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Measuring gene expression divergence:
the distance to keep
Galina Glazko1*, Arcady Mushegian2,3

Abstract

Background: Gene expression divergence is a phenotypic trait reflecting evolution of gene regulation and
characterizing dissimilarity between species and between cells and tissues within the same species. Several
distance measures, such as Euclidean and correlation-based distances have been proposed for measuring
expression divergence.

Results: We show that different distance measures identify different trends in gene expression patterns. When
comparing orthologous genes in eight rat and human tissues, the Euclidean distance identified genes uniformly
expressed in all tissues near the expression background as genes with the most conserved expression pattern. In
contrast, correlation-based distance and generalized-average distance identified genes with concerted changes
among homologous tissues as those most conserved. On the other hand, correlation-based distance, Euclidean
distance and generalized-average distance highlight quite well the relatively high similarity of gene expression
patterns in homologous tissues between species, compared to non-homologous tissues within species.

Conclusions: Different trends exist in the high-dimensional numeric data, and to highlight a particular trend an
appropriate distance measure needs to be chosen. The choice of the distance measure for measuring expression
divergence can be dictated by the expression patterns that are of interest in a particular study.

Reviewers: This article was reviewed by Mikhail Gelfand, Eugene Koonin and Subhajyoti De (nominated by Sarah
Teichmann).

Background
The genome-wide data often take the form of a series of
measurements associated with every gene in the gen-
ome. This series of numbers have been called ‘gene vec-
tors’, and many investigations in comparative genomics
and systems biology start with determining distances, or
similarities/dissimilarities, between all pairs of gene vec-
tors in the measurement space, in order to use these
distances for discovery of relationships between genes
[1]. In the context of genome-scale gene expression
measurements, the subject of this study, one of the sim-
plest and most important kinds of such relationships
may be co-expression of genes - for example, similar
pattern of expression values of two genes across the
time course of the experiment, or across different tissues
of the same organism, or similar pattern of expression

values of two orthologous genes in homologous tissues
of related organisms [2].
Many mathematical formulations are available for dis-

tances between two vectors, and it is of interest to know
how to choose the appropriate distance measure among
many. Much of previous work on distance measures in
computational biology focused on such properties as
metric and additive [3,4], which have a close connection
to the computational tractability of the clustering algo-
rithms, but, generally, are not designed to tell anything
about the biological plausibility of the groups of genes
generated by any given combination of measure and
algorithm. There is no general solution to the problem
of choosing optimal distance measure for any kind of
genome-scale data, and the choice has to be guided by
the additional information about the data, e.g., the
knowledge of the data-generating process model or the
existence of a benchmark dataset.
The question of comparing gene expression profiles

arises in the functional context (i.e., which genes tend to
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be regulated together?) and in the evolutionary context.
The patterns of gene expression are inheritable traits,
and several models of evolution of expression have been
proposed [5-7]. Despite this work, and even some suc-
cess in inferring the ancestral state of gene expression
[8], the methods for estimating the evolutionary distance
(divergence) between genes and species from their gene
expression profiles is in its infancy. To estimate expres-
sion divergence between different species, a variety of
measures has been used, such as Euclidean distance,
correlation-based dissimilarity and other distances (e.g.
[2,9-12]), but little was known about relative advantages
of each measure.
In a recent study Pereira et al [13] investigated the

choice of the distance measure between gene expression
profiles across different tissues for human, mouse and
rat. In their approach, there were three sets of expres-
sion profiles, one for each species, and each gene vector
had eight coordinates (tissue samples in which gene
expression levels were measured). The one-to-one
orthologous relationships [14,15] exist between a large
fraction of genes in three species, so distances between
pairs of orthologous gene vectors from each of the three
possible pairs of species can be examined. It has been
found that the correlation-based distance overestimates
the expression divergence for genes with approximately
uniform expression patterns between different tissues in
the three species, probably because of the random noise
that is uncorrelated between species. This effect was not
observed with Euclidean distance. Moreover, the two
measures of expression difference between orthologous
genes were largely uncorrelated between all pairs of spe-
cies. It has been concluded that Euclidean distance has
the advantage of not amplifying the noise. Additionally,
Euclidean distance was stated to be more sensitive to
the absolute level of gene expression than correlation-
based distance.
In this work, we explore the theme of the optimal

choice of distances for analysis of gene expression pro-
files and make a case for a close fit between the mathe-
matical properties of the distance measure and the
biological question at hand. The choice of distance
should be informed by the properties and signals in the
data that are of interest in a particular study: the mea-
sure that is best suited to detect and highlight these sig-
nals will be optimal in the context of that study.

