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Abstract: The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine)
(p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene
fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion
was characterized using proton nuclear magnetic resonance (1HNMR) and attenuated total reflectance
Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission
scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the
membranes. The effect of the zwitterionization content on membrane performance indicators such
as pure water flux, membrane fouling, and dye rejection was investigated. The morphology of the
membranes showed that the increase in the zwitterion amount led to a general decrease in pore
size with a concomitant increase in the number of membrane surface pores. The surface roughness
was not particularly affected by the amount of the additive; however, the internal structure was
greatly influenced, leading to varying rejection mechanisms for the larger dye molecule. On the
other hand, the wettability of the membranes initially decreased with increasing content to a certain
point and then increased as the membrane homogeneity changed at higher zwitterion percentages.
Flux and fouling properties were enhanced through the addition of zwitterion compared to the
pristine PVDF membrane. The high (>90%) rejection of anionic dye, Congo red, indicated that these
membranes behaved as ultrafiltration (UF). In comparison, the cationic dye, rhodamine 6G, was only
rejected to <70%, with rejection being predominantly electrostatic-based. This work shows that
zwitterion addition imparted good membrane performance to PVDF membranes up to an optimum
content whereby membrane homogeneity was compromised, leading to poor performance at its
higher loading.
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1. Introduction

The textile industry is one of the largest and most important industries in the world [1]. However,
the wastewater from this industry poses serious challenges to the environment and is considered a
source of harmful pollutants due to the diversity of dyes [2]. In addition to the textile industry, paper,
plastic, pharmaceuticals, cosmetics, and beverages also contribute to discharging wastewater containing
different kinds of dyes [3]. When these dyes are released to the environment, they pose a great threat
to ecosystems and to public health [4,5]. It has been proven that dyes are toxic and negatively affect
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the aesthetic of water and also reduce the photosynthetic activity of aquatic organisms even at low
concentrations [6]. The lakes and rivers that these pollutants flow through are prone to eutrophication
in the long run [7]. In trying to remove these toxic pollutants, numerous conventional methods
have been studied. These include adsorption [8,9], coagulation [10,11], biological degradation [12,13],
and advanced oxidation processes [14,15]. These methods display drawbacks such as insufficient dye
removal, unsustainability with regard to dye recovery, and production of secondary pollution [16].
For instance, the advantages of the widely used adsorption technology are simplicity, flexibility, and the
use of different types of adsorbents, with its main and critical drawback being the production of
secondary pollution in the form of sludge loaded with toxic dyes [17]. This leads to more expensive
post-treatment processes, which is a major challenge when the adsorption process is used at a larger
scale [18]. To address the challenges posed by the above-mentioned technologies, a microbial fuel
cell to directly convert dyes from wastewater into bioelectricity while desalinating the wastewater
has been explored [19]. However, it was determined that this technique was also not feasible, as it
rendered it hard for the valuable residuals of these dyes to be recovered [20]. Therefore, there is an
urgent need to develop cost-effective technologies for the treatment of wastewater containing dyes.

The use of membrane technology has become widely applied in various fields such as water
treatment [21], gas purification [22], food processing [23], pharmaceuticals [24], and environmental
protection [25]. Membranes play an important role in wastewater treatment. They are utilized for oily
wastewater separation [26], biological and chemical oxygen demand (COD and BOD) reduction [27],
heavy metal ion removal [28], textile wastewater treatment [29], and nuclear waste treatment [30].
Over the years, literature has highlighted properties that make good membranes, such as higher
flexibility, smaller footprint demand for installation, better control of the pore-forming mechanism,
and low costs [31]. Membranes for industrial processes have been made from both inorganic and organic
polymers, with the organic-based being the dominant ones. These organic polymers include polysulfone
(PSF) [32–35], polyacrylonitrile (PAN) [36–39], polyethersulfone (PES) [40–43], and poly(vinylidene
fluoride) (PVDF) [44–47], among others. These membranes each have distinct characteristics that make
them good candidates for the desired improvements and applications [24,48].

