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Role of ketone bodies in diabetes-induced dementia: sirtuins,
insulin resistance, synaptic plasticity, mitochondrial
dysfunction, and neurotransmitter

Ji Yeon Chung, Oh Yoen Kim, and Juhyun Song

Patients with type 2 diabetes can have several neuropathologies, such as memory
deficits. Recent studies have focused on the association between metabolic imbal-
ance and neuropathological problems, and the associated molecular pathology.
Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial
dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate
for neurons, but under certain conditions, such as fasting and starvation, ketone
bodies can be used as an energy fuel for these cells. Recent evidence has shed new
light on the role of ketone bodies in regulating several anti-inflammation cellular
pathways and improving glucose metabolism, insulin action, and synaptic plastic-
ity, thereby being neuroprotective. However, very high amount of ketone bodies
can be toxic for the brain, such as in ketoacidosis, a dangerous complication that
may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the
relationship between ketone bodies and neuropathogenesis in dementia are
reviewed in this article. They suggest that the adequately low amount of ketone
bodies can be a potential energy source for the treatment of diabetes-induced de-
mentia neuropathology, considering the multifaceted effects of the ketone bodies in
the central nervous system. This review can provide useful information for establish-
ing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.

INTRODUCTION

The prevalence of type 2 diabetes is markedly increasing
all over the world; subsequently, many researchers have

investigated various pathological problems caused by
type 2 diabetes.1 Among diverse pathological changes,
recent studies have highlighted the strong association

between severe neuropathology and the onset of

diabetes.2,3 Results of several epidemiologic studies sug-

gested a positive correlation between the progression of
diabetes and severity of memory loss, such as mild cog-

nitive impairment and dementia.2–4 Elevated glucose
levels and insulin resistance in blood serum are

reported to be critical risk factors for dementia onset.5–7

Furthermore, researchers have reported that the brains

of patients with type 2 diabetes have more brain
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atrophy, less brain volume, and impaired synaptic con-

nectivity compared with normal brains.8,9 Given these

data, many researchers are focusing on various patho-
logical mechanisms in diabetes-induced dementia.

Glucose is well known as a main fuel in the brain;

it supports the survival of various brain cells.10,11

However, during nutrient deprivation, after exercise,

and during low-carbohydrate states, ketone bodies are

used as an alternative energy source in the brain as well
as in the rest of the body.12–14 In systemic metabolism

processes, ketone bodies are associated with major met-

abolic pathways, including fatty acid b-oxidation, the

tricarboxylic acid cycle, and gluconeogenesis.15 In the
body, fatty acids undergo fatty b-oxidation after food

ingestion and subsequently are converted to a acetyl co-

enzyme A in liver and also ketone bodies.14

Ketone bodies contribute to the elevation of antiox-

idant responses by regulating NAD and NADþ/

NADH–coupled reactions and glutathione activity
through complex pathways.16 Ketosis—the increased

but low levels of ketone bodies in blood, which is natu-

rally produced in the fasted state or the low-carbohy-

drate state—is emerging as a therapeutic approach in
various diseases.17 In particular, many researchers have

suggested that ketosis could treat several neurologic dis-

orders, including epilepsy, Parkinson’s disease, stroke,

and dementia.17–20 Several studies have demonstrated
that ketone bodies, ketone esters, and b-hydroxybuty-

rate administration provide neuroprotective effects in

diverse neurologic disorders.16,21–23 However, increased

levels of ketone bodies are not always beneficial for neu-
ronal metabolism, because very high levels of ketone

bodies, such as in ketoacidosis, a dangerous complica-

tion that may occur in type 1 diabetes mellitus and alco-
holism, can be toxic for the brain.24,25

In this review, we summarize recently reported evi-

dence, from many viewpoints, on the beneficial roles of
ketone bodies in diabetes-induced dementia. More

studies are needed into the role of ketone bodies in vari-

ous neurologic pathologies.