Results and Discussion
Empirical criteria for distance performance
When expression of orthologous genes across homolo-
gous tissues is to be compared between species, biologi-
cal sensibilities suggest two trends. First, we expect
homologous tissues between species (e.g. rat kidney and
human kidney) to be more similar on average than

non-homologous tissues within the same species (e.g.
rat kidney and rat skeletal muscle) [2]. Second, we
expect that evolution of gene expression is constrained
[2,9], i.e., expression divergence between orthologous
gene pairs in two species is on average significantly
lower than between random gene pairs, one each from
the same two species. These two well-defined properties
may be used as empirical criteria for selecting the best-
performing distance. First, a good distance measure will
cluster tissues rather than species: if we cluster samples
in the gene space, the homologous tissues of human
and rat will tend to have each other, not the same-spe-
cies tissues, as their nearest neighbors in the cluster.
Second, a good distance measure should cluster the
orthologous genes in excess over random genes.
We evaluated the Euclidean distance and correlation-

based distance in these tests. In addition, we also clus-
tered the data using generalized average, a parametric
family of distance measures applicable to the special
case of binary gene vectors. The notable properties of
this family is that it includes a large variety of known
distance measures as special cases, and that an empirical
statistical criterion of selecting well-performing distance
measures, independent of the biological considerations
mentioned above, has been given [1].

Data transformation approaches
We downloaded raw CEL files for human and rat from
Gene Expression Omnibus (GSE2361 [16], GSE952 [17]).
There were 3152 one-to-one orthologous gene pairs
(Ensembl, release 57, BioMart) in eight tissues (bone
marrow, heart, kidney, pituitary, skeletal muscle, small
intestine, spleen, and thymus) simultaneously present in
human and rat data (see Methods for detail). Expression
data can not be compared across species directly. For
example, in our data set the distribution of gene expres-
sion intensities for humans is shifted to the right com-
pared to the distribution of gene expression intensities
for rats (Additional File 1, Figure S1). Without a correc-
tion, we would see about 1200 orthologs as significantly
differentially expressed. To avoid “discoveries” of this
kind, various transformations have been proposed, for
example the relative expression of Liao and Zhang [2]:
if xAij is the absolute expression level of gene i in tissue
j then the relative expression xRij of gene i is

x x xR
ij

A
ij
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tissues. We computed two distances between rela-
tive expression vectors: the Euclidean distance,
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and correlation-based dis-

tance, dcor = 1-r(xRh, x
R
r), where xRh, x

R
r are relative

expression levels for any gene in human and rat, respec-
tively and r stands for the Pearson correlation coefficient.
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Another data transformation method frequently
applied in gene expression studies is the binary transfor-
mation [18]. In our data set there could be at least two
different patterns of gene expression. In the first pattern,
if a gene is tissue-specific and is expressed in one parti-
cular tissue, then its expression is much higher than the
average for a given gene over all tissues. In the second
pattern, a housekeeping gene is expressed more or less
consistently across all tissues. We therefore applied sim-
ple binary transformation: xBij = 1 if x xA

ij
A
i≥ and xBij

= 0 otherwise. Then coordinates of a binary transformed
vector corresponding to tissue-specific gene will be
mostly zeros with infrequent ones, while those for a
housekeeping gene will be almost all ones with only
occasional zeros. This transformation allows us to use
generalized-average (GA) distance measure [1]. For a
pair of binary vectors, xBm and xBn, (here m and n indi-
cate the total number of ones in a vector) GA distance
is calculated as dAl, mn = 1-Al , mn, where

A mn
Xmn
B , = , (-∞ < l < ∞), Xmn = xBmx

B
n is the scalar
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the generalized average cardinality of two vectors, of
exponent l. From this expression one can obtain dis-
tances based on the Simpson similarity index (l ® -∞)
or Dice similarity index (l = 1) related to Jaccard simi-
larity index, as well as many others (see [1] for detail).
For the binary-transformed data set we also applied cor-
relation-based distance, dBcor.

