integration process, also called ‘copy-and-

paste’, is thought to have fueled the evolution of eukaryotic genomes from yeast to human (Figure 1 

and legend) (reviewed in [14-17]). 

Retroviral particles or virions have a globular structure with a mean diameter of 100 nanometers. 

The virion outer envelope is of cellular origin and contains the viral glycoproteins called surface (SU) 

and transmembrane (TM), in the form of trimeric ensembles for HIV-1. The shape and oligomeric 

organization of the structural proteins of the inner core seem to be characteristics for each genera of 

the Retroviridae family. The virion genomic RNA is 6,000 to 12,000 nucleotides in length with a 

positive polarity, and resides within the core as a 60S RNA complex, where two full length viral RNA 

molecules interact with each other and are coated by several hundred nucleocapsid protein molecules 

(about 1500 molecules in the case of HIV-1 and MuLV [18-21]). 

Furthermore, it is important to briefly point out that actively replicating retroviral populations can 

have a complex composition, containing notably defective retroviruses which replicate only with the 

help of a replication competent retrovirus, called helper [4]. In fact, defective retroviruses commonly 

found in retroviral populations, need part or all of the functions of a fully competent retrovirus to 

replicate and disseminate in cells and organisms. Canonical defective retroviruses include highly 

oncogenic DLV’s (defective leukemia viruses) such as the Harvey and Kirsten MSV, which carries the 

v.ras oncogene flanked by retrotransposon VL30 sequences. The Moloney murine leukemia virus 

(MoMuLV) provides the viral helper functions in trans within the same cell to ensure co-replication of 

these DLV’s (see [22] for review). 
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2. Reverse transcription of the genomic RNA 

Forewords 

The reverse transcription reaction, whereby the positive strand genomic RNA serves as the 

template for the synthesis of a double-stranded DNA flanked by long terminal repeats (LTR), 

occurs during the early phase of virus replication, soon after virus infection of a target cell. The 

process of viral DNA synthesis by RT initially takes place in the virion core after its entry into the 

cytoplasm. The virion core is thought to undergo structural changes to become the reverse 

transcription complex (RTC; review of [20,21,23-25]). 

We will begin by providing a brief overview of viral DNA synthesis, from initiation to completion, 

with an emphasis on the interplay between RT, the viral nucleic acids and the nucleocapsid protein, the 

latter of which is an essential viral cofactor for viral nucleic acids and the RT enzyme. We will 

continue by reviewing factors that are believed to have an impact on reverse transcription, its fidelity 

as well as the potential variability of virus progeny. Finally, we will discuss recent findings on when, 

where and how reverse transcription takes place.  

a- Simplified scheme of the viral RNA template 

The 5’ and 3’ untranslated regions (UTR) of the full-length viral RNA are highlighted in Figure 3 

since they contain signals essential for reverse transcription from initiation to completion. The UTRs 

are made up of functional units referred to as R, U5 and PBS (5’ UTR), and PPT, U3, R and An (3’ 

UTR). Abbreviations stand for the Repeats (R), the untranslated 5’ and 3’ sequences (U5 and U3), the 

tRNA primer binding site (PBS), the polypurine tract (PPT) and the 3’ polyA tail (wavy line 

illustrating the 3' polyA tail) [26]. The cellular primer tRNALys,3 is represented by a cloverleaf-like 

molecule where modified bases (such as m6A at position 58 (see below)) are highlighted by black 

stars.. Although the genomic RNA is dimeric in a condensed 60S form within virions, only a single 

retroviral RNA molecule (gRNA) is shown here as a pseudo-circle, where the 5’ and 3’ ends are in 

close proximity. Note that the viral DNA polymerase (RT) and the NC protein molecules, which coat 

the genomic RNA, cannot be represented in this highly schematic flow diagram. Our understanding of 

reverse transcription has largely benefited from in vitro model systems to study the major steps of viral 

DNA synthesis (Figure 2). 

b- Primer tRNA annealing 

In most retroviruses the PBS is 18 nt in length and annealing of replication primer tRNA, - 

tRNALys,3 for Lentiviruses - via its complementary 3’ 18 nt is promoted by means of the RNA 

annealing activity of NC proteins. This RNA annealing activity is exhibited by both the polyprotein 

