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Bacterial Detection and Recovery
From Poultry Litter
Jodie R. Plumblee Lawrence, Denice Cudnik and Adelumola Oladeinde*

U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States

The level of pathogens in poultry litter used for raising broiler chickens is critical to
the overall health of a broiler chicken flock and food safety. Therefore, it is imperative
that methods used for determining bacterial concentration in litter are accurate
and reproducible across studies. In this perspective, we discuss the shortcomings
associated with current methods used for bacterial quantification and detection
from litter and assess the efficacy of one method for pathogen and commensal
(Campylobacter, Salmonella, Escherichia coli, and Enterococcus spp.) recovery. The
limit of quantitation and detection for this method differed between pathogens, and
the recovery rate (∼138–208%) was higher for Salmonella, E. coli, and Enterococcus
compared to Campylobacter (24%). Our results suggest that pathogen recovery from
litter is highly variable and pathogen concentrations need to be reported in dry weight
before comparisons can be made between studies.

Keywords: poultry litter, food-borne pathogens, limit of detection, limit of quantitation, food safety, method
validation

INTRODUCTION

Poultry litter is a complex material comprised of decomposing plant-based bedding (e.g., wood
shavings, sawdust, and rice or peanut hulls) mixed with chicken feces, uric acid, feathers, feed,
insects, and other broiler-sourced components. Therefore, poultry litter carries a unique and
complex population of bacteria, fungi, and viruses (Martin et al., 1998; Terzich et al., 2000; Dumas
et al., 2011; Wadud et al., 2012). Since it is commonly used for raising broiler chickens, poultry
litter is the first non-self-biological active substance that is ingested by a chick after it is introduced
to a grow-out farm. Consequently, bacteria present in litter are the first inocula that will colonize
the gut of broiler chicks; therefore, it is important to accurately determine if food-borne pathogens
are present in litter before, during, and after use. Moreover, the continued withdrawal of antibiotics
from preharvest poultry production has increased the focus on “proper” litter management for
pathogen and disease reduction. However, detecting or enumerating bacterial pathogens in such a
complex and heterogeneous mixture as litter can be challenging. Consequently, various methods
have been used to isolate pathogens such as Campylobacter and Salmonella (Read et al., 1994; Kiess
et al., 2010; Brooks et al., 2016) and commensals like Escherichia coli and Enterococcus (Terzich
et al., 2000; Khan et al., 2005; Graham et al., 2009; Chinivasagam et al., 2016). This lack of a gold
standard method can lead to invalid conclusions on pathogen presence and make published results
incomparable across studies and samples.

To provide a narrative perspective to this problem, we surveyed published studies that reported
data on Salmonella present in poultry litter and determined the methods used for Salmonella
detection and recovery. To compare the methods, we used the minimum number of organisms in
a sample the method could accurately quantify, i.e., limit of quantitation (LOQ), and the minimum
number of organisms that can be detected in a sample using a given method, i.e., limit of detection
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(LOD). Furthermore, we performed an in vitro inoculation of
oven-dried litter to shed light on the inherent variability of
bacteria recovered from litter. By showing the variability both
in the literature and from a spiked poultry litter experiment,
this perspective aims to promote a discussion on this problem
and encourage additional collaborative research to address the
complexities of the issue.

MATERIALS AND METHODS

Survey of Methods Used for Salmonella
Isolation From Broiler Litter
Using keywords “Salmonella + broiler litter” or
“Salmonella + poultry litter,” we searched PubMed, Scopus,
and GoogleScholar for studies published between 2010 and
2020 that reported methods used for isolating Salmonella. We
selected 27 studies (Supplementary Table 1) that noted how
litter was characterized including the media used for bacterial
isolation and enumeration and the LOQ and LOD of the
method, and how Salmonella abundance was normalized, i.e., if
Salmonella concentration was corrected for moisture levels. We
chose Salmonella because it is one of the primary food-borne
pathogens that are commonly linked to poultry.