CURRENT STATUS OF KNOWLEDGE ON BRAIN ENERGY
METABOLISM

Brain energy metabolism is different from systemic

body energy metabolism and is affected by the endo-
crine regulation of appetite and reward.26 The brain

requires continuous provision of energy in the form of

adenosine triphosphate (ATP), made by glucose oxida-

tive reactions in mitochondria.26 Glucose is used as the
main fuel in the brain, and glucose uptake supports the

survival of various brain cells, including brain endothe-

lial cells, neuron, astrocytes, and microglia.10,11 ATP,

the main form of energy in brain metabolism, is used

by ion channel kinases such as Naþ/Kþ–ATPase and

Ca2þ-ATPase,27,28 and is the neurotransmitter pro-
duced from the mitochondria of neurons and glia

through the tricarboxylic acid cycle.29,30 Briefly, excit-
atory neurons consume approximately 85% of ATP in

the brain, whereas inhibitory neurons consume approx-
imately 15% of remaining ATP.31,32 ATP produced
from glucose metabolism contributes to synaptic trans-

mission in neurons and glia, leading to a stable neural
network.32,33

Recent studies demonstrated that impaired brain
glucose metabolism leads to neurologic disorders, in-

cluding Alzheimer’s disease (AD), and Parkinson’s dis-
ease.31,34,35 Authors of previous studies have mentioned

that c-aminobutyric acid (GABA)ergic inhibitory inter-
neurons are more sensitive to energy deprivation than

are other neurons in brain regions related to memory
function.27,36 In 1 study, authors reported that the in-

crease of glucose uptake in neurons by glucose trans-
porter 1 promotes energy metabolism in cortical and

hippocampal neurons and enhances memory func-
tion.37 In the brain, poor glucose metabolism results in

impaired ion transport, impaired vesicle recycling, and
impaired synaptic plasticity.36,38 Considering these pre-

vious findings, brain energy metabolism supplies
nutrients and oxygen to neurons and glia and so con-

tributes to brain function. Therefore, the regulation of
brain energy metabolism may be a therapeutic issue to

cure neurological pathology.
In the 1920s, the ketogenic diet (KD), a low-carbo-

hydrate diet consisting initially of <20% of daily energy
intake derived from carbohydrates, was developed to

cure patients with epilepsy, and many researchers are
continuing to gain pharmacological insights from it.19

Ketone bodies generated in the liver provide an alterna-
tive energy source during a fasting and starving state.39

In a starving state, fatty acid is converted to ketone bod-
ies in astrocytes; subsequently, these ketone bodies en-

ter a neuron to be used as a fuel (Figure 124 Achanta et
al 2017).

Ketones known as b-hydroxybutyrate and acetoa-

cetate (AcAc) are the major alternative fuels in the brain
if blood glucose levels decrease due to food starva-

tion15,40 (Figures 124 Achanta et al 2017 and 214,41). b-
Hydroxybutyrate metabolism boosts ATP generation in

comparison with glucose metabolism in the brain.42

Ketone bodies can cross the blood-brain barrier,

and administration of a KD leads to increased concen-
tration of the amino acid leucine in the brain43

(Figure 1A24 Achanta et al 2017). A KD also increases
AcAc levels in the blood44 and induces various cellular

responses.24 Ketone bodies are associated with diverse
metabolic pathways, such as fatty acid b-oxidation, the

tricarboxylic acid cycle, and gluconeogenesis,45 and
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tend to be the critical energy fuel for extrahepatic tis-

sues, such as brain, under several physiological condi-

tions, including fasting, low-carbohydrate diets,

hypoglycemia, and pregnancy.14

Ketone bodies in blood vessels enter neurons and

are converted to AcAc, and they lead to GABA secre-

tion in neurons through the citrate cycle (Figure 1B24

Achanta et al 2017).

In the central nervous system (CNS), neurons can

use ketone bodies as a fuel source, and this ketogenic

metabolism in the brain is linked to cognitive func-

tion46 as well as imbalanced glucose metabolism.47 The

ketone bodies AcAc and b-hydroxybutyrate are used as

the main energy source in the brain during ketosis48

(Figure 214,41). Another study demonstrated that a KD

has similar effects as calorie restriction in improving the

Figure 1 Brain energy metabolism and ketone bodies. (A) Ketone bodies cross the BBB and enter the brain. There are several types of ke-
tone bodies, including BHB, acetoacetate, and acetone. These ketone bodies could cross the BBB and subsequently enter the brain. (B)
Ketone body metabolism in a neuron. After food ingestion, glucose changes into pyruvate, which, in turn, is metabolized to acetyl-coenzyme
A, which circulates in the citric acid cycle. During fasting, fatty acids change into ketone bodies through b-oxidation. a-Ketoglutarate could
change into glutamate, converting to glutamine and GABA neurotransmitters.78 Abbreviations: BBB, blood-brain barrier; BHB, b-hydroxybuty-
rate; MCT, monocarboxylate transporter.
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metabolic state in humans.49 And in another study,

