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ABSTRACT

The cancer genome is abnormal genome, and the
ability to monitor its sequence had undergone a tech-
nological revolution. Yet prognosis and diagnosis re-
main an expert-based decision, with only limited abil-
ities to provide machine-based decisions. We intro-
duce a heterogeneity-based method for stratifying
and visualizing whole-genome sequencing (WGS)
reads. This method uses the heterogeneity within
WGS reads to markedly reduce the dimensionality
of next-generation sequencing data; it is available
through the tool HiBS (Heterogeneity-Based Sub-
classification) that allows cancer sample classifica-
tion. We validated HiBS using >200 WGS samples
from nine different cancer types from The Cancer
Genome Atlas (TCGA). With HiBS, we show progress
with two WGS related issues: (i) differentiation be-
tween normal (NB) and tumor (TP) samples based
solely on the information structure of their WGS data,
and (ii) identification of specific regions of chromo-
somal amplification/deletion and their association
with tumor stage. By comparing results to those
obtained through available WGS analyses tools, we
demonstrate some of the novelties obtained by the
approach implemented in HiBS and also show nearly
perfect normal/tumor classification, used to identify
known and unknown chromosomal aberrations. Fi-
nally, the HiBS index has been associated with breast
cancer tumor stage.

INTRODUCTION

Tumorigenesis involves a series of complex cellular, genetic
and epigenetic changes (1,2). Large-scale cancer genomics
projects, such as TCGA (3) and the International Can-
cer Genome Consortium (ICGC) (4), have worked hard in

characterizing these changes in the cancer genome. Diagno-
sis and disease stage are primarily based on the histopathol-
ogy of a tissue biopsy (5). Cancer genome sequencing has
recently been introduced in the clinic, and provides an-
other approach to assist clinicians in identifying genetics
and epigenetic changes in tumor cells (6). Based on this
progress, personalized therapeutic strategies are made pos-
sible (7,8). With rapidly falling costs of whole-genome se-
quencing (WGS), this technology is becoming an acces-
sible tool in cancer research and patient care (9–11). As
the technical barriers to human WGS are overcome, high-
throughput ‘omics’ data accumulate and bring with them a
set of issues that are novel in medical care. In cancer, other
medical conditions and maintaining good health, improved
analytic methods (12,13) and visualization (14,15) of omics
data are of utmost importance.

Over the past two decades, many studies brought forward
specific algorithms for quantifying whole-genome expres-
sion behavior (16–18), and other approaches as binary clas-
sification of normal versus tumor samples (19–23). Usually
these approaches put their focus on the genome coding re-
gions. Differing from whole exome sequencing (WES) and
RNA sequencing, WGS approaches can detect mutations in
unexplored regions and improve our understanding of the
whole landscape of cancer genome. Elucidating the func-
tions of these unexplored human genomic regions could fa-
cilitate the discovery of genomic biomarkers and personal-
ized cancer treatment.

Most recent approaches have analyzed WGS to explore
CNV (copy number variation) and depth of coverage (24–
26). We now provide a new perspective on the use of WGS
(Figure 1A; Supplemental Figure S1). A species volatil-
ity model (Supplemental Figure S2) is used to introduce
a novel methodology for reducing the dimensionality of
WGS. This method has been developed specifically for can-
cer, for the rapid, model-free, analyses of high-throughput
data. Our approach translates a whole genome point-of-
view (∼6 giga bases) to its 1 × 10−7 fraction (589 regions)
(Figure 1B), thus enabling a practical view of WGS data.
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Figure 1. Experimental and computational workflow of HiBS. (A) The general approach to obtain a HiBS index: starting with a tissue sample, and
following with NGS, the sequencing reads are mapped to a reference genome using one of the conventional alignment methods. The alignment is not used
in HiBS classification, only in annotation, and thus has no impact over categorical decision-making. Finally, HiBS gives a species profile for each sample. A
more detailed description of the full HiBS methodology is in (B), where we outline the partition of the genome (∼3 × 109 bases) into equal length segments
of 5 × 106 bases, and exclude chromosome tails (see ‘Materials and Methods’ section). This procedure leads to a total of 589 regions. Unique sequence
species are detected within each region (C). The schematic example in this figure is a zoom-in on a case with 6 of 18 reads for this region that share an
alignment to the same area in region number 350. These six reads yield four unique reads that we refer to as four species (s1-purple, s2-yellow, s3-green
and s4-red). s1 is constructed from two identical reads. s2 is constructed from a single read that matched the beginning of s1 (purple nucleotides), but has
additional nucleotides colored in yellow. s3 overlaps with both s1 (purple nucleotides) and s2 (yellow nucleotides), but also differs in nucleotides colored
in green. s4 differs from s1 in a single nucleotide only that is colored in red. By counting the number of unique species per region, the species-per-region
vector (D) is produced. The vector contains 589 points, each representing an individual region. The value for each region represents the number of unique
reads in it. In (E), the last step in the calculation of the index, HiBS locates high volatility regions, based on the species-per-region vector, and produces a
profile for each sample. The y-axis in (E) indicates the number of unique mapped reads (species) per region. The first x-axis outlines the genomic region
{1..589}, set sequentially by the 5 million bases region size and the second x-axis displays chromosome numbers {1..22}. The red horizontal line indicates
the average number of species and the green horizontal dashed line indicates the 1 z-score value. The blue line represents the species per region profile for
the KIRP-NB sample (Kidney renal papillary cell carcinoma normal blood test; details in Supplementary Table S1). There are only six regions in which
the number of species is above a z-score threshold of 1, which have been marked in blue circles (details in ‘Materials and Methods’ section).
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We have focused on WGS to avoid many of the specific bi-
ases associated with the choice of an enrichment method of
RNA (for RNA sequencing) or exomes (for exome sequenc-
ing) (27,28). We quantify heterogeneity within a sequencing
sample and translate this sequence-read heterogeneity into
clinical information (Figure 1C and D), which leads to im-
portantly biological conclusions derived from examination
of the data structures and their projection over genome ar-
chitecture (Figure 1E).