Gag precursor and the mature NC protein (reviewed in ([27]) and results in the formation of a perfect 

18 nt long double-stranded RNA between the viral PBS and primer tRNA (Figure 3a, b). Further 

nucleotide interactions have been reported to take place between tRNALys,3 and motifs flanking the 

PBS in HIV-1, notably the A rich polyA stem-loop [25-27]. 
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Figure 1. Schematic representation of the replication of a simple retrotransposon.  

a. The genomic RNA is a unique RNA synthesized by transcription of the integrated 

retrotransposon DNA. b.-c. The RNA copy is exported from the nucleus and translated by 

the cellular translation machinery – ribosomes are illustrated here - to produce the Gag and 

GagPol like polyprotein precursors. d.-e. During formation of a ribonucleoparticle (RNP) 

called VLP (virus-like particle or VLP) the Gag and GagPol precursors undergo maturation 

by a Pol-encoded protease. At the same time the RNA copy of the retrotransposon, together 

with the replication primer tRNA are incorporated into the VLP. Note that the VLP’s 

remain in the cytoplasm and are not exported (cross) contrary to replication-competent 

retroviruses. f. Reverse transcription of the RNA copy is carried out by the RT and is 

chaperoned by NC-like proteins in the VLP nucleoprotein structure to generate a new copy 

of retrotransposon DNA. g.-h. The new DNA copy is imported into the nucleus and 

integrated into the host cell genome by the Pol-encoded integrase to complete the copy-

and-paste process. 

h- DNA Integration (IN)

a- DNA Transcription

c- RNA translation

e- VLP assembly
and formation (NC)

g- Nuclear import of DNA

b- RNA nuclear export

d- RNA packaging (NC)

f- RTion: RNA+RT+NC

 
 

c- Initiation of viral DNA synthesis 

RT recognizes the terminal 3’ OH of the annealed tRNA to initiate reverse transcription and 

synthesis of the minus-strand strong-stop cDNA (sscDNA) by copying the genomic RNA (thick black 

line) (Figure 3c). Other factors have been found to contribute to RT recruitment onto the viral initiation 
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site such as tRNA nucleotide modifications at the level of the anti-codon loop and NC protein 

(reviewed in 21). At the end of sscDNA synthesis, the 5’ gRNA sequences exist in a DNA:RNA hybrid 

and undergo degradation by the RT-associated RNaseH activity [28] (reviewed in [29]) resulting in the 

formation of a single-stranded DNA covalently linked to the primer tRNA. The RNase H activity 

appears to be enhanced by NC protein in the course of and following vDNA synthesis, probably by 

promotion of the release of small RNA degradation fragments generated by RNase H [29-30]. 

d- Transfer of sscDNA 

The first DNA strand transfer corresponds to a hybridization reaction between the ss-cDNA 3’ R(-) 

and gRNA 3’ R(+) sequences, which is required to resume reverse transcription of the gRNA and to 

synthesize the 3’ LTR. This hybridization reaction between the R(-) and R(+) sequences is directed by 

NC protein [30,32] (reviewed in [20-21]) According to in vitro analysis on HIV-1, it appears that both 

the TAR upper loop and the R ends are important for this annealing reaction [33] (Figure 3d). 

e-f- Minus strand cDNA synthesis 

The minus-strand sscDNA is extended by RT by copying the gRNA up to the 3’ end of the PBS 

while at the same time the genomic RNA template is being degraded by the RT-RNase H activity 

(Figure 3e). Interactions between the RT enzyme and NC protein molecules augment the processivity 

of the reaction in vitro as well as its fidelity by providing a degree of excision-repair activity to RT in 

HIV-1 [20,34] and MuLV (Darlix et al., unpublished data). 

g- Initiation of plus-strand DNA synthesis 

The plus-strand primer or polypurine tract (PPT) directs initiation of plus-strand DNA synthesis as 

a result of a sequential process: (i) minus-strand DNA synthesis over the PPT, (ii) RT-RNase H 

cleavage at the PPT 3' end, which allows initiation (iii) of plus-strand DNA synthesis from the nascent 

RNA primer (Figure 3f) with the help of NC protein [35,36]. 