researchers found that a KD enhanced neurovascular

function against metabolic imbalance and promoted

specific intestinal microbiota patterns.50

Authors of a positron emission tomography study

reported that the absence of ketogenic intervention

resulted in normal brain ketone uptake in mild AD.51

Furthermore, KD results in a reduction in brain glucose

uptake because ketone bodies are the favored fuel in the

brain, compared with glucose.52

Ketone bodies from liver and blood could enter

neurons and subsequently activate an increase in brain-

derived neurotrophic factor production, which is in-

volved in the improvement of mitochondrial biogenesis

and synaptic plasticity (Figure 214,41). Several studies

have indicated that ketosis caused by a low-calorie diet

enhances synaptic plasticity53 and improves cognitive

function.54,55 Recent studies have also demonstrated

that the administration of ketone bodies reduced neuro-

nal cell damage, improved cognitive dysfunction and

anxiety in an AD mouse model,56 and protected against

memory loss in patients with mild cognitive impair-

ment57,58 and AD.44 Furthermore, in a recent clinical

study, authors reported that brain ketone metabolism is

involved in the severity of mild cognitive impairment

and dementia, compared with healthy study subjects.51

Ketone bodies have therapeutic effects in the treatment

of neuropathology in diverse neurologic diseases, in-

cluding epilepsy, AD,59 Parkinson’s disease,60 autism,40

brain tumor,61 and stroke.62

Reviewing previous studies, we have identified the

effects of ketone bodies in diabetes-induced dementia.

In this review, we provide evidence on the potency of

the KD for diabetes-induced dementia.

DIABETES-INDUCED DEMENTIA AND KETONE BODIES

Ketone bodies activate sirtuins in diabetes-induced
dementia

Results of recent studies indicate impaired metabolic

status, such as type 2 diabetes, aggravates learning and

memory function63 and is accompanied by severe neu-

roinflammation,64 impaired synaptic plasticity,65 in-

creased toxic amyloid b (Ab) aggregation, increased s
phosphorylation,65 and abnormal mitochondrial

Figure 2 Ketone bodies in liver-brain axis. Ketone body BHB made by the liver could cross the blood-brain barrier (BBB) and contribute to
the brain function. This liver-brain axis is the typical pathway of BHB and acetoacetate (AcAc) from liver and brain. During fasting, fatty acid
changes into BHB through acetyl coenzyme-A. BHB and AcAc cross the BBB and enter neurons through an MCT channel. Next, BHB and AcAc
contribute to the secretion of BDNF and the improvement of synapse plasticity.14,41 Abbreviations: ATP, adenosine triphosphate; BHB, b-hy-
droxybutyrate; BDNF, brain-derived neurotrophic factor; CoA, coenzyme A; FFA, free fatty acid; GT, glucose transporter; HMG, 3-hydroxy-3-
methylglutaryl; MCT, monocarboxylate transporter; TCA, the citric acid [cycle].
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function.66 These poor metabolic statuses damage neu-

ronal cell function and boost rapid memory loss, ulti-
mately triggering the onset of neurodegenerative

diseases.67

Sirtuins (SIRTs) are NADþ-dependent enzymes

that affect multiple cellular responses such as energy
metabolism, mitochondrial function, and the antioxi-
dant redox pathway.68 SIRTs mediate calorie restriction

effects such as cell survival activation by regulating
NADþ enzymes and through the 50 AMP–activated pro-

tein kinase and mammalian target of rapamycin
(mTOR) pathways.69,70 SIRTs also could promote oxi-

dative phosphorylation, deacetylation of transcription
factors, anti-inflammatory responses, cell survival, and