We also implement the suggested approach for strat-
ification and visualization of genomic variation in can-
cer, termed HiBS (Heterogeneity Based Subclassification).
HiBS uses the species volatility-based model to stratify and
visualize the whole genome. The input of HiBS is a sin-
gle ‘bam’ file from one sample usually obtained either from
the tumor or non-tumor tissue of a patient. As explained
above, the method requires only data from WGS. The out-
put of HiBS is the species volatility index vector (one value
for each region), and gives basic statistics, such as z-scores
and standard deviation, over the genome. These parame-
ters are used to provide interpretable estimates of the source
of a sample––normal versus tumor tissue (diagnosis), spe-
cific tumor targeting for amplification/deletion loci and as-
sociate to tumor stage (prognosis).

MATERIALS AND METHODS

Case study on TCGA datasets

We tested 203 TCGA WGS datasets (Table 1), the sequenc-
ing data being derived from a total of 107 patients. Ninety-
six patients had paired NB (blood-derived normal) and
TP (primary solid tumor) samples. The rest of the patients
provided only TP samples. All datasets are of DNA reads
that have been sequenced on Illumina instrument in paired-
end mode, with 101/100 bases, at the Washington Univer-
sity Genome Sequencing Center (WUGSC) and the Baylor
College of Medicine (BCM) centers. The reference genome
used for the analysis of these datasets is the GRCh37-lite
(29). Diversity within the datasets was achieved through the
inclusion of different cancer types: COAD (colon adeno-
carcinoma), READ (rectum adenocarcinoma), KIRC (kid-
ney renal clear cell carcinoma), UCEC (Uterine corpus
endometrioid carcinoma), HNSC (Head and neck squa-
mous cell carcinoma), CESC cervical squamous cell car-
cinoma and endocervical adenocarcinoma), KIRP (kid-
ney renal papillary cell carcinoma), SARC (sarcoma) and
BRCA (breast invasive carcinoma) using TCGA notations.
While each of the types above represented by a single pa-
tient (two samples each), the BRCA set included 99 pa-
tients (187 samples in total) (Supplementary Tables S1 and
S2). Throughout the analysis, BRCA samples were sepa-
rated from the other eight cancer types. We refer to the eight
other cancer types as ‘mixture’ cancer datasets which were
mainly used for learning and optimizing the algorithm, and
the BRCA as a tested dataset.

Quality control

Although the files deposited in the TCGA have to pass very
restricted quality control tests, to rule out the option that
our analysis is biased to the quality of the samples, we used

FastQC v0.11.3 (30). FastQC use the bam file as input and
provided a set of analyses that gave the impression of the
quality of the file. Polymerase chain reaction (PCR) dupli-
cates analysis was also used on the mixture set, based on the
samtools ‘pcrdup’ function (31) (Supplementary Table S3).
The available Nanodrop results from the TCGA were used
to assess the quality of the samples (Supplementary Table
S4).

Alignment

No changes were made from the original deposited TCGA
bam files because the choice of the specific alignment tool
was not critical; here this step is used only to map HiBS
results to meaningful chromosomal regions, and it is highly
robust. This alignment step is not part of the classification,
but only for annotation. Usually, the deposited data in the
TCGA was aligned using BWA (32) and Bowtie (33).

Description of HiBS

HiBS provides a command-line, stand-alone tool imple-
mented in Linux. The method has two parts, first part be-
ing the core component, the HiBS full-mode command line
tool, which is an efficient bash script for processing bam
files, generating summary statistics on the mapped reads
and providing a suggested classification for the origin of the
sample as either normal or tumor. The second part uses the
output of the first part to produce profiles of chromosomes
volatility.