Membranes made from poly(vinylidene fluoride) PVDF, a semi-crystalline polymer with repeated
units of –(CH2CF2)n–, are also produced via conventional non-solvent induced phase separation [24].
In addition to its chemical and thermal stability and high mechanical strength [27], PVDF is one of the
most widely used polymers in membrane technology for separation applications [23,49]. Even with so
many good qualities, the hydrophobic nature of the PVDF membrane makes it prone to fouling, which
is caused by the deposition and accumulation of constituents in the feed stream of the membrane [50].
This is a long-term critical issue that occurs particularly in the PVDF membrane-related applications,
thereby decreasing its performance and efficiency [24,27]. It has been reported that an increase in
hydrophilicity offers membrane fouling resistance [51,52]. In trying to rectify this issue, Xu et. al. used
graphene oxide and silane functionalized graphene to enhance the hydrophilicity of PVDF membranes
for better antifouling resistance [53]. In another study, Maziya et al. grafted silver nanoparticles onto
hyperbranched polymer nanofibrous membranes in order to enhance its dual antifouling properties [54].
Other researchers have reported the incorporation of different nanomaterials to increase membrane
hydrophilicity [55–57].

Previously, poly(ethylene glycol) (PEG) materials and its derivatives have been widely used to
enhance hydrophilic properties and reduce fouling [58,59]. This is because poly(ethylene glycol) (PEG)
materials possess hydration, are easily controlled, and have biocompatibility [60]. The downside
is that due to oxidation, PEG tends to be very unstable in the presence of oxygen and transition
metals [40,45]. More recently, studies have proven that zwitterionic molecules are effective antifouling
materials due to their hydrophilicity rendering excellent antifouling ability to membranes [61–64].
Zwitterionic polymers are polymers that simultaneously contain both the negatively and positively
charged ions, which are arranged as the pendent-side chain structure [58]. This unique molecular
structure provides them with excellent properties that allow them to bind water molecules more strongly
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than PEG materials [49,65]. The excellent antifouling properties imparted through the incorporation of
zwitterionic molecules have led to their exploration as the most effective antifouling medium and have
been shown to be ultra-low fouling even when in contact with complex media such as an undiluted
human plasma or serum [66]. These materials can be incorporated into membranes via coating [23,49],
grafting [44,61], or blending [67,68]. Coating and grafting are two-step processes that take place at the
surface of the membrane. Blending, however, is a one-step process of membrane modification that
is done during membrane preparation; hence, lower membrane production costs are realized than
through the other processes [51]. Careful selection of zwitterion modifiers is important to minimize
their leaching during applications; for instance, zwitterions with sidechains are known to interact
strongly with PVDF polymers, thereby minimizing their leaching [69]. Thus, the zwitterion selected
in this study is expected not to leach in line with this expectation. The introduction of hydrophilic
modifiers is said to enhance the performance, thereby removing pollutants while prolonging the life of
the membrane.

The effects of the incorporation of zwitterion, p(MAO-DMPA), into a PVDF polymer matrix
during phase inversion are explored and reported herein. It is envisaged that the PVDF ultrafiltration
membrane produced in this manner will possess enhanced physicochemical properties, namely porosity,
hydrophilicity, and water uptake capacity, leading to improved performance indicators such as high
flux, solute rejection through electrostatic interaction, and antifouling properties. The preparation of
p(MAO-DMPA) and its incorporation into a PVDF matrix via phase inversion has not been previously
reported and its effects on the modified membranes on water flux and solute rejection has not yet been
studied for wastewater applications. Moreover, their functionalities will impart additional mechanisms
of solute interaction that will lead to additional solute mechanism rejection.

2. Materials and Methods

2.1. Materials

Poly(vinylidene fluoride) (PVDF), maleic anhydride-alt-1-octadecene (MAO), 3-(dimethylamino)-1-
propylamine (DMPA), tetrahydrofuran (THF), N-methyl-2-pyrrolidone (NMP) anhydrous, poly(ethylene
glycol) (PEG), Congo red (CR), Rhodamine 6G (RG), and bovine serum albumin (BSA) were purchased
from Sigma-Aldrich (Johannesburg, South Africa). All materials were used as purchased with no
further purification.

2.2. Synthesis of p(MAO-DMPA)

The zwitterionic polymers were synthesized according to the method of Venault et al. (Figure 1) [23].
In short, MAO (0.01 mol) and DMPA (0.32 mol) were stirred in THF (50 mL) for 20 min at room
temperature (RT). The mixture was then centrifuged three times at 5000 revolutions per minute (rpm)
for 30 min to separate the resultant polymer from the solvent. The polymer was then dried under
vacuum and stored at 4 ◦C until use. The formation of zwitterion was confirmed by 1H-NMR and FTIR.