Distance estimates
First, we calculated expression divergence between
human and rat homologous tissues. To select best per-
forming GA distances we employed the empirical criter-
ion suggested in [1], namely that the distribution of best
performing distance tends to have the extreme values of
third and forth moments. We therefore calculated GA
for several lambda parameters (Additional File 1, Figure
S2a) and found that GA distance with l ® ∞ had the
lowest value for skewness and the distance based on
correlations for binary transformed gene expressions
had the lowest values for kurtosis (Additional File 2, Fig-
ure S2a). We decided to test both of these distances, in
addition to conventional correlation-based distance and
the Euclidean distance, on the interval coordinates.
Figure 1 presents clustering of human and rat tissues

and genes based on different distances. Correlation-
based distance and the Euclidean distances cluster six
out of eight tissues correctly (Figure 1a, and Figure 1b),
despite small sample size, and distance measures for
binary transformed expression values cluster four tissues
(Figure 1c and Figure 1d), indicating some loss of signal
due to discretization. Nonetheless, it is clear that the

correlation-based distance and the Euclidean distance
are performing equally well in the problem of tissue
clustering, and even for the binary transformed data the
correlation-based distance detects some of the relevant
signal.
Next, we calculated expression divergence between

human-rat orthologous gene pairs and between human-
rat random gene pairs using different distances. Again,
to select best performing GA distances, distribution sta-
tistics for several lambda parameters (Additional File 2,
Figure S2b) were computed. In this case distribution sta-
tistics were less variable, but GA distance with l ® ∞
had the lowest skewness and the distance based on cor-
relations for binary transformed gene expressions had
the lowest skewness and the highest kurtosis (Additional
File 2, Figure S2b); again we decided to try both of
them. Distance distributions between 3152 orthologs
and 3152 random pairs of human-rat genes were con-
structed for four different distances (Figure 2). At the
1% significance level correlation-based distance, the
Euclidean distance, binary correlation-based distances
and GA distance (l ® ∞) identified, respectively, 327,
69, 207 and 215 orthologous gene pairs with conserved
expression profiles.
To better understand the differences between the four

distances, we analyzed functional enrichment of the
identified conserved gene pairs. For the four groups of
genes we calculated overrepresented GO terms (p-
values≤ 0.001) using GOstat [19,20]. Genes identified
using correlation-based distance, binary correlation dis-
tance, and GA distance shared 15 overrepresented GO
categories (Additional File 4, Table S1), whereas genes
identified using the Euclidean distance were from a
broad variety of different GO categories (Additional File
4, Table S2). Genes identified with three former dis-
tances tend to belong to biological processes involved in
muscle and heart development and morphogenesis,
while genes identified with the Euclidean distance repre-
sent a different processes. Expression profiles of genes
from Table S1 and Table S2 (Additional File 4) shed
more light on the nature of differences between dis-
tances (Figure 3). As one can see (Figure 3, lower
panel), for both species genes selected using the Eucli-
dean distance tend to be expressed in all tissues at the
uniformly low level, close to the background. In con-
trast, genes selected using correlation-based distance
tend to be expressed in several homologous tissues (Fig-
ure 3, upper panel) at the much higher level. That is,
the expression conservation found with the Euclidean
distances tends to come from genes with low expression
and without a single major theme in biological processes
in which these genes are involved (Additional File 4,
Table S2). This suggests an interpretation of the differ-
ence between correlation-based distances and the
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Euclidean distances noted in [2]. The Euclidean distance
measures the uniform divergence between expression
profiles, the higher the divergence the larger the dis-
tance is. The correlation-based distance measures the
concerted changes between profiles: the less changes
profiles share, the larger the distance is.

How high entropy scales with uniform expression
Pereira et al [13] defined uniformly expressed genes as
genes that have high entropy. This definition came from
the observation that gene expression entropy changes
from 0 for genes expressed in just one sample to log2(n)

for genes expressed in all n samples [21]. They selected
genes with the entropy from the upper quartile of the
gene expression entropy distribution, expecting that
‘genes with a conserved uniform pattern of expression’
will have low pattern of expression divergence, but
observed exactly the opposite using correlation-based
distances. Namely, genes with high entropy had higher
correlation-based distances than other genes; in contrast
the Euclidean distances between them were low.
Following this procedure we identified 788 genes in the

upper quartile of the entropy distribution. Expression pro-
files for these 788 genes across eight different tissues in