The HiBS algorithm

HiBS uses samtools (31) ‘view –h’ option to measure chro-
mosome length, and this information divides the genome
into regions of equal length. Next, using the samtools ‘idxs-
tats’ option, HiBS calculates the sub-sampling factor, which
is in turn used to obtain a fixed number of mapped reads
across differing files. HiBS can also be executed without this
option when handling a single file and there is no need for a
comparison between parameters. The default value is set to
900 million mapped reads, based on the tested data (Supple-
mental Figure S3), but can be changed from the command-
line. Although HiBS proceeds by dividing the genome into
equal length regions (Figure 1B; Supplemental Figure S4),
the exception is around the tails of each chromosome when
it is not of divisible length.

Dissimilarity between regions

The algorithm continues by counting the number of unique
mapped reads, referred to as ‘species’, of every region and
by registering the number of species in a region into a sin-
gle representing vector (Figure 1C and D). By counting the
species, HiBS basically measures the dissimilarity between
the regions {1..589}. HiBS starts with Linux sort function
and keeps with Linux uniq function. The sort function is
used to sort the DNA reads in lexicographic order for each
region {1..589}. At this point before using the uniq func-
tion, HiBS counts the number of instances that belong to
each species, and keeps this value for structure distribution
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Table 1. TCGA dataset used in our statistics

BRCA dataset Mixture dataset Together

Sum 23.6TB 2.6TB 26.2TB
Mean 126.3GB 164.3GB 129.3GB
Min 73.6GB 90.2GB 73.6GB
Max 196GB 266GB 266GB

The table provides the statistics per dataset plus the combination of the two datasets. The parameters measured are in the first column. Summation is of
the sizes of all the samples in the tested data. The Mean is of the size of the samples. Min is the minimum size of a sample, and Max its maximum size.

analysis (see below). After being sorted by lexicographic or-
der, HiBS uses the uniq function to compare each of the
reads to the next read, and keeps only the DNA reads that
are dissimilar from each other. This can vary between sin-
gle nucleotide dissimilarity and more. This results in a set of
sequences that HiBS gets as an input.

z-score

The average and standard deviation of this vector are re-
ported, and with these values at hand, HiBS calculates a z-
score for each region and collects these values into a whole
genome representation vector (Figure 1E) that serves as a
volatility measure for each genomic region. To calculate a
z-score, HiBS has estimate a few parameters, the first being
the unique reads per region {1..589}. HiBS then calculates
the average and the standard deviation of the unique reads
over the genome. With the average and the standard devi-
ation, it finally calculates the z-score for each region. The
z-score is defined by:

x − ′
x

σ
= z

where x is the number of unique reads in the specific re-

gion,
′
x is the average unique reads over the genome and � is

the standard deviation of the unique reads over the genome.
While the z-score is usually used to compare a sample to the
standard normal deviation, HiBS uses it for finding the da-
tum distance from the average, without statistical significant
factors and without any assumptions of normality. This dis-
tance would not benefit the score, which is a second-order
calculation over these distances.

HiBS index

For the final step of HiBS, we must know the parameters
that were calculated in the previous steps as the z-score for
each region, and the average and standard deviation over
the genome. We then examined whether the z-score for each
region is more than a single standard deviation from the av-
erage. If it does, this region is referred to as a ‘high volatility
region’. After finishing the whole genome regions, we sum
the amount of ‘high volatility regions’, and refer to this as
the ‘HiBS index’.

HiBS optimization step

Careful estimation showed that 5 million bases region is the
most suitable for the algorithm (Supplemental Figures S5
and S6). An additional optimization step in HiBS before

the selection of z-score threshold to be 1 is seen in Supple-
mental Figure S7 for z = −1.5/ −1/ −0.5/ 0.5/ 1 and 1.5.
The program options allow users to specify how strictly the
analysis has to be after some initial defaults. HiBS provides
a classification as to whether a sample is tumor or normal
based on the HiBS index. In training sets, we found HiBS
index threshold to be 10 regions. A score below or equal to
10 is classified as normal, with >10 being classified as tu-
mor (Supplemental Figures S7 and S8). HiBS also provides
a chromosome profile vector that represents the volatility
regions among the chromosomes {1..22}.

Structure distribution analysis

While HiBS generates the index, it also keeps the number
of instances belonging to each species (as explained above).
This information is used to count how many species share
the same order of instances. In other words, HiBS counts
how many species the specific region has that share the same
number of instances. From these numbers, we can generate
the species distribution structure, a more detailed example
being shown in Supplemental Figure S12.