2.3. Preparation of Membranes

The PVDF membranes were synthesized following the procedure reported by Ahmad et al. [70]
with slight modifications. A series of PVDF membranes with different compositions (wt.%) of
p(MAO-DMPA) and NMP were prepared (Table 1). The solvent, NMP (80–82 mL), the polymer (16 g),
and the appropriate amount of p(MAO-DMPA) (0.5–2.0 g) were stirred in a beaker using an overhead
stirrer until a homogeneous casting solution was obtained, at about 24 h. The casting solution was then
placed under vacuum for 24 h to remove dissolved gases and obvious air bubbles. The membranes
were formed by casting the solution onto a glass plate with a blade set at a 200-µm air gap. The polymer
film was then immersed in a coagulation bath at room temperature and left for 24 h. The formed
membranes were transferred into fresh distilled water and stored in the fridge until needed.
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Table 1. Composition (wt.%) of the membrane casting solutions. PVDF: poly(vinylidene
fluoride); PEG: poly(ethylene glycol); p(MAO-DMPA): poly-(maleic anhydride-alt-1-octadecene-3-
(dimethylamino)-1-propylamine); NMP: N-methyl-2-pyrrolidine.

Description Membrane ID PVDF
(wt.%)

PEG
(wt.%)

P(MAO-DMPA)
(wt.%)

NMP
(wt.%)

M0 PVDF/PEG 16.00 2.00 —— 82.00
MZ1 PVDF/PEG/Z1 16.00 2.00 0.50 81.50
MZ2 PVDF/PEG/Z2 16.00 2.00 1.00 81.00
MZ3 PVDF/PEG/Z3 16.00 2.00 1.50 80.50
MZ4 PVDF/PEG/Z4 16.00 2.00 2.00 80.00
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Figure 1. Synthesis of p(MAO-DMPA) by ring-opening reaction [23]. RT: room temperature.

2.4. Characterization of the Membranes

The surface and cross-section morphology of membranes was analyzed using a field emission
scanning electron microscope (SEM, VEGA 3 TESCAN, a.s., Brno, Czesh Republic) at the acceleration
voltage of 20 kV. To obtain the membrane cross-section, the membranes were immersed in liquid
nitrogen and fractured whilst hard. All the samples were coated with carbon before observation to
reduce charging. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR,
Perkin Elmer Spectrum 100 Spectrometer, Bruker, Karlsruhe, Germany) was used to determine the
surface composition of PVDF membranes between 650–4000 cm−1 with 4 cm−1 resolution. Water contact
angle (WCA) was measured using DataPhysics Optical Contact Angle (COCA) 15 EC (KRUSS, Hamburg,
Germany) equipped with video capture at room temperature to evaluate the surface wetting ability
using the sessile drop shape image analysis system. A dosing volume of 1 µL and a fast dosing rate
with no continuous dosing were utilized. The readings were taken from at least five spots on the same
membrane, and the values were then averaged out. The quantitative surface roughness analysis of the
PVDF membranes was measured using atomic force microscopy (AFM, Nanoscale IV, Veeco, California,
USA) with the spring constant of 0.12 N·m−1 through the contact mode in dry air. All the membranes
were dried for 6 h in a vacuum oven before the AFM analysis was performed. The concentration of the
dyes in the permeate was determined using UV-vis spectrophotometer (UV-2450, Shimadzu, Suzhou
Jiangsu, China) in the wavelength range between 190 and 800 nm.

Water uptake and porosity studies were performed on all membranes following reported
methods [71]. In short, the amount of water taken in by the membrane was determined by cutting the
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membrane and soaking it in water for 24 h. The weight was recorded as Mw and then dried to record
the Md. The calculation of the water uptake was then determined using Equation (1):

Water uptake rate (%) =
(Mw −Md)

Md
× 100 (1)

The porosity of the membrane was determined by gravimetric analysis using Equation (2):

porosity, ε =
Mw −Md
ρw·A·L

(2)

where Mw and Md represent the wet and dry membrane weights (g), ρw is the density of water (g·m−3)
at RT, A is the surface area of the membrane (m−2), and L is the thickness of the membrane (m).

2.5. Membrane Performance Assessment

A dead-end stirred cell filtration system connected to a nitrogen gas cylinder was utilized to study
the filtration performance of the membranes. All membranes were initially compacted for 30 min with
deionized water at 300 kPa. Thereafter, the membrane performance was assessed at various applied
pressures to obtain flux, rejection, and fouling parameters. The water flux (J) and rejection (R) were
calculated using Equations (3) and (4), respectively:

J =
V

A × t
(3)

where V is the volume (L) of the permeated water, A is the membrane area (m2), and t is the permeation
time (h);

R (%) =

(
1−

Cp

C f

)
× 100 (4)

where Cp and Cf (mg·mL−1) represent the concentration of the permeate and the feed
solution, respectively.