DNA repair, and inhibit glycolysis against oxidative
stress.71,72

In particular, SIRT1 is required for cognition and
the maintenance of neuronal plasticity,73 and has been

used for epilepsy.74 SIRT6 and SIRT7 are strongly in-
volved in DNA repair and antiaging responses.75 SIRT3

and SIRT5 are major controllers of energy metabolism
in mitochondria and regulate the acetylation and succi-

nylation states of various energy enzymes.76

Ketones control the acetylation of proteins and in-

crease histone deacetylation of the SIRT1 gene in neu-
rons77 (Figure 3A78). The activation of the SIRT1 gene

caused by ketone bodies in the brain leads to the activa-
tion of uncoupling protein (UCP)2, UCP4, and UCP5

expression in the hippocampus79,80 (Figure 3A78).
Ultimately, the induced expression of UCPs by ketone

bodies is linked to the activation of SIRT1 in the
brain.81 SIRT1 results in increased insulin secretion

through the repression of UCP2.82 In addition, ketosis
promotes macroautophagy through SIRT1 activation in

the cells.83 Furthermore, the elevation of SIRT protein
concentration by a KD reduces the production of reac-

tive oxygen species (ROS) and DNA damage84,85 caused
by fasting, and activates mitochondrial function, and

inhibits the activation of poly[ADP-ribose] polymerase
1 as a DNA damage index86,87 caused by fasting
(Figure 3A78). In the AD brain, SIRT3 attenuates the

accumulation of Ab and contributes to the improve-
ment of neuronal hypometabolism.88 SIRT3 is an im-

portant activator for oxidative phosphorylation89 and
promotes energy metabolism by increasing mitochon-

drial biogenesis.90 The KD was found to exert neuro-
protective effects by mediating SIRT3 in mouse model

of stroke.91 The KD could enhance SIRT3 activation
and subsequently lead to the increase of ATP produc-

tion in mitochondria92 (Figure 3A78). Several studies
have reported that a KD could induce SIRT3 gene acti-

vation and subsequently protect neurons against
brain damage.91,93 Notably, SIRT1 is strongly associated

with cognitive performance94 in metabolic-imbalance

conditions such as diabetes.95 SIRT1 binds with deace-

tylated p53, inhibits the activation of the p53 pathway,

and reduces the downstream target genes of p5396 in

the hippocampus97 and cortex,98 leading to memory

dysfunction.
Moreover, SIRT1 regulates inflammatory pathway

nuclear factor-jb99 and s phosphorylation-related ex-

tracellular signal-regulated kinase signaling100; neuronal

survival related to the forkhead box subgroup O path-

way,101; energy metabolism–related peroxisome prolif-

erator–activated receptor c and its transcriptional

coactivator PPARc coactivator 1-a 102; and neurite out-

growth involved in the mTOR/p70S6 kinase pathway103

under normal and metabolic-imbalance conditions

(Figure 3A78). These modulations of SIRT1 prove that

it can ameliorate cognitive decline under metabolic-im-

balance conditions.104,105

Several studies have demonstrated that SIRT1

increases the activation of glycogen synthesis kinase 3

b98 and increases memory function, such as long-term

potentiation, through glycogen synthesis kinase 3 b sig-

naling.106 In previous studies, researchers have men-

tioned that the inhibition of SIRT1 aggravates the

progress of type 2 diabetes and insulin resistance.107,108

Furthermore, SIRT1 promotes neurite outgrowth and

improves insulin sensitivity in neurons through the

PI3K/Akt signaling pathway.109 In recent studies,

authors have reported that SIRT1 and SIRT3 enhance

mitochondrial dysfunction through the 50 AMP–acti-

vated protein kinase–PPARc coactivator 1-a path-

way,110,111 and ultimately improve cognitive

dysfunction in a high-fat diet–induced metabolically

imbalanced brain66 (Figure 3A78). Some researchers

have suggested that a KD reduces the activation of

mTORC1 in the hippocampus by attenuating the phos-

phorylation of ribosomal protein S6.112 The activation

of SIRT1 by ketone bodies in neurons leads to the re-

duction of mTOR expression and reduces the activation

of mTORC1 complex in neurons.103

To sum up, a KD could ameliorate cognitive de-

cline in diabetes-induced dementia by activating SIRT

genes, given that diabetes induces learning dysfunction

and memory loss.63

Ketone bodies attenuate insulin resistance and
oxidative stress in diabetes-induced dementia