Benchmarking

Benchmarking involved three tools other than HiBS, from
which we could compare the profiles they generated to
explore the differences between HiBS and these oth-
ers. The first tool used for the benchmarking was Bed-
tools (v2.17.0–137-g83ce948) (34), which tests the genome
coverage/depth-of-coverage (a schematic example is given
in Supplemental Figure S11A). Bedtools was executed with
the function ‘genomecov –d’, which reports the depth at
each genome position with 1-based coordinates. As HiBS
works on a 5M base window size, we calculated the average
for each of the genomic regions in such a window to produce
a genome coverage representing a vector in size of 589 as for
Bedtools. Bedtools used a BAM format as its input. The
second tool was Control-FREEC (v7.2) (25) for examin-
ing copy number changes and allelic imbalances using deep-
sequencing data (a schematic example is shown in Supple-
mental Figure S11B). To achieve the best detection of copy
number changes for Control-FREEC, we used it with two
genomes at a time (normal versus tumor). Control-FREEC
uses the normal genome as a reference. The parameters that
Control-FREEC executed with were: window size of 5 Mil-
lion bases, ploidy equal to two and the input was BAM for-
mat with paired-end samples. Control-FREEC uses sam-
tools v1.2. The third tool used was CNV-seq (v2014.08.12)
(35). This was used as a second method to detect CNV us-
ing high-throughput sequencing. To achieve the best detec-
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tion of CNV for CNV-seq, we used it also with two genomes
at a time (normal versus tumor), the normal genome being
the reference. The parameters that CNV-seq was used with
were: window size of 5Million bases and human genome ref-
erence, with the input being BAM format with paired-end
samples. CNV-seq uses samtools v1.0. For the benchmark,
we focused on HNSC (a tumor sample from the previously
described mixture dataset), in which we studied chromo-
somes {1..22}. Since chromosome sizes differ and do not
divide by 5M, we omitted the tail of the chromosomes from
the benchmark, and analyzed all other regions.

RESULTS

Quality control

All samples passed FastQC basic statistics for quality esti-
mation, per base sequence quality, per tile sequence quality,
per sequence quality score, per base N content, length dis-
tribution, over-represented sequences and adapter content.
PCR duplicates analysis showed that, even after the removal
of the PCR duplicates, each of the samples has >750M
reads (Supplementary Table S3). Available information on
the quality of the samples from Nanodrop analysis indi-
cated that all the samples have >1.89 (a260 a280 ratio)
(Supplementary Table S4).

Inter-tumor WGS total mapped reads analysis

Analysis of the total mapped reads for the ‘mixture’ can-
cer datasets showed that each of the 16 samples has vari-
able amounts of total mapped reads (Supplemental Figure
S3). The smallest number related to the rectum adenocar-
cinoma normal sample (READ-NB) with 0.927 billion to-
tal mapped reads. The largest number of mapped reads be-
longed to the cervical squamous cell carcinoma tumor sam-
ple (CESC-TP) with 1.943 billion. There were samples in
which the total mapped amount was larger in the tumor
sample than the non-tumor sample, whereas in other sam-
ples the opposite was true. In five of the eight cancer types
(CESC, HNSC, KIRP, SARC and UCEC), the tumor sam-
ples had nearly double number of total mapped reads than
the normal samples. In two cases (COAD and READ), the
gap in mapped reads was very small, whereas for the kidney
renal clear cell carcinoma the normal sample (KIRC-NB)
was with more total mapped reads compared to the tumor
sample.

Region size impacts on the relative average and standard de-
viation of the species profile

An initial and necessary step in translating the genome to
a reduced number of regions for HiBS to analyze is the
choice of the number of regions to cover the genome. The
total number of bases in chromosomes {1..22}, according
to GRCh37/hg19 is 2 881 933 286 (29). We studied a range
of sizes for the examined regions of 5k, 50k, 500k, 5m and
50m. The genome was divided into different total num-
ber of regions: 576 216, 57 633, 5776, 589 and 67, respec-
tively (Supplemental Figure S4). For the ‘mixture’ cancer
datasets, the kidney renal papillary cell carcinoma normal
sample (KIRP-NB) had the largest average of species across

the genome, whereas the smallest average belonged to the
sarcoma tumor sample (SARC-TP) (Supplemental Figure
S5). We also established that the choice of region size did
not affect the relative average of species. This absence of ef-
fect applies to the additional samples (Supplemental Figure
S5). The sample with the largest average remains as such
for all choices of region sizes. Region size also did not influ-
ence relative standard deviation (Supplemental Figure S6).
The only difference was with the KIRP samples, which had
higher standard deviations in the tumor sample for 5k, 50k
and 500k compared to the normal sample, but with the 5M
and 50M region sizes the normal sample had a lower stan-
dard deviation (Supplemental Figure S6D and E).

Region size impact over HiBS classification within the mix-
ture cancer datasets

An increase of region size (5k–50m) was associated with
a unique behavior of the HiBS index. For region sizes 5k
and 50k, the index gave seemingly random results, without
any association to the source (normal/tumor) (Supplemen-
tal Figure S7A and B). Yet the transition to a region size of
500k gave an association with tumor status, such that tumor
sample constantly had a higher HiBS index than its paired
normal sample (Supplemental Figure S7C). However, this
pattern was not consistent between cancer types. For exam-
ple, SARC-TP’s HiBS index is 52, but the HiBS index is 55
for UCEC-NB. For region size 50M we could not identify
regions above the z-score at all (Supplemental Figure S7E).
Finally, we show that the choice of a 5m region size provides
a perfect HiBS classification. With this choice for the rest
of the analyses, we found a clear separation between the in-
dices of normal samples and tumor samples. In the former,
the HiBS index did not exceed 10 across all the sample types
(Supplemental Figure S7D), but in index for tumor samples
was always equal to or larger than 11 (Supplemental Figure
S7D).