Fouling resistance of the membranes was assessed by measuring pure water flux (Jw1) followed
by that obtained during filtration of a BSA (1000 mg·mL−1) feed solution (Jp). The membranes were
subsequently rinsed with deionized water for 1 h using the backwashing method. It is noted here that
the membranes did not show any signs of damage and maintained their integrity after this process.
Pure water flux (Jw2) was again measured through the rinsed membrane to determine the flux recovery.
The flux recovery ratio (FRR), total fouling ratio (Rt), reversible fouling ratio (Rr), and irreversible
fouling ratio (Rir) of the membranes were calculated using the Equations (5)–(8), respectively.

FRR (%) =

(
Jw2

Jw1

)
× 100 (5)

Rt (%) =

(
1−

Jp

Jw1

)
× 100 (6)

Rr (%) =

(
Jw2 − Jp

Jw1

)
× 100 (7)

Rir (%) =

(
Jw1 − Jw2

Jw1

)
× 100 = Rt − Rr (8)

where Jw1 is the pure water flux before the fouling run, Jw2 is the water flux after washing the fouled
membrane, and Jp is the flux during the BSA filtration run [5].
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3. Results and Discussion

3.1. Characterization of the Zwitterion, p(MAO-DMPA)

The zwitterion p(MAO-DMPA) was synthesized using a ring-opening polymerization of the
poly(maleic anhydride-alt-1-octadecene) while reacting with the 3-dimethylamino-1-propylamine in
the presence of THF (Figure 1). The formation of the zwitterion was achieved through the condensation
reaction between the propylamine and the anhydride ring’s functional group. The successful formation
was confirmed with the aid of 1H-NMR and FTIR spectroscopy.

The chemical structure of zwitterion p(MAO-DMPA) [23,51] was confirmed by 1HNMR
spectroscopy (Figure 2), which was in agreement with literature reports. For instance, the NMR
spectrum of the zwitterion p(MAO-DMPA) showed two characteristic peaks at 3.7 ppm and 1.2 ppm
assigned to the methyl group linked to the N-atom of the quaternary amine and terminal methyl
group, respectively.

 6  
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Figure 2. 1H-NMR spectrum of the zwitterion p(MAO-DMPA). 

On the other hand, in the emergence of the amide band around 1634 cm−1 [51] with a concomitant 
broadening of the amine band confirmed the formation of the target zwitterion. Peaks observed at 3293 
cm−1 and 3363 cm−1 are indicative of the presence of the stretching vibrations of the amine group in the 
DMPA fragment (Figure 3).  

Figure 2. 1H-NMR spectrum of the zwitterion p(MAO-DMPA).

On the other hand, in the emergence of the amide band around 1634 cm−1 [51] with a concomitant
broadening of the amine band confirmed the formation of the target zwitterion. Peaks observed at
3293 cm−1 and 3363 cm−1 are indicative of the presence of the stretching vibrations of the amine group
in the DMPA fragment (Figure 3).

3.2. Characterization and Membrane Performance of the Ultrafiltration Membranes

3.2.1. FTIR Analysis

The FTIR spectra showing the functional groups of the pristine PVDF and PVDF/p(MAO-DMPA)
blend membranes are shown in Figure 4. The presence and relative abundance of the zwitterion in
the membrane formulation is confirmed through the increase in the band at ca. 2857 cm−1 attributed
to the CH2 of the alkane chain. In addition, the characteristic band attributed to the amide group at
1671 cm−1 also confirms the presence of the zwitterion. The slight shift in zwitterion functional groups
compared to those of the free zwitterion (i.e., 2852 cm−1, 2920 cm−1, and 1634 cm−1) is indicative of some
interaction between the zwitterion and the PVDF polymer chains in the membrane matrix. The PVDF
polymer bands are as expected; for instance, the bands around 840 cm−1 in all spectra were attributed
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to plane bending or rocking vibration in α phase of PVDF polymer, whilst the bands around 872 cm−1

were attributed as the mixed mode of CH2 rocking and CF2 asymmetric stretching in β and γ phase of
the PVDF polymer [72]. Bands around 1170 cm−1 were attributed to the asymmetrical stretching of the
CF2 group, while the bands at 1272 cm−1 are attributed to the γ phase [49,72]. These results confirm
the successful blending of the zwitterion into the membrane matrix [44,45,51]. 7  
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Figure 3. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectra of 
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Figure 4. ATR-FTIR spectra of the PVDF and (MAO-DMPA)/PVDF composite membranes at different 
zwitterion contents (wt.%). 