Later in the course of reverse transcription the PPT RNA is removed by the RT-RNase H activity. 

RT synthesizes plus-strand DNA (gray line) [37-38] by extension of the genomic PPT RNA and 

continues up to the methylated A residue at position 58 of primer tRNALys,3 [38]. This results in the 

formation of a double-stranded DNA encompassing the U3, R and U5 sequences, corresponding to the 

full-length 3’ LTR and in the release of the remaining tRNALys,3 sequences by the RT RNaseH 

activity, freeing the 3’ end of the newly made plus- and minus-strand DNA. 

h- Plus-strand DNA transfer 

This step corresponds to a hybridization reaction between the minus- and plus-strand viral DNA at 

the level of the PBS sequences (see ref. [39] for detail), in a reaction directed by NC protein in vitro 

(Figure 3g, h)(reviewed in [20-21]). Subsequently the two viral DNA strands are extended by RT, the 

plus-strand by copying the newly made minus-strand viral DNA, on the one hand, and the final 

extension of the minus-strand viral DNA by copying the plus-strand DNA, which requires DNA strand 

displacement, ultimately leading to 5’ LTR formation, on the other hand. 
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Figure 2. In vitro model systems to study retroviral reverse transcription. Flexible in 

vitro model systems have been set up to study in detail the process of retrovirus reverse 

transcription [21,23-25,30]. Such models include (i) in vitro generated RNA (vRNA) 

representing the 5’ and 3’ UTR domains containing the cis-acting elements essential for 

cDNA synthesis, namely the PBS, the binding site for the replication primer tRNA, the 

untranslated 5’ and 3’ regions (U5 and U3), the repeats (R in blue) and the polypurine tract 

(PPT); (ii) Replication primer tRNA of natural origin (P-tRNA) or generated by in vitro 

transcription, or a synthetic oligonucleotide complementary to the PBS; (iii) the RT 

enzyme (not shown); (iv) NC protein (not shown); (v) if required, the IN enzyme, VIF, 

VPR and cellular factors such as SEVI [31]. 

In vitro models such as this have rendered possible a detailed investigation of the essential 

steps of reverse transcription, following tRNA annealing to the PBS by NC:  

a- initiation of ss-cDNA synthesis (see large orange arrow); 

b- the first strand transfer which corresponds to an annealing reaction chaperoned  

  by NC and requiring the R sequences (white arrow) [31-32]; 

c- minus-strand cDNA elongation (double orange arrow); 

d- initiation of plus-strand DNA synthesis and transfer (not shown here for the  

  sake of clarity; see also Figure 3); 

e- the fidelity of the strand transfer and of cDNA synthesis by RT and the   

  influence of RT mutations; 

f- the role of the RT-associated RNase H activity on the strand transfer; 

g- the role of NC on DNA strand transfer and the fidelity of reverse transcription  

  via its interaction with RT and the vRNA; 

h- the influence of vRNA mutations, incubation conditions (ions, temperature,  

  nucleotides etc.) and viral and cellular factors such as VIF, SEVI.  

 

 



Viruses 2010, 2                            

 

 

945

i-j- The proviral DNA 

A double-stranded linear DNA with the two flanking LTR’s is the final product of the reverse 

transcription process and its maintenance, notably of the inverted repeats (ir) that are required for 

integration by the viral integrase enzyme (IN), is ensured by NC protein and IN molecules (Figure 3i) 

[40-41] (reviewed in [20]). This viral DNA, also called proviral DNA, is actively imported into the 

nucleus within a preintegration complex (PIC) and is subsequently integrated into the host cell genome 

by IN in the form of a tetramer with the help of the cellular cofactor LEDGF [8,42-43]. Recently 

developed anti-HIV-1 drugs were found to efficiently inhibit the integration reaction in vitro and in 

vivo [44]. 