Z-score threshold impact on HiBS classification of the mix-
ture cancer datasets

Following the identification of the optimal region size, op-
timization was done by controlling for a z-score threshold
within a range of values of −0.5, −1, −0.5, 0.5 to 1.5 to
test if a choice of threshold would provide better stratifi-
cation over a default threshold of 1 (although the value
demonstrated a perfect classification). For the negative val-
ues (−1.5, −1 and −0.5), it would only be possible to clas-
sify parts of the data (Supplemental Figure S8). For a z-
score threshold of −1.5, there was a close to perfect classi-
fication, with two misclassifications for the SARC-TP and
the KIRP-TP. Classification was significantly diminished
for thresholds of −1 and −0.5,. With positive z-scores both
normal and tumor samples shared very similar indices for
1.5, but there were two misclassifications for UCEC-NB
and SARC-NB as tumor for a value of 0.5 (Supplemen-
tal Figure S8). For a plot of the number of species per
region as presented in Figure 2, we also found that ge-
nomic profiles of normal samples were very different from
those of tumor samples. Normal samples show similar pro-
files across genomic regions, across patients, and even along



e81 Nucleic Acids Research, 2016, Vol. 44, No. 9 PAGE 6 OF 13

Figure 2. Major differences in volatility measurements between normal and tumor samples within the ‘mixture’ cancer datasets. The profiles come from
eight blood-derived normal (NB) samples (A and B) and eight primary solid tumor (TP) samples (C and D), i.e. from eight patients with paired samples in
total. The samples were obtained from TCGA (‘Materials and Methods’ section). (A and D) give the full genomic species profiles of samples from the same
eight patients. The color of each line represents a different cancer type (indicated in the figure legend) consistently throughout panels (further details can
be found in Supplementary Table S1). The axes are those above in Figure 1E. (B) This is a zoom-in over specific regions, 283–313, that cover chromosome
8 within the eight normal samples, whereas the same regions are shown in (C) for the set of tumor samples. In the normal sample set (B), all eight samples
show similar species profiles across genomic regions. They are consistent across patients and even change simultaneously with acute curve changes. The
stretches of zero-reads are heterochromatin regions seen in Figures 1E, 2A , D and 3B, C. The set of tumor samples in (D) clearly demonstrates that these
samples do not share any common behavior, in contrast to the normal samples.
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acute changes in function, such as heterochromatin areas
(Figure 2A). In contrast, tumor samples do not share any
common behavior (Figure 2D), and a closer look at specific
regions, for example in chromosome 8 (Figure 2B and C),
shows even larger differences.

Depth-of-coverage and the influence on HiBS index

To test the stability of HiBS index and rule out depth-of-
coverage as an underlying parameter influencing the HiBS
index, correlations between the total number of mapped
reads (without subsampling), HiBS index and depth-of-
coverage were measured. There was a perfect correlation
between total mapped reads and depth-of-coverage, but a
lack of any correlations between HiBS index and the oth-
ers (Supplemental Figure S3). We also ran HiBS on the
‘mixture’ cancer dataset without the limitation of 0.9 bil-
lion mapped reads per samples, for which it also achieved
perfect classification (Supplemental Figure S9).

Sample classification for breast cancer

HiBS also gives nearly perfect classification for the 187
breast cancer samples (Figure 3A; Supplementary Table
S2), with a 98.4% succession rate. The species-per-region
profile is given in Supplemental Figure S10. Only three
samples were misclassified by HiBS (Supplemental Figure
S10C and D). By examining the variability of species per
region and per chromosome, these measures of variability
provide a clear view of the acute differences between nor-
mal genomes and tumor genomes (Figure 3B and C; Sup-
plemental Figure S10). For chromosomes 1, 3, 5, 6, 8, 10
and 16, the variety of species per chromosome proved much
larger in the tumor samples than normal samples (Figure 3B
and C).

Specific chromosomal arm amplification

In chromosomes 5, 10, 12 and 16, the species distribution
was wider compared to other chromosomes, especially for
their shorter arms (Figure 4A). In contrast to this set of
chromosomes, in chromosomes 1, 3, 8, 13, 14 and 15 it was
the longer arm that had a wider species distribution (Fig-
ure 4B). For chromosomes 2, 4, 6, 7, 9, 11 and 17–22, the
difference in the species distributions was as significant.