In a recent study, researchers demonstrated that brain

insulin resistance could damage hippocampal synaptic

plasticity and decrease cognitive decline.113 Insulin

plays complex roles in the CNS, including feeding con-

trol, neurogenesis, neuronal survival, brain aging, and

memory function.114,115 Insulin receptors are expressed
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in memory function–related brain regions including
the cortex and hippocampus.116

Insulin resistance is the impairment of insulin ac-
tion and is found in diverse neurodegenerative diseases

such as AD and Parkinson’s disease and contributes to
abnormal neural function, synaptic dysfunction, and

cell death.34,117,118 Many researchers have highlighted
the importance of insulin resistance, because insulin re-

sistance leads to metabolic syndromes such as diabetes
and also triggers neurodegenerative diseases such as de-

mentia.119 Brain insulin resistance aggravated toxic Ab

production and s hyperphosphorylation in several stud-
ies.120–123 Some authors reported that insulin adminis-

tration could improve memory deficits in normal and
AD mouse models.124,125

Ketogenesis is inhibited by insulin and stimulated
by insulin deficiency.126 Low levels of ketone bodies are

linked to obesity and insulin-resistance status.127,128

Some researchers demonstrated that ketone bodies

could improve insulin sensitivity and so attenuate insu-
lin resistance.127–129 However, other in vitro studies

showed that prolonged exposure to ketone bodies

Figure 3 Ketone bodies in a neuron. (A) In a fasting state, ketone bodies increase SIRT1 activation, which reduces neuroinflammation
through P53 signaling and poly[ADP-ribose] polymerase 1 (PARP-1); increases FOXO, PPAR-a, GSK-2b, and AMPK-PGC1-a signaling; and UCP2,
UCP4, and UCP5 activation, leading to the improvement of memory function. Also, ketone bodies activate SIRT3, which increases ATP produc-
tion in mitochondria and reduces the accumulation of Ab in the neuron, leading to the improvement of memory function. (B) b-
Hydroxybutrate in hepatocyte cross the BBB and enter a neuron through MCT2. Subsequently, b-hydroxybutrate regulates NF-jB signaling
and boosts the production of brain-derived neurotrophic factor in neuron, involving synaptic plasticity improvement.78 Abbreviations: Ab, am-
yloid b; ATP, adenosine triphosphate; BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; MCT2, human monocarboxylate
transporter 2; UCP, uncoupling protein.
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altered insulin action, and thus ketone bodies could

play a role in the development of insulin

resistance.130,131

Clinically, the KD has already been used to treat in-
sulin resistance in patients with type 2 diabetes.132

Given that improvement of brain insulin resistance

enhances memory function in the diabetic brain,133 the

modulation of ketone bodies may a good option for the

treatment of diabetes-induced dementia by increasing

brain insulin sensitivity. In addition, results of some

studies suggested a KD reduces the generation of

ROS79,134 against oxidative stress and attenuates DNA

methylation135 involving antioxidant responses. Ketone

bodies cross the blood-brain barrier by binding mono-

carboxylic acid transporters and enter neurons to re-

duce oxidative stress.134,136 In 1 study, a KD decreased

the secretion of proapoptotic mediators in an animal

model of neurodegenerative disease.137 Furthermore,

previous studies have provided significant evidence that

ketone bodies have neuroprotective effects against oxi-

dative stress and metabolic-imbalance stress in brain

cells.134,138

Collectively, ketone bodies could protect neuronal

damage by inhibiting DNA breakdown, the apoptotic

signal pathway, and the production of ROS in the brain

of patients with diabetes, suggesting that diabetes-

induced dementia is associated with neuronal damage,

neuroinflammation, and excessive ROS production un-

der oxidative stress conditions.139,140

Ketone bodies improve synaptic dysfunction and the
imbalance of secretion of neurotransmitters in
diabetes-induced dementia