3.2.2. SEM Analysis 

The surface and cross-section morphology as well as the porosity of the membranes were 
examined using SEM. The surface had a typically porous structure expected for membranes prepared 
through phase inversion, with little obvious variations with increasing zwitterion content. The surface 
porosity seemed to increase slightly with increasing zwitterion content from 2.08 to 4.21 as well in line 
with the decreasing top layer (Figure 5). On the other hand, the water uptake values increased with 
increasing zwitterion dosages but decreased drastically for MZ3 (1.5%). The water uptake capacity of 
320% and 982% was observed for virgin PVDF and the 1.0% p(MAO-DMPA)/PVDF membrane, 
respectively (Figure 6). These values complement the results observed for contact angle (Figure 7), 
deducing that hydrophilicity enhances the rate of water uptake [70], as well as SEM observations 
relating to the relative membrane internal structure (Figure 5a’–e’) (i.e., mutation from sponge-like 
structures to interlinked networks) [72]. The uptake ratio tends to increase with increasing zwitterion 
incorporation, but in the current scenario, the higher dosages resulted in increased surface 
heterogeneity that negatively affected the membrane’s ability to trap more water molecules (Table 2) 
[51]. The cross-section of pristine PVDF (Figure 5a’) exhibits a sponge-like morphology with a wide 
finger-like structure in line with previous reports [45]. A subsequent increase in zwitterion content in 
the PVDF matrix caused a noticeable change in both the sponge- and the finger-like morphology. For 
instance, the finger-like structures morphed into an interlinked network of channels with increasing 
zwitterion addition (Figure 5b’–e’), with the top layer becoming even thinner. The disappearance of the 
sponge-like morphology leaving only finger-like or, in this case, interlinked channels is attributed to an 
instantaneous demixing induced by the presence of the zwitterion in the casting solution [52]. The 
increase in (MAO-DMPA) content resulted in relatively porous membranes compared to the pristine 
PVDF membrane, which is in line with previous observations [72]. The change in morphology at higher 
zwitterion content is most likely due to increased immiscibility of the additive in the PVDF matrix, a 
phenomenon that was previously observed at higher loadings [73]. 
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zwitterion contents (wt.%).
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3.2.2. SEM Analysis

The surface and cross-section morphology as well as the porosity of the membranes were examined
using SEM. The surface had a typically porous structure expected for membranes prepared through
phase inversion, with little obvious variations with increasing zwitterion content. The surface porosity
seemed to increase slightly with increasing zwitterion content from 2.08 to 4.21 as well in line with the
decreasing top layer (Figure 5). On the other hand, the water uptake values increased with increasing
zwitterion dosages but decreased drastically for MZ3 (1.5%). The water uptake capacity of 320% and
982% was observed for virgin PVDF and the 1.0% p(MAO-DMPA)/PVDF membrane, respectively
(Figure 6). These values complement the results observed for contact angle (Figure 7), deducing that
hydrophilicity enhances the rate of water uptake [70], as well as SEM observations relating to the relative
membrane internal structure (Figure 5a’–e’) (i.e., mutation from sponge-like structures to interlinked
networks) [72]. The uptake ratio tends to increase with increasing zwitterion incorporation, but in the
current scenario, the higher dosages resulted in increased surface heterogeneity that negatively affected
the membrane’s ability to trap more water molecules (Table 2) [51]. The cross-section of pristine PVDF
(Figure 5a’) exhibits a sponge-like morphology with a wide finger-like structure in line with previous
reports [45]. A subsequent increase in zwitterion content in the PVDF matrix caused a noticeable
change in both the sponge- and the finger-like morphology. For instance, the finger-like structures
morphed into an interlinked network of channels with increasing zwitterion addition (Figure 5b’–e’),
with the top layer becoming even thinner. The disappearance of the sponge-like morphology leaving
only finger-like or, in this case, interlinked channels is attributed to an instantaneous demixing induced
by the presence of the zwitterion in the casting solution [52]. The increase in (MAO-DMPA) content
resulted in relatively porous membranes compared to the pristine PVDF membrane, which is in line
with previous observations [72]. The change in morphology at higher zwitterion content is most likely
due to increased immiscibility of the additive in the PVDF matrix, a phenomenon that was previously
observed at higher loadings [73].
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Table 2. Calculated water uptake and porosity as well as measured membrane thickness and pore sizes.