High volatility regions

HiBS identified 499 out of the 589 possible genomic regions
as high volatility regions in all 99 BRCA tumor samples,
with an average of 53 regions per sample and 275 regions
in the tumor samples of the ‘mixture’ cancer datasets with
an average of 60 (Supplementary Tables S5 and S6). How-
ever, only 57 regions were tagged as high volatility regions
across all 88 BRCA normal samples, with an average of 5
regions per sample and 7 regions in normal samples of the
‘mixture’ cancer set, with an average of 5 regions (Supple-
mentary Tables S7 and S8). Tumor samples in the BRCA
dataset and the ‘mixture’ dataset had 269 overlapping re-
gions, and the BRCA normal dataset and the ‘mixture’ can-
cer datasets normal samples overlapped in 7 regions. Chro-
mosomes 1 and 8 had the largest effect on high volatility

regions in the BRCA tumor datasets (Supplementary Ta-
ble S6). More specifically, regions chr8:125 000 000–130
000 000 (8q24.13–q24.21) and chr1:150 000 000–155 000
000 (q21.2-q21.3) were ‘hotspots’. These were the genomic
hotspots identified among the samples with values 66 and
62, respectively, for their HiBS indices for the 99 patients
(Figure 4C; Supplementary Table S6). Regions chr10:40
000 000–45 000 000 and chr16:30 000 000–35 000 000 have
higher volatility regions, but are also present in normal sam-
ples. In addition to an intersection between these findings
and data from the genome browser refFlat (35), we identi-
fied that 8q24.13–q24.21 contained 38 unique genes, includ-
ing the oncogene, MYC (36).

Tumor stage

Two groups are readily observed from the chromosomes
profiles in Figure 4C. The first comprises chromosomes 4,
13, 14, 15, 18, 21 and 22, in which the number of volatility
regions among the samples is low (0–2). The second group
comprises all other chromosomes in which the number of
volatility regions among samples is >2. When associating
tumor stages with volatility quantification, stage I samples
were found to present very little over-the-threshold volatil-
ity measurements in chromosomes 7, 11 and 20 (Figure 4C
and D). In contrast, summing up samples of stages II and
III gave a significantly larger number of over-the-threshold
volatility measurements (Figure 4D). For stage II, there
were almost no over-the-threshold volatility-measurements
for chromosome 9, and for stage III the same applied to
chromosome 2.

Benchmarking

Comparing the alterations of chromosomes {1..22} for
HNSC on which HiBS had reported, to the other tools val-
idated results for these regions. (Figure 5 and Supplemen-
tal Figures S13 and 14). For example, all tools showed loss
of p13.3-p12 for chromosome 1 (regions 23–24; Figure 5A),
and all tools showed a gain event in the longest arm of chro-
mosome 8 (Figure 5C). We also found that the four profiles
were very similar to one another because the interpretation
of the results are similar across chromosomes (Figure 5 and
Supplemental Figure S13 and 14). By focusing on the dif-
ferences between the four profiles for chromosome 8, two
of the tools, Bedtools and Control-FREEC, show almost no
differences. These tools were identical not only in their plots,
but also in the raw numbers that produced the plots, and dif-
fered only in the third place after the floating point (Supple-
mental Figure S13), while HiBS and CNV-seq shared some
differences from the others. By measuring a Euclidian dis-
tance between the tool profiles, we found that for chromo-
somes 1–4, 6–9, 11–13, 15–16, 18 and 20–22 HiBS provides
the largest distance from other tools (Supplemental Figure
S14). For chromosomes 5, 10, 14, 17 and 19 CNV-seq stands
at a greater distance (Supplemental Figure S14). When an-
alyzing the actual distances between the tools we see that
there are chromosomes for which the tools share between
∼12% (chromosome 10) and ∼25% (chromosome 14) of
differences (Supplemental Figure S14). In contrast to the
similarities between the tools, and specific for chromosome
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Figure 3. A whole genome point-of-view of breast cancer using HiBS classification. (A) Provides HiBS indices for a collection of 187 samples (breast
cancer normal and tumor samples). The x-axis gives a sample’s serial number, ordered by the HiBS classification. The y-axis represents the HiBS index.
The first 89 points were classified as normal samples by HiBS and are followed by 98 samples classified as tumor. Samples defined as NB by TCGA that
are also classified by HiBS as normal (‘true negatives’) are surrounded with a blue dashed circle; samples defined by TCGA as TP and also classified by
HiBS as tumor (‘true positives’) are surrounded with a red dashed circle. The figure represents three misclassifications, points 121 and 158, where HiBS
classified the sample as tumor whereas TCGA defined it as normal (‘false positives’, blue points), and one sample, point 83, in which HiBS classified the
sample as normal whereas TCGA defined it as tumor (‘false negative’, red point). The profiles presented in (B and C) come from the 187 breast cancer
samples that were analyzed from TCGA. The x-axes in (B and C) provide region numbers, whereas the y-axes provide the number of species per region.
Panels (B and C) show the full range of variability between species profiles of normal tissue (B), and tumor samples (C). Each dot of color belongs to a
different chromosome in correspondence to the figure legend. The full profiles of these datasets can also be seen in Supplement Figure S10.
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Figure 4. Chromosome arm-specific amplification and tumor stages as portrayed by the HiBS index. The profiles come from the same set of 20 breast
cancer patients as in Figure 3. Panel (A) gives chromosome profiles for chromosomes 5, 10, 12 and 16. Panel (B) gives chromosome profiles for chromosomes
1, 3, 8, 13, 14 and 15. Each of these chromosome profiles has a schematic chromosome under its profile, which were taken from the HapMap project (51)
(http://hapmap.ncbi.nlm.nih.gov/karyogram/gwas.html). The axes in (A and B) are the same as in Figure 1E. Line colors correspond to different patients.
Colors are consistent between panels (A and B). The proportion of each chromosome is kept and the y-axis is limited to 3.5 × 106 species per region. The
matrix in (C) shows a connection between specific genomic regions and breast cancer tumor stage (generated by R gplots package 34). Each column stands
for one chromosome {1..22}, and each row stands for the samples’ cancer stage. The stages have been divided into categories I, II and III, separated by
thick green lines. Each cell is color-coded according to the color key (middle right) that reflects the number of regions HiBS detected as high volatility in
a specific chromosome. Panel (D) provides a sum-up of these measurements for chromosomes 7, 11, 20, exposing differences between the stages. Panel D
provides the binary mode. We chose the highest value in the linear combination for stage I to be the cutoff for the binary classification.