Diabetes-related conditions such as hyperglycemia lead

to a reduction in neurotransmitters, including GABA

and glutamate, in the brain of animals with diabetes.141

The abnormal reduction of cholinergic transmission

was observed in STZ-induced diabetes in animal brain

hippocampus in 1 study142 as was a decrease in N-

methyl D-aspartate receptors143; subsequently, the re-

duction of N-methyl D-aspartate receptors results in the

decrease of long-term potentiation and postsynaptic
density proteins.143

Dopamine is associated with cognition, feeding be-

havior, and emotion,144 and dopamine receptors are de-

creased in the type 2 diabetes brain.145,146 Serotonin,

known as the 5-HT neurotransmitter, is associated with

feeding behavior, sleep, and learning, and could regu-

late the secretion of insulin, neuronal cell regeneration,

and synaptic plasticity.147,148 In the brains of patients

with type 2 diabetes and obesity, the activity of 5-HT

signaling is commonly observed and triggers insulin

resistance.149 Glucagon-like peptide 1, a hormone

associated with glucose metabolism, improves neuronal

cell survival, synaptic plasticity, and neurogenesis, and

inhibits insulin resistance and neuroinflammation in
the brain under oxidative stress.150–154

The KD invokes acidosis and ultimately contributes

to changes in neurotransmitter receptors and ion chan-
nel opening.155 Previous research has shown that a KD

could increase the levels of the inhibitory neurotrans-

mitter GABA156 and the excitatory neurotransmitter

glutamate157 (Figure 1B78 Marosi et al. 2016). In addi-

tion, a KD could result in a change in the level of mono-
amine neurotransmitters such as serotonin and

dopamine,158 which are related to depression and anxi-

ety symptoms.159 b-Hydroxybutyrate, a ketone body,

could increase the level of brain-derived neurotrophic
factor, which is involved in neuronal cell survival and

antiapoptosis pathways160 (Figures 214,41 and 3B78).

Furthermore, a KD could boost the level of ATP and

the activation of synaptic receptors.161

On the basis of this evidence, ketone bodies could

regulate the secretion of neurotransmitters such as

GABA, glutamate, serotonin, dopamine, and brain-de-

rived neurotrophic factor involved in neurologic
pathology.

Thus, a KD may be beneficial for improving the

progress of neurologic pathology in diabetes-induced
dementia through the modulation of neurotransmitter

production.

Ketone bodies ameliorate mitochondrial dysfunction
in diabetes-induced dementia

The mitochondrion is a central organelle for neuro-
transmission, synaptic plasticity, and energy homeosta-

sis of neurons and glia.162 Mitochondria take charge of

the maintenance of cellular Ca2þ homeostasis, a re-

quired response in normal neuronal functioning.163

Excessive Ca2þ uptake into mitochondria occurs

with the increase of ROS production and suppresses the

synthesis of ATP, boosting the release of cytochrome c

and increasing mitochondrial membrane potential.164

Inappropriate mitochondrial permeability transition

results in mitochondrial swelling and apoptosis of re-

lated proteins in mitochondria.165 Mitochondrial dys-

function leads to impaired energy homeostasis and is
highly correlated with the onset of neuronal degenera-

tion.166,167 Poor mitochondrial function is linked to

neuronal death and neurodegenerative disease onset.168

Metabolic imbalance conditions such as diabetes aggra-

vate glucose use and lead to mitochondrial dysfunction,
ultimately contributing to neuropathologic prob-

lems.167,169 Suppression of energy production caused by

mitochondrial dysfunction also damages insulin action

in cells.170 Cells of the CNS require a high amount of
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ATP for neuronal transmission of electrical impulses;

therefore, impaired mitochondrial function results in

neurodegeneration and loss.169 Previous studies have
demonstrated that diabetes conditions lead to abnormal

mitochondrial structure and elevated levels of oxidative

phosphorylation, which are associated with high pro-

duction of ROS.171–173 Authors of other studies men-
tioned that mitochondrial dysfunction could result in a

high level of interaction between Ab and Ab-binding

dehydrogenase,174,175 ultimately leading to cognitive

impairment.176 Impaired mitochondrial function was

found both in diabetes and dementia in 1 study, and it
also acted as a bridge regulator between diabetic pathol-

ogy and neuropathology.177 Considering these findings,

diabetic conditions appear to lead to mitochondrial dys-

function in CNS cells and subsequently influence neu-
ropathology, such as memory loss, in dementia.

A KD containing a high amount of fat and

a low amount of carbohydrates has benefit in the
treatment of neurologic diseases, including epilepsy.178 b-

Hydroxybutyrate can pass the blood-brain barrier through

specific monocarboxylate transporters and move from the

systemic circulation into the brain.179,180 The KD and b-hy-

droxybutyrate boost mitochondrial density and mitochon-
drial function in neuronal processes in the hippocampus,

the cognition-related region of the brain17 (Figure 3A78).