3. Reverse transcription of subgenomic and cellular RNAs 

The full length viral RNA, in addition to being the retroviral genome, plays a key role early in 

retrovirus assembly since it represents a scaffolding platform onto which Gag polyprotein molecules 

readily assemble to ultimately form the inner core structure [45-47]. In addition to the dimeric RNA 

genome, which is the reverse transcription template, the mature virion core structure contains 

subgenomic and a subset of cellular RNAs that can be reverse transcribed. 

a. Virion incorporation of subgenomic viral RNAs 

Significant amounts of subgenomic viral RNAs are packaged into virions alongside the full length 

viral RNA [49-51]. Under conditions where the full length viral RNA has had the Psi packaging signal 

removed, only minute amounts of genomic RNA are incorporated into virions, while the incorporation 

of subgenomic RNA is favored (for review : [52]) [49,53-55]. The spliced viral RNAs are believed to 

be dimeric within the virion core since they are able to undergo dimerization in vitro, a prerequisite for 

RNA packaging [51,56-57]. All spliced HIV-1 RNA species have been found equally packaged in 

virions, regardless of their nuclear export pathway [49]. While genomic RNA packaging is mediated 

through Gag or NC interaction, involving the characteristic zinc finger domains, the spliced HIV 

RNAs are dependent upon the SP1 region of Gag for their packaging [54]. However, all HIV-1 RNA 

species share common functional cis-acting packaging signals, notably those in the 5’ UTR, since both 

the genomic RNA and the spliced viral RNA species are packaged in a competitive manner [49]. The 

subgenomic RNAs contain all the cis-acting signals recognized by RT, and reverse transcription of 

notably the fully spliced viral RNAs takes place in virions and in newly infected cells as efficiently as 

that of the unspliced viral RNAs [50]. In the case of gammaretroviruses, MuLV provides the unique 

example of a natural heterodimer. Despite the presence of spliced and genomic RNA within virions, 

genomic dimers are the predominant form observed undergoing reverse transcription [51,58]. 

b. Incorporation of cellular RNAs into virions 

In the course of virion morphogenesis, abundant cellular RNAs are incorporated into viral particles, 

which, in the case of wild-type retroviral particles, reside in the core together with the genomic RNA. 

Interestingly, incorporation of cellular RNAs into viral particles is greatly enhanced when the genomic 

RNA lacks the Psi packaging signal. Under these conditions, cellular RNAs can constitute more than 
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50% of the total RNA mass per particle [46,49]. These cellular RNAs might participate in 

recombination-transduction reactions during reverse transcription, for example defective leukemia 

viruses have been generated through this process [59-64]. 

Figures vary for the extent of cellular RNA incorporation into virions since RNA can be selectively 

excluded or enriched for in retroviral particles. Among abundant species, there are many small Pol-III-

generated RNAs such as tRNA, 5S rRNA, U6 snRNA, mY RNAs, 7SL RNA and 7SL RNA-derived 

SINE RNAs (B1 RNA or Alu RNA) [49,64-68]. For unknown reasons, the U6 snRNA is enriched in 

RSV, MuLV or HIV-1 particles, while U1 and U2 snRNAs are found only in trace amounts. 

Figure 3. Illustration of the reverse transcription process. The individual steps are as 

follows. a.-b. annealing of the replication primer tRNA by NC. Stars correspond to 

modified nucleotides in the primer tRNA, notably m6A at position 58 important for the 

fidelity of the plus-strand DNA transfer and in the anti-codon loop recognized by RT.  

c. Initiation of cDNA synthesis by RT by extension of the –CCA 3’ terminal nucleotides.  

d. SscDNA(-) transfer to the RNA 3’ R sequences by NC. e. minus -trand DNA transfer by 

RT. f. Initiation of plus-strand DNA by extension of the PPT RNA by RT. g.-h. Plus-strand 

DNA transfer at the level of the PBS sequences by NC and elongation of viral DNA 

strands by RT that includes ds DNA unwinding to complete LTR DNA synthesis. i. The 

linear ds DNA is shown here with the LTR’s and the terminal TG/CA nucleotides. 
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The 7SL RNA exemplifies specific host RNA encapsidation since it is enriched at a level similar to 

that of the genomic RNA in MuLV and HIV-1 virions [65-66]. In addition, the 7SL RNA can be 

reverse transcribed in virions and in newly infected cells [67]. 