http://hapmap.ncbi.nlm.nih.gov/karyogram/gwas.html
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Figure 5. Benchmarking and species distribution structure. Specific cases for chromosomes 1 (A and B) and 8 (C and D) in HNSC (TCGA-BA-4076–
01A-01D-2266–10 Illumina.bam) are in the panels. The x-axis is the region number across all panels. Since chromosomes length does not divide by 5M
and since HiBS uses a window of 5 Mb, we neglected the tail (last region) and explored the other regions. The y-axis in panels (A and C) is the species
fraction. The y-axis in panels (B and D) is the structure distribution number. Each tool has a different color and it is consistent along the figure. The gray
rectangles in panels (B and D) are a zoom-in. The species analysis and the species distribution structure analysis, both generated by HiBS, and both for
the same regions.
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8, there were three specific areas in which the discrepancies
between the profiles were higher (Figure 5C, gray rectan-
gles); more data is given below regarding species distribu-
tion structure analysis.

Species distribution structure

One example for novel findings is chromosome 1 region
number 14 (1p31.3-p31.1) (Figure 5A and B). This region
has been picked up by HiBS structure analysis due to the
fact that its structure distribution value is higher than the
median for chromosome 1, while the other tools were un-
able to expose this region. We can see how this specific re-
gion differs from other regions in Figure 5B (gray rectan-
gle). One of the genes included in the region is GADD45A.
GADD45A is a member of the GADD45 family of genes,
which are known stress sensors (37). The regulation of the
expression of this gene is extensively studied in many types
of cancer, such as breast cancer (37), head and neck cancer
(38), human cancer cells (39) and many other cases. Further,
associating the benchmarking profiles for chromosomes 8
in the HNSC to species distribution structure analysis by
HiBS showed three areas with major differences between
the tools, the biggest variation being along the species dis-
tribution structure (Figure 5C and D). The first area was
region number 10, which is the centromere area of chromo-
some 8. The second was region number 18 (8q21.2–8q21.3),
known for its abnormality in HNSC (40) and other cancers,
including cervical carcinoma (41) and breast cancer (42).
The third was area regions 22–23 (8q23.2–8q23.3), those
of CSMD3 noted for its abnormality in HNSC and several
other cancers (43).

DISCUSSION

We have shown a method that relaxes the complexity of
WGS raw reads to an index that allows sample classifica-
tion, detects specific amplification/deletion loci and indi-
cated the stage of a tumor sample. HiBS was developed as
a novel algorithm that stratifies and visualizes WGS data
from cancer samples by deriving information about intra-
tumor WGS heterogeneity within a sample. The three major
advantages of HiBS are: first, the read species based method
helps in decisions regarding the tumor/normal source of
the sample using only the structure of the data (Figures 1–
3A). Second, the algorithm is an extremely sensitive method
of identifying specific amplification/deletion loci, making
it suitable for loci targeting approaches (Figures 3B and
C, 4B and C, 5B). Third, the algorithm can be easily inte-
grated within a tumor staging system to assist in diagno-
sis (Figure 4C and D). We also describe the use of HiBS
to successfully confirm breast cancer hotspots within the
genome. For example, chromosome 8, is known to con-
tain breast cancer affiliated loci (44–46), with the more spe-
cific MYC hotspot region being in chromosome 8––MYC
is amplified in breast cancer (36,47). Furthermore, com-
paring the sensitivity of the algorithm to other tools on a
specific cases, such as chromosomes 1 and 8 in HNSC, we
found specific regions (1p31.3–p31.1 and 8q21.2–8q21.3)
(Figure 5) that were uniquely ascertained by HiBS species
structure distribution analysis, known in the literature to

be in HNSC (38,40) and other cancers (37,39,41–42). In
summary, results from experiments over a broad range of
WGS data, through appropriate statistical modeling using
the sequence-read species behavior of the data themselves,
provide by HiBS processing tumor classification at an ex-
tremely high success rate, specific chromosomal fluctuation
regions and an association with tumor stage classification.