UCPs regulate the production of ROS and mitochondrial

membrane potential in mitochondria, and some isoforms
have a neuroprotective effect in CNS diseases.181,182 The KD

could increase the level of UCPs and ultimately attenuate se-

cretion of ROS in hippocampal neurons79 (Figure 3A78).
Furthermore, a KD regulates the deacetylation of var-

ious mitochondrial proteins, increases mitochondrial

mass, and promotes mitochondrial function76,91,183

(Figure 3A78). Mitochondrial biogenesis is affected by mi-
tochondrial SIRTs111 and PGC-1a.110 A KD could amelio-

rate mitochondrial function under normal conditions as

well as metabolically imbalanced conditions, such as in-

creased free fatty acid levels and insulin resistance.184–186

In summary, on the basis of data from previous

studies, a KD could enhance mitochondrial function in

CNS cells, including the improvement of mitochondrial

mass, density, and biogenesis, and the appropriate regu-
lation of mitochondrial membrane potentiation. Thus,

a KD may lead to improvements in cognitive function

in diabetes-induced dementia.

Ketone bodies attenuate amyloid b aggregation in
diabetes-induced dementia

Studies have focused on the relationship between the

high risk of AD and diabetes pathologies.119,187

Findings from 1 study suggested that diabetes leads to

neuropathologic problems including severe Ab toxicity,

as well as brain insulin resistance, mitochondrial dys-

function, and neuroinflammation.188 In the brain, Ab
oligomers promote insulin resistance in hippocampal

neurons in the diabetic brain, ultimately leading to
memory loss.189 Another study demonstrated that met-

abolic imbalance exacerbated AD pathogenesis, includ-
ing memory deficit and neuroinflammation.190

Administration of antidiabetic drugs resulted in the im-
provement of memory function in patients with AD

and in a mouse model of AD.191,192 In another study,
high-fat diet–induced diabetic conditions increased Ab
deposition in APP/PS1xdb/db mice, compared with

APP/PS1 knockout mice.193 b-Hydroxybutyrate attenu-
ates Ab toxicity in SH-SY5Y neuronal cells through the

inhibition of histone deacetylase.194 In 1 study,
researchers suggested that b-hydroxybutyrate could be

considered an endogenous histone deacetylase inhibi-
tor.195 Researchers identified that ketone body adminis-

tration could reduce toxic Ab deposition and improve
memory function in an APP swe/PS1dE9 transgenic

AD mouse model.20 In addition, b-hydroxybutyrate
could upregulate the expression of tropomyosin recep-

tor kinase A, affecting neuroprotective pathways and

cholinergic neuronal function.194,196 In some studies,
authors reported that a KD inhibited the accumulation

and total level of Ab197 and also inhibited the entrance
of Ab from the peripheral circulation system into the

brain, resulting in improved cognitive function20

(Figure 3A78).

Considering these findings, ketone bodies could at-
tenuate toxic Ab deposition and reduce the entrance of

Ab into the brain, ultimately contributing to the im-
provement of cognitive function.

CONCLUSIONS

Herein, we summarized recently reported evidence re-
garding the neuronal protective effects of ketone bodies

in diabetes-induced dementia. Positive roles of ketone
bodies include activating SIRTs in neurons associated

with neuronal cell survival signaling, promoting insulin
sensitivity, and protecting neuronal cells against oxida-

tive stress damage. Moreover, ketone bodies ameliorate
normal neurotransmitter secretion and enhance synap-

tic function. Ketone bodies also promote mitochondrial
biogenesis and membrane potential. Furthermore, ke-

tone bodies suppress toxic Ab deposition in the brain.

Given these findings, ketone bodies could improve neu-
ropathogenesis such as memory decline in diabetes-

induced dementia.
Taken together, this review on the neuroprotective

properties of ketone bodies at low levels may provide
useful information for establishing the appropriate clin-

ical approach for use of a KD for diabetes-induced
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dementia. More studies are needed to elucidate the ex-

act mechanisms of the neuroprotective role of ketone

bodies at low levels, which reverse to neurotoxic at high

levels, and to understand the roles and specific modula-

tion pathway of ketone bodies for the treatment of

diabetes-induced dementia.
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