Figure 1 Clustering of human and rat tissues and genes. Clustering is based on (a) correlation-based, (b) Euclidean, (c) binary correlation
distances and (d) generalized-average distance with exponent approaching infinity.
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two species, as well as for 788 randomly selected genes
clearly show that genes with high entropy are not ‘genes
with a conserved uniform pattern of expression’ (Addi-
tional File 3, Figure S3). The requirement of high entropy
indeed selects genes that are expressed in all tissues (Fig-
ure S3, upper panel, Additional File 3), in contrast to the
rest of the genes (Additional File 3, Figure S3, lower
panel). However, the variance term does not enter into the
formula for calculating entropy, so genes selected on the

basis of high entropy often have highly variable expression.
In addition, genes with high entropy seem not to vary in
concert across tissues in two species (Additional File 3,
Figure S3, upper left and right panels). The variance term
is included in correlation-based distance and the less con-
certed are changes between genes, the larger is correla-
tion-based distance. In contrast, the Euclidean distance
does not include the variance term and will give an
impression of low divergence between genes with high

Figure 2 Histograms of distances between orthologous and random gene pairs. The histogram bars corresponding to orthologous and
random pairs are shown in light and dark gray, respectively.

Glazko and Mushegian Biology Direct 2010, 5:51
http://www.biology-direct.com/content/5/1/51

Page 5 of 10



entropy, especially when the absolute expression level is
low. Thus, one could say the observed pattern of expres-
sion divergence measured by correlation-based distance is
not a shortcoming of the distance, but a shortcoming of
the definition of the ‘uniform pattern of expression’ when
uniformity is understood as high entropy.

Conclusions
We would like to emphasize that different trends exist
in the high-dimensional numeric data, and different

distance measures highlight differently some of these
trends. In the present case, three types of distances
highlighted relatively well the property of gene expres-
sion profiles to be more similar for homologous tissues
between species than for non-homologous tissues within
species. In contrast, when answering a question about
divergence between orthologous genes, one of the three
distances (Euclidean) selected genes uniformly expressed
in all tissues near the expression background, while cor-
relation-based distances and GA distance selected genes

Figure 3 Expression profiles of conserved orthologous gene pairs in two species over eight tissues. Upper panel: expression profiles
selected using correlation-based distance. Lower panel: expression profiles selected using the Euclidean distance.
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with concerted changes among homologous tissues.
Thus, for studying the expression divergence in different
species the choice of the distance measure has to be
guided by the kind of the expression patterns one would
like to identify.

Methods
Raw CEL files for human and rat were downloaded from
Gene Expression Omnibus (GSE2361 [16], GSE952
[17]). Similar to [13] we selected eight tissues simulta-
neously present in human and rat data: bone marrow,
heart, kidney, small intestine, pituitary gland, skeletal
muscle, spleen and thymus. There were two arrays for
rat tissues and only one array for humans, so we aver-
aged rat expression values across tissue replicates. Raw
data were normalized using RMA procedure [22]. When
multiple probe sets per gene were available we selected
the one with the largest value of the overall expression.
Human-rat gene pairs annotated as having a one-to-one
orthologous relationship (3152 pairs) were obtained with
Ensembl, release 57, BioMart.

Reviewers’ comments
Reviewer 1: Mikhail Gelfand, Department of Bioengi-
neering and Bioinformatics, Moscow State University,
and Institute for Information Transmission Problems
RAS, Moscow, Russia
The paper addresses an important problem of select-

ing a good similarity measure for comparing gene
expression patterns. It does not provide definitive
answers, but demonstrates correct approaches. The
main conclusion, “the choice of a proper measure
depends on the biological problem at hand” is difficult
to argue against. The following comments are mainly of
the discussion and editorial nature.
While the basic assumption, that homologous tissues

in different organisms should be more similar in the
terms of gene expression than tissues in one organism,
is reasonable, some caveats are due. For instance, if the
tissues in question are very close developmentally, one
can easily expect concerted, organism-specific changes
in expression. In fact, the papers results demonstrate
exactly that.
The rat spleen and thymus are clustered by all measures

(Fig. 1). The human spleen and thymus are clustered by
some measures, and I think that clustering [(thymus_rat +
spleen_rat) + (thymus_human + spleen_human)] should
not be counted as an error, as opposed to a version
with human spleen being an outlier: [((thymus_rat +
spleen_rat) + thymus_human) + spleen_human]. Similarly,
I’d assume that both versions [(muscle_human + heart_hu-
man) + (muscle_rat + heart_rat)] and [(muscle_human +
muscle_rat) + (heart_human + heart_rat)] are biologically
relevant, as opposed to [((muscle_human + heart_human)

+ muscle_rat) + heart_rat)]. Hence, the procedure of count-
ing errors should not be limited to considering pairs of
non-clustered homologous tissues, but should tale into
account finer topological detail (as well as, maybe, branch
length).