HiBS can initially configure runtime parameters over a
set of 16 WGS samples obtained from eight patients rep-
resenting a ‘mixture’ of cancer types from TCGA (Supple-
mentary Table S1). These datasets represent a non-uniform
technical population due to their inter-tumor WGS hetero-
geneity, in contrast to intra-tumor WGS heterogeneity (48)
Figure 2). This phenomenon calls for a recalibration of the
amount of mapped reads for quantitative benchmarking
(Supplemental Figure S3). Selecting different region sizes
and using a variety of z-score thresholds (Supplemental Fig-
ures S4–S7), we saw convergence into a set of optimal pa-
rameters for the data. Empirical comparisons to ground
truth showed that HiBS, with a region size of 5 million bases
and with a z-score threshold of 1, outperformed all other
parameter choices on the basis of accuracy of classification
determined by the ‘validity’ of volatility measurement (Sup-
plemental Figures S7 and S8). With these parameters, HiBS
achieved a perfect classification between normal and tumor
samples. Performance remained consistent whether we ana-
lyzed each dataset using a fixed or the original size (Supple-
mental Figures S7D and S9). Stability of HiBS index was
checked by ruling out any associating to depth-of-coverage
(Supplemental Figure S3C and D).

To achieve and demonstrate a robust evaluation of HiBS,
we used the complete set of available whole genome se-
quenced breast cancer samples from TCGA (Supplemen-
tary Table S2). This shows that HiBS achieved near-perfect
classification. Out of the 187 BRCA samples, 184 were
successfully classified (98.4%), only 3 misclassifications be-
ing found. This high success rate calls for a detailed study
of these specific samples; unfortunately, more informative
data, both from the clinic or on the misclassifications sam-
ples is unavailable. Using these data, we identified BRCA
specific targets of genomic amplification, especially in chro-
mosomes 8 and 1, particularly for their longer arms (Fig-
ure 3B and C). Both chromosomes seem to be involved in
quantifiable genome anomalies in many breast tumors (44–
45,49). Moreover, by intersecting our identified high volatil-
ity regions with external information about breast cancer
from refFlat (version 3/8/2014) (35), the highest observed
HiBS index was in 8q24.13–q24.21. This section contains 38
unique genes, including MYC, which is amplified in many
cases of breast cancer (36,47). Out of 589 possible regions,
499 had high volatility regions at least in one region for the
tumor BRCA samples. These findings are supported by spa-
tial heterogeneity phenomena, in which sub-clonal popu-
lations of cancer cells exist across different topological re-
gions of the tumor (50).

To understand more fully the use of the volatility model,
we correlated chromosome profiles with tumor stage. For
a compatible comparison between different stages of the
BRCA samples, seven samples were selected from stages I,
II and III (Supplementary Table S9). There were only seven
stage I (whole genome sequenced) samples in TCGA, which
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limited the analyses to a smaller number. Nevertheless there
were significant differences between the regions prone to
high volatility or no volatility (Figure 4C). For example,
chromosomes 7, 11 and 20 have high volatility regions in
samples from stages II and III, whereas samples from stage
I mostly lacked volatility (Figure 4D). Although the index
displayed a ‘decrease’ gradient from stage I to stage III when
presented in Figure 4C, it still hard to claim that a single
chromosome can differentiate the stages.

For sensitivity exploration, we compared the information
derived by HiBS to other methodologies, such as CNV and
genome coverage (Figure 5). The results from these method-
ologies are very similar, but we show how we can have a
uniquely point of view on the species distribution structure
by using the species model to shed more light on the WGS
as an innovative field (Figure 5B and D). But we remain
unsure as to why the species distribution structure in those
regions varied from the other regions, but we do know that
the points it raises share abnormal behavior.

Perhaps the strongest feature of our method is that the
algorithm findings are only based on the distribution and
similarity of reads within the (BAM/FASTQ) file. Interpre-
tation of the findings calls for a biological model, for exam-
ple, that associate specific regions with specific genes. Nor-
malization or a reference (normal genome) is not needed for
analyses, making for greater tool robustness. While the bi-
ological, technological and genomics reasoning behind this
phenomenon remains to be elucidated, the findings call for
special attention to the interplay between cancer genome
structure and NGS. HiBS provides a means to monitor this
interplay, which in and of itself leads to immediate imple-
mentation.

In conclusion, the HiBS method offers a novel layer of in-
terpretation to genome sequencing data. We have addressed
the urgent need for tools to interpret WGS data in the
diagnosis/prognosis of cancer genomes. The tool is freely
available, and its further development should make it ap-
ply to other forms of genomic and epigenomic data, such
as detection of unstable genomic loci in various disease and
non-disease situations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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