Membranes Water Uptake (%) Porosity (%) Pore Size (um) Thickness (µm)

MZ0 320 2.08 0.342 92.12
MZ1 554 2.71 0.235 97.18
MZ2 982 4.21 0.169 94.40
MZ3 567 3.10 0.150 96.01
MZ4 765 2.30 0.156 129.11
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3.2.3. AFM Analysis

The variation of the membrane surface roughness with varying amounts of incorporated
p(MAO-DMPA) is shown in Figure 8, where the nodules or the brightest points are elevated areas,
whilst the darker areas represent depressions on the membrane surfaces indicative of surface pores [71].
The surface roughness is reflected in the relative values of Ra and Rq parameters, the arithmetic mean
deviation of roughness that is obtained by measuring the peak heights from one-dimensional plane
and the root mean square Z-data, respectively [74]. It was observed that there was a general increase in
these R parameters as the zwitterion content was increased. There was, however, a decrease in these
parameters for the membrane with the highest zwitterion content (Table 3). This observed decrease
is consistent with the trends observed earlier for the membrane structure and porosity in the SEM
analysis (Figure 5). The overall trend is that increasing the zwitterion content seems to lead to denser
membranes with smoother surfaces and uniformly dispersed surface pores. The smoother surface
is expected to be a key contributing factor in enhancing the anti-fouling properties of the prepared
membranes [35]. In fact, it was previously reported that membranes with loose internal structures
tended to be more prone to fouling than those of a denser nature [75]. It is therefore envisaged that the
membrane fouling profile will be improved with increasing zwitterion content.
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Table 3. Surface roughness parameters for the prepared membranes.

Membranes
Roughness Parameters

Ra (nm) Rq (nm)

M0 37.8 46.8
MZ1 60.7 77.4
MZ2 56.2 78.8
MZ3 54.1 71.7
MZ4 28.3 34.3



Membranes 2020, 10, 323 12 of 21

3.2.4. Water Contact Angle Analysis

The surface hydrophilicity of the membranes was assessed using a sessile drop contact angle
(CA) measurement technique. The variation of the CA is captured in Figure 7, revealing that all the
membranes were moderately hydrophilic with CAs below 90◦ but higher than 60◦ [5,71]. The CA
decreased with the incorporation of the hydrophilic zwitterions, with the 1 wt.% blended membrane
having the lowest angle of 63◦ whereafter it started to rise again, with the 1.5 and 2.0 wt.% membrane
having the highest contact angles. The reversal in CA trend at higher zwitterion content can be attributed
to the increase in surface/membrane heterogeneity at higher zwitterion content, a phenomenon that
was previously reported [51]. A similar reversal at higher zwitterion content was also reported by
Dong et al. [76]. In addition, prior reports also showed that the incorporation of zwitterion into the
PVDF matrix does not affect the CA greatly [23]. For instance, blending the zwitterion into the PVDF
casting solution resulted in CAs that were still relatively higher when compared with other base
polymers such as PA [43], PSF [77], PAN [37], and PES [40].

3.2.5. Water Uptake and Porosity Studies

The water uptake values (Equation (1)) increased with the increasing zwitterion dosages but
decreased drastically for MZ3 (1.5%). The water uptake capacity of the membranes ranged between
320% and 982% for the virgin PVDF and the 1.0% p(MAO-DMPA/PVDF membrane, respectively
(Figure 6). These values complement the results observed for contact angle (Figure 7) in that the most
hydrophilic membrane exhibited the highest water uptake [70]. In addition, the internal membrane
structure also seemed to play a role in the water uptake trends (Figure 5a’–e’) (i.e., mutation from
sponge-like structures to interlinked networks) [72]. The uptake ratio tends to increase with increasing
zwitterion incorporation, but in our case, the higher dosages resulted in surface heterogeneity, thereby
affecting the membrane’s ability to effectively trap more water molecules [51]. The estimated membrane
porosity varied between 2.08% and 4.21% with pore sizes ranging between 0.150 to 0.342 µm, indicating
that these were microfiltration membranes. Thus, they are expected to have a low dye rejection profile
that will allow the effect of the zwitterions to be clearly observed.