Similarly, mY RNAs are among the most highly represented non-coding RNAs specifically 

packaged in MuLV. Interestingly, mY RNAs are recruited even in Ro60 knockout cells, where mY 

RNA is degraded in the cytoplasm while there is a residual pool in the nucleus [68-69]. These 

observations favor the notion that mY RNAs are recruited in the nucleus of infected cells, at an early 

stage of MuLV morphogenesis. Except for the replication primer tRNAs that are packaged through 

interaction with viral RT and possibly NC [70-72], the packaging determinants of host cell RNAs are 

poorly defined. Recent studies have indicated that selective packaging of host RNAs such as U6 

snRNA or 7SL RNA, is controlled through independent mechanisms that differ from those of viral 

RNAs [49,64,66]. A possible mechanism through their heterodimerization with the viral genomic RNA 

is unlikely [51]. Packaging of 7SL RNA has been studied the widest, but its NC-dependence, and its 

possible influence on APOBEC3G packaging are questioned by others [73]. 

Taken together, the mechanism by which non-genomic, viral and cellular RNAs are packaged into 

virions is as yet poorly understood, or controversial, with the exception of the primer tRNA. The roles 

of subgenomic RNA and some cellular RNAs in reverse transcription and in the biology of the virus 

remain a matter of speculation, with the notable exception of the replication primer, and of 7SL RNA, 

thought to recruit the APOBEC 3G restriction factor [70,74]. 

4. Viral DNA Synthesis during retrovirus assembly 

The overall process of Retrovirus assembly is considered to take place at the plasma membrane of 

infected cells where Gag and Gag-Pol molecules assemble via major interactions between two 

platforms, the N-terminal myristate and basic residues of the Gag-Matrix with plasma membrane 

phospholipids, and the zinc finger and the flanking basic residues of the Gag-NC with the genomic 

RNA (reviewed in [75-79]). Once completed, immature retroviral particles bud from the plasma 

membrane. Next, virion Gag and Pol molecules are processed by the viral protease (PR) during which 

condensation of the inner core occurs and virions gain infectivity [80-81]. However, retroviral 

assembly can also take place within infected cells, notably at the level of intracellular membranes such 

as endosomes and multivesicular bodies [82-85]. Under these circumstances the viral protease can 

readily remain active during assembly, directing the processing of Gag and Gag-Pol polyprotein 

precursors. Indeed, a large body of evidence obtained by western immunobloting demonstrates the 

presence of mature matrix, capsid and nucleocapsid proteins in cytoplasmic extracts of infected cells. 

Furthermore, the newly made virions contain a single copy of the full length viral RNA in a dimeric 

form along with minor quantities of spliced RNAs (see above) [49]. 

However, it has long been shown that small amounts of minus-strand viral DNA are present in viral 

particles of Rous sarcoma virus (RSV), Moloney murine leukemia virus (MoMuLV), and HIV-1 

generated in cell cultures. This indicates that reverse transcription can already be ongoing during virus 

assembly or in the released particles, in a process which has been called natural endogenous reverse 

transcription (NERT) [86-89]. This early or premature reverse transcription has been extensively 

studied by the groups of Pomerantz and Mougel [50,90], revealing that AZT treatment of HIV-1 
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infected T cells causes a 10-100 fold reduction of intravirion viral DNA levels. This supports the 

notion that reverse transcription can take place, at least in part during the course of virus assembly as 

suggested some time ago in studies demonstrating that the synthesis of a complete infectious viral 

DNA can take place within virions of MoMuLV and equine infectious anemia virus (EIAV) under in 

vitro conditions using mild detergents that preserve the core integrity [92-93].More importantly, the 

physiological microenvironment, notably components of seminal fluid such as polyamines, dNTP’s 

and fragments of the abundant semen marker prostatic acidic phosphatase (PAP)s, can drastically 

enhance NERT and the accumulation of intravirion viral DNA [31-90]. HIV-1 virions containing high 

levels of viral DNA can readily infect non-dividing target cells. In addition, the PAP-derived peptide, 

termed Semen-derived Enhancer of Virus Infection (SEVI) that is also abundant in seminal fluid can 

efficiently promote attachment of HIV-1 particles to target cells. This in turn enhances viral infection 

and most probably facilitates the very early events of HIV-1 infection during sexual intercourse 

[31,90,91].  