Authors’ response: We agree with the reviewer that
there may be more than one biologically relevant
clustering solution, and concerted organism-specific
co-expression of genes might cause species-specific
tissue cluster. However, we believe that in most
cases non-homologous tissues clustering is directly
related to tissues sampling and the number of repli-
cates available. Curiously, the pattern [((thymus_rat
+ spleen_rat) + thymus_human) + spleen_human],
was observed with all four distance measures that
we tried. Also note that part of our intention was to
demonstrate that in the problem of tissue clustering
there is no valid reason to dismiss the correlation-
based distance, despite the concerns raised in ref.
[13]; and indeed, correlation-based distance and the
Euclidean distances gave the same results in our
hands, and even for the binary transformed data the
correlation-based distance detected some of the rele-
vant signal.

While this may go beyond the limits of the present
study, I think it would be interesting to look into more
detail into the cluster trees generated by different mea-
sures, and specifically, into what genes contribute most
into different clusters, dependent on the expression
patterns. At that, one should keep in mind that in
each tissue we observe an averaged expression of genes
from a mixture of quite different cell types. For
instance, clustering of the spleen, thymus and the bone
marrow may be related to the blood cells development,
while clustering of the spleen, thymus and the pituitary
gland may be caused by genes expressed in the gland
tissue.
Some hint of analysis is given in the last paragraph of

“Distance estimates”. The overrepresentation of heart
and muscle development genes is not surprising, given
the robust clustering of these tissues in all trees. On the
other hand, the statement that the Eucledian distance
does not provide a functionally meaningful set: one can
easily see blood cell development genes there (not sur-
prising given spleen, thymus and bone marrow data)
and neurological process (the sources for which is
admittedly less clear: could it be the pituitary gland?)

Authors’ response: We agree that there is good
information in the clusters produced by Euclidean
distance, even if there is no single dominant theme
there. Note, however, that genes selected using the
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Euclidean distance tend to be expressed in all tis-
sues at the uniform low level, while genes selected
using correlation-based distance tend to be
expressed in several orthologous tissues at the
much higher level.

Reviewer 2: Eugene Koonin, National Center for
Biotechnology Information, National Library of Medi-
cine, National Institutes of Health
The paper by Glazko and Mushegian makes the case

that different measures of expression divergence (in par-
ticular, Euclidean distances and correlation-based dis-
tances) are best suited for revealing different trends in
the evolution of gene expression. I would like to
strongly endorse this work that shows flexibility which
is vital for understanding such a complex phenomenon
as evolution of gene expression in multicellular organ-
isms. A versatile approach like this gives the only hope
of progress in this field and is a welcome contrast to the
common attempts to propose one approach claimed to
be best for all purposes.

Authors’ response: We appreciate the reviewer positive
comment. Taking a more familiar example of distances
between biological sequences, we know that those can
be roughly estimated even without an explicit model of
sequence evolution, but it is also known that, as
sequences diverge, the error of the estimate becomes
more and more significant. Similarly, the ultimate goal
in gene expression analysis is to have an evolutionary
model for gene expression. Short of that, the diver-
gence between expression profiles can be estimated
with appropriate distance measures.

Reviewer 3: Subhajyoti De (nominated by Sarah
Teichmann), Computational Biology Program, Mem-
orial Sloan-Kettering Cancer Center
In the paper entitled “Measuring gene expression

divergence: the distance to keep”, Glazko and Mushe-
gian present a discussion about which distance measure
to use in inter-species expression divergence analyses.
While the topic is of broad interest, I have some
comments
Major comments
1. How were the transcripts with multiple probes trea-

ted? How were the probes that map to multiple genes
treated?

Authors’ response: Raw data preprocessing step is
described in the Method section.

If a gene had multiple transcripts, how did the authors
choose the representative transcript?

Authors’ response: Affymetrix Human hgu133a and
Rat rgu34a arrays do not provide information about
multiple transcripts.

Why no between-array normalization was performed
for rat samples?

Authors’ response: RMA procedure was implemented
for both human and rat arrays.

2. The distributions of Euclidean distance and correla-
tion-based distance for pairs of randomly chosen gene
pairs differ in their shapes. Can the authors discuss this
issue and also how that may affect their comparative
analysis and tree-building?

Authors’ response: This is exactly the point of the
presented paper. Not only the distributions between
randomly chosen gene pairs are different, but also
the distributions between orthologous gene pairs are
different for all distance measures that we tried. As
we have shown in the paper, this difference most
certainly may have an effect on the analysis, and the
kind of effect depends on the type of the analysis, i.
e., on the biological question that is asked.