3.3. Membrane Permeation Flux

The membrane performance indicators (i.e., pure water flux, fouling propensity as indicated using
flux recovery, and solute rejection) were assessed using a dead-end filtration cell. The pure water flux
increased with the increasing zwitterion content (Figure 9) in agreement with previous reports [35,78].
This is also in line with our expectations, since both membrane hydrophilicity and membrane porosity
were positively influenced by increasing the zwitterion content [45]. The permeability of the membranes
increased steadily with increasing zwitterion content ((M0) 2.7174 < 3.0884 < 5.2381 < 5.1927 < 8.4774
(MZ4)), showing the influence the zwitterion had on the overall water passage [73].

3.4. Dye Rejection Studies

Dyes are found in several industries that deal with coloring, such as the paper, plastic, food,
cosmetics, and clothing industries. These dyes have a negative impact on the environment and need to
be removed or recycled from industrial wastewater before being discharged into the environment [3].
The effectiveness of the membranes for dye rejection was assessed using two model dyes: Congo red
(CR, an anionic dye (C32H22N6Na2O6S2, Mw = 696.665 g·mol−1)) and rhodamine 6G (RG, a cationic dye
C28H31N2O3Cl, Mw = 479.01 g·mol−1)). In the present study, CR dye was used to establish or confirm
that the assessed membranes behaved as ultrafiltration membranes [5]. This apparent ultrafiltration
(UF) behavior was observed even though the measured pore sizes were in the microporous membrane
range of 0.1 to 0.3 µm (Table 2). On the other hand, RG was selected as it is the most widely used
dye compound that is very toxic [79]. The opposite charges and different molecular weight also
help to determine the selectivity of the prepared membranes. Figure 10a shows that the pristine
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PVDF membrane had approximately 85% CR dye rejection, indicating that it is a microfiltration (MF)
membrane. Figure 10 further shows that of the composite membranes, only MZ1 (0.5 wt.%, ε = 2.71%)
and MZ4 (2.0 wt%, ε = 2.30%) exhibited UF membrane characteristics with respect to CR rejection (i.e.,
above 90%) [5]. The intermediate zwitterion loaded membranes showed lower CR rejections of 38%
and 55% for MZ2 (1.0 wt.%, ε = 3.10%) and MZ3 (1.5 wt.%, ε = 4.21%), respectively, which is typical of
MF membranes. It is postulated that this is related to both the porosity (ε) and internal membrane
structure. For instance, MZ1 has the tightest skin layer, whilst MZ4 has the highest tortuosity, whereas
MZ2 and MZ3 are in between. Thus, the CR rejection occurs through two different mechanisms in
these membranes, both related to size exclusion, with the effect of solute interaction with zwitterions
becoming apparent as the content of the zwitterion increased. On the other hand, the smaller cationic
dye, rhodamine 6G, showed a different rejection profile with varying zwitterion content. Whereas all
membranes showed lower rejection for the smaller dye (all below 60%), the observed dye rejection
increased with an increasing amount of zwitterion content (Figure 10). This indicates that the rejection
is not size related, as observed for the larger CR molecule, alluding to a different rejection mechanism.
It is postulated that the long alkane chain is closely associated with the PVDF molecule, leaving the
positive ends sticking out, whilst the negative sites are close to the polymer backbone, leading to
electrostatic repulsive interaction with the positive dye [4,6]. Thus, the relative increase in repulsive
interaction as the zwitterion content was increased resulted in increasing rhodamine 6G rejection. It is
worth noting that this mechanism is observed or prominent at moderate dye rejections. These two
proposed mechanisms therefore offer an explanation for the observed rejection profiles for the two
probe dye molecules [52].Membranes 2020, 10, x FOR PEER REVIEW 13 of 21 
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Increasing the applied pressure (100, 150, and 200 KPa) led to an increase in dye permeation
through the membrane, as expected. The best zwitterion membrane (MZ1 and MZ4) still had CR dye
rejection above 80% at the highest applied pressure used. An interesting observation was the quantum
of the decrease in rejection for the two membranes; for MZ1, this was minimal, whilst for MZ4, it was
higher (at about 10%), further confirming the different rejection mechanisms alluded to earlier. The RG
dye rejection was decreased to between 45% and 25% for all other membranes from a high of 59% at
100 kPa. For the best membrane, MZ4, the RG rejection decreased from 60% to 45% for 100 to 300 kPa
applied pressure, which was the largest drop amongst all the tested membranes. The increased dye
permeation with increasing pressure is due to the enhanced concentration polarization effect and
minimized general interaction with the membrane surface [20]. The observed solute rejection profile
for both the larger dye and the smaller dye with increasing zwitterion content point to the importance
of the interaction potential with the dye molecules in offering an additional rejection mechanism for
these membranes, as their performance, in some instances, approach that of UF membranes.