Furthermore, SEVI seems to display a potent nucleic acid chaperoning activity and to greatly 

enhance the reverse transcription process in vitro as well as in HIV-1 virions (Darlix JL et al., 

unpublished data), which suggests that SEVI might act as a multifunctional cofactor enhancing HIV-1 

infection through numerous modes.  

Taken together these findings show that viral DNA synthesis can indeed start during virus formation 

and that the so-called NERT process is largely influenced by components of the physiological 

microenvironment such as polyamines, dNTP’s and SEVI. This in turn can have a significant impact 

on HIV-1 infectivity of primary target cells [89-91]. 

Arguably, Retroviruses such as HIV should be viewed as RNA/DNA viruses rather than being 

strictly categorized as RNA viruses. Furthermore, the evidence highlights the need to identify 

microbicide compounds aimed at inhibiting components of the seminal fluid which facilitate HIV-1 

infection [94]. 

5. Retrovirus assembly and the control of reverse transcription 

In the course of assembly, Gag structural precursor molecules are targeted to the plasma membrane 

by the N-myristate and basic residues of the Gag matrix (MA) on the one hand, and the genomic RNA, 

notably the Psi Packaging signal (its stem-loops specifically bound by the C-terminal Gag 

nucleocapsid (NC)), on the other. In fact, NC – consisting of either one or two highly conserved zinc 

fingers flanked by basic residues – directs the selection of the genomic RNA through multiple 

interactions between the RNA Psi sequences and both its zinc finger(s) and its basic residues 

[20,21,75,95]. 

In the case of HIV-1 NC, the central globular domain corresponding to the two zinc fingers and the 

basic linker forms a hydrophobic platform which specifically binds the Psi stem-loops of the genomic 

RNA (reviewed in [21,75]). Mutating the highly conserved CCHC residues of the zinc fingers causes 

an impairment of genomic RNA packaging in newly formed virions. Interestingly, these CCHC 

mutations result in profound modifications of Gag trafficking in cells and in the production of viral 

particles that are completely replication defective (reviewed in [20,95]). 
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However reverse transcription does take place in CCHC mutant virions as evidenced by the 

accumulation of newly made viral DNA ([96-97], and ref. herein), which does not, however undergo 

integration. The observed reverse transcription occurs during assembly and prior to virion budding 

because addition of the nucleoside RT inhibitor (NRTi) AZT to the producer cells blocks accumulation 

of the viral DNA. This newly synthesized viral DNA, or at least part of it, was found to be functional 

since it was capable of promoting synthesis of the viral Tat transactivator and of LTR activation ex vivo 

[96]. 

The above data highlight the fundamental role of NC in virus assembly and reverse transcription, 

and possibly in the maintenance of the newly made viral DNA [40] (reviewed in [20,95]). In addition, 

there seems to be a tight connection between virus assembly and the start of reverse transcription 

where slowing down or modifying the assembly process would be expected to modify the timing of 

viral DNA synthesis. The data also favor the notion that minor structural modifications of the inner 

virion core would result in the intracellular instability of newly made viral DNA, notably at the 5’ and 

3’ ends. Indeed, mutating the NC zinc fingers results in the formation of HIV-1 particles with a general 

globular structure and not a condensed cone-shaped structure as typified by the wild type virus [99], 

which result in degradation of the incoming virion core by cellular factors (see § on the synthesis of 

functional viral particles in primary cells, below). 

In support of such a dynamic connection between virus assembly and budding, and viral DNA 

synthesis, Thomas et al. [98] reported that mutating the p6 PTAP motif within the Gag C-terminal 

domain slowed virion budding, an effect probably due to weakening of the interaction between Gag 

and the cellular transporter protein TSG101. At the same time, this causes extensive premature reverse 

transcription and the accumulation of newly made viral DNA in p6 mutant virions. 

Thus, the general view that emerges suggests that the dynamics of the assembly-budding process 

exert tight control on the timing of viral DNA synthesis by RT, chaperoned by NC in the virion core. 