3. In the recent releases of Ensembl, there are about
14,000 one-to-one orthologs. The authors present
results based on 3152 genes. It remains to be clear why
the dataset analyzed is so small and whether the conclu-
sions made in this paper can be extended to the whole
genome dataset.

Authors’ response: hgu133a and rgu34a arrays con-
tain 22283 and 8799 probe sets, respectively. After
mapping them to unique genes, only 4939 genes for
rat were left. The conclusions made in this paper
refer to the distance properties and hardly depend
on the number of the orthologs studied.

4. In Figure 1 it is not clear how the tree was drawn
(e.g. Neighbour joining, Maximum likelihood) and how
that method may affect the tree structure. Furthermore,
the authors should perform bootstrapping to assess the
quality of the trees.

Authors’ response: We used average-link clustering
for tree inference. As we were interested in how dif-
ferent distance measures affect the tree structure, we
applied the same clustering approach to each dis-
tance matrix. Different clustering approach may
indeed produce trees with different topologies, but
we expect that the effect of varying distance measure
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would be observed in any clustering algorithm. As
for the support of the trees, we expect it to be rela-
tively low given the sample size and the amount of
replicates, and our focus here is on the qualitative
estimate of how different distances perform in the
problem of tissues clustering.

5. In Figure 2 the histogram bars corresponding to
orthologus and random gene pairs should be provided
side-by-side. In its current form, it is hard to interpret
how the distributions of orthologus gene-pairs differ
from the random pairs.

Authors’ response: We think that bar plots with
stacked columns demonstrate the difference between
these distributions quite clearly.

6. In Figure 3, y-axis label is missing. Why skeletal
muscle shows high Euclidian and correlation distance
that is significantly above other tissue-types (as seen by
boxplot) and the trend is consistent in all the four
panels? Is it an array normalization artifact or a biologi-
cally meaningful pattern?

Authors’ response: We labeled y-axis in Figure 3. The
meaning of the pattern observed in Figure 3, we
believe, is that genes selected using the Euclidean
distance tend to be expressed in all tissues at the
uniformly low level (close to the background), while
genes selected using correlation-based distance tend
to be expressed in several orthologous tissues at a
higher level.

Minor comments:
1. The Ensembl Release version is not provided.

Authors’ response: The release version is now
included.

2. GO has many functional categories organized in a
hierarchical structure. It is unclear which level of GO
hierarchy was used in the current analysis.

Authors’ response: The levels were chosen based on
the significant p-values provided by the enrichment
test, and therefore the categories from different
levels of the hierarchy could be reported.

3. Table S1 and S2 carry insufficient detail about the
methodology involved and the message they convey. For
instance, it is unclear whether the over-represented GO
categories in Table S1 arise from analysis on heart tis-
sue? How is the p-value calculated?

Authors’ response: We now provide more compre-
hensive description of Tables S1 and S2 in Addi-
tional file 4. We first identified orthologous gene
pairs with expression profiles conserved at the 1%
significance level, using different distances. For
these gene pairs we implemented GO enrichment
analysis. Genes identified using correlation-based
distance, binary correlation distance, and GA dis-
tances shared 15 overrepresented GO categories
(Table S1), whereas genes identified using the
Euclidean distance were from completely different
GO categories (Table S2). This was the lesson
learned from the analysis, i.e., that different dis-
tances select functionally different conserved ortho-
logous gene pairs. The over-represented GO
categories in Table S1 arise from the genes
expressed in all tissues and identified as conserved
by three different distances. p-values were calcu-
lated by hypergeometric test using the GOstat
module from Bioconductor.

4. In Figure S3, in each panel, the outliers cross the
whisker and also appear to be shifted. Please revise the
figure. Also please adjust the y-axis scale in the two bot-
tom panels to make the figures easier to visualize.

Authors’ response: In R implementation, whiskers
extend to 1.5*IQR but the parameters can be
adjusted so that outliers are not displayed at all. The
message of Figure S3 is that genes with high entropy
are not ‘genes with a conserved uniform pattern of
expression’.

Additional material

Additional file 1: Supplementary Figure S1: The distributions of
gene expression intensities and MASS p-values for human and rat.

Additional file 2: Supplementary Figure S2: Statistics of distribution
of GA-based distances with different exponents.

Additional file 3: Supplementary Figure S3: Expression profiles of
genes with the entropy in the upper quartile of mean entropy
values and randomly selected genes.

Additional file 4: Supplementary Tables S1-S2.
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