3.5. Antifouling Performance

Fouling occurs when the pores of the membrane become blocked due to the adsorption or
deposition of dissolved solutes that were being filtered, leading to the reduction of the filtration
performance of the membrane [80]. Fouling inevitably occurs with continuous membrane filtration
through different mechanisms, a process that can be reversible or irreversible. Reversible fouling is
when a foulant is partially binding to the membrane and hence can be removed by backwashing.
Irreversible fouling, however, is when a foulant is fully bound to the membrane surface and requires
chemical cleaning [5]. Due to the cleaning methods necessary to reverse the effects of these mechanisms,
reversible fouling is easier to deal with in filtration applications. The membranes showed no signs
of damage, as their integrity was intact even after this prolonged backwash process. This resilience
offer promise for practical applications. Figure 11a shows that a drastic decrease in the flux was
observed when pure water was replaced with a BSA solution as the feed as a consequence of protein
fouling or deposition on the membrane surface. It also shows that after simple washing of the
membrane with pure water, the water flux was recovered. The extent of the recovery is indicative of
the fouling propensity of the membrane under assessment. The corresponding flux recovery ratio
(FRR), Figure 11b) increased as the zwitterion content increased and seems to track the flux trend
(Figure 9). In contrast, the FRR values seem to be inversely related to the membrane surface pore
sizes (i.e., the higher the pore sizes, the higher the fouling propensity) [81]. The recovery of the pure
water flux was highest for MZ3 (0.150 pore size: >95%) and worst for MZ1 (0.235 pore size: ~22%).
The cake layer only formed on the surface and did not go deep into the membrane due to the smaller
pore sizes observed in Figure 5 but was able to penetrate the larger pores wherein it was difficult to
dislodge. Thus, membranes with intermediate zwitterion content that had reduced surface roughness



Membranes 2020, 10, 323 15 of 21

(Figure 8) seem to be far better than those with the least or the most zwitterion content with relatively
higher surface roughness [82]. The influence of surface roughness is reported to be important with
hydrophobic surface characteristics, which is similar to the current observations for MZ4 compared to
others [83,84]. It is also evident that membranes with higher solute rejection fared worse than those
with lesser rejection when their FRR values were compared (Figure 11b).
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Figure 11. (a) Flux-fouling-recovery cycle; (b) the resultant water flux recovery ratio for the
prepared membranes.

The flux recovery ratio was best for the membranes with intermediate rejection abilities, with those
with 1.0 and 1.5 wt.% zwitterion content exhibiting almost total recovery (MZ3) (Figure 10b). Figure 10
further confirms that the intermediate zwitterion content membranes (1.0 and 1.5 wt.%) exhibited
higher reversible fouling (Rr) compared to irreversible fouling (Rir), which is indicative of their greater
fouling resistance [85]. A larger proportion of Rir is indicative of strong entrapment of foulants on the
membrane surface and is generally prevalent in membranes with larger surface pores [81]. In terms
of this indicator, MZ3 is by far the best antifouling membrane amongst the prepared membranes
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(Figure 12). These observations further demonstrate the influence of zwitterion inclusion in the
performance of these membranes also extends to their fouling mitigation properties.
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4. Conclusions

The successful synthesis of the zwitterion p(MAO-DMPA) via ring-opening and subsequent
blending with PVDF membranes via phase inversion is presented. A series of membranes with
various zwitterion contents were prepared, and the effect of this on membrane performance was
investigated. The gel-like property of the zwitterion resulted in increasing membrane heterogeneity
at higher loading as a result of increasing immiscibility with the polymer matrix, resulting in an
unexpected trend reversal in membrane internal structure, water contact angle (WCA), and porosity.
Overall, the inclusion of zwitterion enhanced flux, fouling, and dye rejection properties compared to
the pristine PVDF. It was found that membranes with intermediate zwitterion content showed the best
overall performance characteristics with respect to pure water flux and fouling propensity. Two solute
rejection mechanisms were observed for CR based on internal membrane structure and zwitterion
content for RG. The membrane that showed highest antifouling profile, highest flux, and acceptable
solute rejection was MZ3, at 1.5 wt.% of zwitterion. The effects of zwitterion content on the evolution
of internal membrane structure and how this affects rejection mechanisms was shown in this study,
and the results bode well for future strategies in controlling membrane properties.
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