Furthermore, the global structure of the core, central to which the multiple interactions between NC 

molecules and the genomic RNA, would transiently function as a shield against cellular factors 

capable of degrading components of the viral core, which would otherwise prevent synthesis of a 

functional viral DNA. For highly replicating viruses such as HIV-1, the nature of the molecular 

interactions between the genomic RNA, tRNA, RT and NC, and between the viral DNA, NC and IN 

largely out competes the influence of host restriction factors such as APOBEC and TRIM proteins. In 

addition, these tight molecular interactions might well be indispensable for the synthesis of complete 

viral DNA containing mutations and reassortment of large regions by means of recombination 

reactions. This should confer, at least in part, resistance to immune responses and anti-retroviral 

therapies targeting the RT, PR and IN enzymes (HAART). 

6. Reverse transcription in primary cells 

In cells undergoing HIV-1 infection, the process of reverse transcription occurs in a densely 

populated environment, the cytoplasm. There, it is intimately linked to at least two other steps, namely 

uncoating, the process through which the viral core is reorganized, and trafficking towards the nucleus 

[100]. Given that reverse transcription occurs in this viral shell that serves several functions, it is not 

surprising that this process is intimately linked to the fate of viral cores. Indeed, mutations that affect 
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the core major structural component, (i.e. the Capsid protein (CA)), almost invariably display a defect 

in viral DNA accumulation [100-103]. 

However, the relationship between HIV-1 reverse transcription and viral core reorganization is 

poorly understood. Specifically, it is not known whether uncoating occurs subsequent to the 

completion of viral DNA or if a reciprocal co-stimulation is established between the two processes. 

The former hypothesis was raised following evidence indicating that viral cores gained stability in the 

absence of the central polypurine tract -central termination sequence (cPPT-CTS) cis-element [104]. In 

this debated model, the three-stranded DNA flap formed in the neo-synthesized viral DNA, conveys 

the signal of end of reverse transcription which starts viral core restructuration and prepares it for the 

next step of the viral life cycle, i.e. nuclear import. This model is seducing as it finds parallels in other 

viruses whose capsids undergo profound changes in the proximity of nuclear pores that are required 

for the nuclear import of their genome [104-106]. Whether this is true for HIV-1 remains a matter of 

debate as biochemical evidence suggests that extensive viral core reorganization occurs either prior to 

or during reverse transcription [107-110] and cPPT-CTS mutants display rather moderate infectivity 

defects [111-113]. 

Why is the relationship between reverse transcription and uncoating important? We propose it is so 

to counteract in a timely fashion possible antiviral defenses that target viral cores. Viral cores are 

characteristic molecular signatures of Retroviruses and they are known to be targeted shortly after cell 

entry by antiviral factors. For example, the Tripartite motif protein 5 alpha (TRIM 5α) recognizes viral 

cores and destructures them, impacting on reverse transcription (108). If uncoating does not occur until 

the completion of viral DNA synthesis, then a structure identical to the one entering the cell will be 

present throughout the journey of the viral core across cytoplasm. If, instead, uncoating occurs 

progressively together with reverse transcription this characteristic complex will undergo change, as a 

consequence of which the viral structures sensed by cellular antiviral defenses will be markedly 

distinct. 

It remains to be seen if TRIM5α or the Friend susceptibility virus gene 1 (Fv1) are unique factors or 

if other proteins exert similar functions, but it would not be surprising to find these characteristic 

retroviral structures to be the target of multiple factors. In this respect, by providing a signal for the 

ordered reorganization of viral cores, reverse transcription may protect the virus from attack within the 

cytoplasm environment simply by promoting shedding of the components through which viral cores 

are recognized.  

The major difference between the two models outlined above on the relationship between core 

reorganization and reverse transcription is the length of time during which the initial viral core 

structure persists as such in the cytoplasm of infected cells. It is well appreciated that viral DNA 

completion varies greatly among target cells. For example, while the reverse transcription process 

takes only 4 to 8 hours in transformed cell lines such as HeLa cells, widely used to study viral 

infection, it can take up to 20-30 hrs in primary lymphocytes and macrophages or days in non-

stimulated monocytes [114-116]. Thus, the extent of reverse transcription in different target cells is 

extremely variable and dependent on the activation status of target cells, the dNTP pool and on the 

plethora of cellular factors that are present in these cells at the moment of infection. In cells in which 

reverse transcription occurs slowly, antiviral defenses are more likely to recognize and counteract 

incoming virion cores.  
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Indeed a correlation between the extent of reverse transcription and the permissivity of primary 

cells to infection is widely reported. In the past, this has been hypothesized to be a consequence of 

poor availability of dNTPs in cells resistant to infection. Yet, more recent data indicates that RT 

functions correctly even at low dNTP concentrations, such as those normally found in restrictive cells 

including macrophages or monocytes [116,117]. It is thus conceivable that the correlation between the 

rate of reverse transcription and a cell’s susceptibility to infection is due to a protective effect of the 

viral core permitting more efficient reverse transcription and thus infection. 

One of the major problems in studying the early phases of infection is the long appreciated 

observation that the vast majority of viral particles entering cells are non-infectious, as they do not 

result in the establishment of an integrated proviral DNA and are progressively lost over time. Only 1 

in 8 viruses is thought to be infectious in established cell lines where infection is efficient [118] but 

may well be at least 1 in 100 particles in primary cell types such as macrophages and dendritic cells. 

The reasons for this are unclear at present and defects at the level of viral assembly cannot be 

excluded. Yet, an interesting hypothesis is that intracellular defenses are largely responsible for the 

generation of non-infectious viruses, in which replication terminates at some point despite successful 

target cell entry and initiation of reverse transcription. This hypothesis remains unaddressed. 

7. Conclusion 

Studying reverse transcription in HIV-1 has shed some light on virus variability fueled by the error 

prone RT enzyme, which is, at least in part, counterbalanced by NC protein in order to control the 

process and to contribute to its completion and fidelity (Figure 4). At the same time, NC and NC-RNA 

interactions most probably drive the incorporation of cellular deaminase APOBEC 3G, which should in 

turn contribute to HIV-1 variability (Figure 4), though it in turn counterbalanced by the viral factor 

VIF. 

To understand how HIV-1 genetic variability allows the virus to resist innate defenses, specific 

immunological responses and highly active antiretroviral therapies targeting the viral enzymes RT, PR 

and IN (HAART) [119], the circulating virus populations should be viewed as quasi-species consisting 

of genetically distinct but closely related viruses. Analysis of HIV-1 proviral DNA in individual T-cells 

present in the lymph nodes of infected persons shows a substantial fraction harbor distinct proviruses 

[120]. It follows that infected T-cells possess the ability to produce both homozygous and 

heterozygous viruses by means of recombination during reverse transcription, further fueling HIV-1 

variability [18,21,121-122] and translates into the generation of a large number of virus quasi-species. 

Since the nucleocapsid protein of HIV-1 plays key roles in reverse transcription, mainly through its 

highly conserved zinc fingers, it represents a target of choice for compounds and approaches [123] that 

seek to complement HAART and impair the circulation of HIV-1 strains resistant to anti-RT, -PR and –

IN drugs [120].  
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Figure 4. Molecular interactions in the course of reverse transcription. This scheme 

illustrates essential molecular interactions taking place prior to and during reverse 

transcription. (i) The genomic RNA is in a dimeric form where there are many RNA-RNA 

interactions, in addition to the Dimer Linkage Structure (DLS). (ii) Several hundred NC 

molecules, in a poorly characterized oligomeric form [72] (see top arrow pointing to NC-

NC interactions), coat the genomic RNA providing protection against cellular nucleases 

and UV irradiation; (iii) A number of small cellular RNAs are incorporated into virions via 

interactions with Gag-NC and Pol-RT and Pol-IN (not illustrated here); except for the 

primer tRNA the function, if any, of the other cellular RNAs is poorly understood. (iv) The 

RT and IN enzymes interact with the genomic RNA-NC complex ensuring reverse 

transcription and ultimately integration of the newly made viral DNA. (v) In the absence of 

the viral factor VIF, APOBEC restriction factors are incorporated into virions via 

interactions with the viral RNA and NC, which results in the production of highly mutated 

viral DNA molecules. (vi) The reverse transcription machinery is housed within the 

incoming virion core where capsid protein molecules provide protection against host 

restriction factors such as TRIM proteins (see also text). (vii) Small amounts of the viral 

transactivator TAT have been found in the virion core. Tat may counteract the negative 

impact of cellular miRNA on the stability of the viral RNA prior to virion formation [124]. 
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