Poultry Litter Inoculation Study
We inoculated oven-dried litter with relevant, poultry-associated
bacterial species. Reused litter (composed of decomposed pine
shavings) was collected after broiler chicks were removed and
stored at 4◦C for several weeks before it was used for this study.
To determine litter pH, litter eluate was made by adding 20 ml
of 1X PBS to a whirl pak bag containing 5 g of litter and hand
massaged for 1 min before shaking on a platform rocker for
14 min. The pH of the litter eluate was determined with an Orion
Star Portable pH Meter (Thermo Fisher Scientific, Waltham, MA,
United States). Litter moisture was determined gravimetrically
as described previously (Oladeinde et al., 2018a). Reused litter
was dried in an oven (moisture content was ∼10.1% and pH
was ∼7.8 before drying) for 48 h at ∼105◦C to effectively kill
any indigenous bacteria. To ensure no pathogens were present
in the dried litter, we performed bacteriological analysis on litter
aliquots as described in the culture methods below.

A cocktail consisting of 16 bacterial strains
(Supplementary Table 2) isolated from poultry litter or
chicken carcass rinses was freshly prepared. All strains except
Campylobacter were cultivated at 37◦C for 18 h at ∼140 rpm
in an orbital shaker. Colonies were taken from tryptic soy
agar (TSA) with sheep blood and separately inoculated into
5 ml Luria Bertani (LB) Broth in a 15 ml conical tube.
After incubation and shaking, cells were pelleted, washed
with phosphate-buffered saline (PBS), pelleted again, and
resuspended in PBS. For Campylobacter, freshly grown colonies
from a Cefex plate (Remel, Lenexa, KS, United States) were
used to generate a suspension in Mueller Hinton (MH) broth.
Equal volumes of each strain were combined to produce a
cocktail with each organism at ∼108 cfu/ml. Serial dilutions of
the cocktail (∼107 to 101 CFU/ml) were prepared in 1X PBS

(Supplementary Figure 1). Each dilution (20 ml) was used to
inoculate litter (5 g) in triplicate resulting in concentrations
ranging from 106 to 1–6 CFU/strain per g of litter. Serial
dilutions were also plated in duplicate on selective agar to verify
inoculum amounts. Spiked litter was hand massaged for 1 min
and then placed on a platform rocker (∼40 rpm) for 14 min
(Supplementary Figure 1).

Litter slurry aliquots (100 µl) were serially diluted,
direct plated, and enumerated on selective agar: Cefex for
Campylobacter, CHROMagar ECC (DRG International,
Springfield, NJ, United States) for E. coli, m-Enterococcus
(Neogen, Lansing, MI, United States) for Enterococcus, and BG
Sulfa (Becton Dickinson, Franklin Lakes, NJ, United States)
for Salmonella. Cefex plates were incubated at 42◦C under
microaerobic (5% O2, 10% CO2, and 85% N2) conditions for
48 h. All other plates were incubated at 37◦C for 24–48 h before
enumeration. Blue-green colonies on CHROMagar ECC were
considered E. coli, pink to maroon colonies on m-Enterococcus
agar were considered Enterococcus, and light pink colonies were
considered Salmonella on Brilliant Green Sulfa (BGS). Pink
or grayish colonies on Cefex were considered Campylobacter.
Dilutions with at least two out of three replicates containing two
or more colonies per plate were included in LOQ calculations
(Supplementary Table 3).

Additionally, enrichment broth was plated onto appropriate
selective agar for any sample negative by direct plating.
For Campylobacter, spiked litter was diluted 1:10 in Bolton
broth [Campylobacter enrichment broth (Neogen, Lansing,
MI, United States), 5% lysed horse blood and Bolton broth
selective supplement (Oxoid)] and incubated at 42◦C under
microaerobic conditions for 48 h. For the other bacteria, spiked
litter was diluted 1:10 in buffered peptone water (BPW) and
incubated at 37◦C for 18–24 h. After transfer of enriched culture,
selective agar plates were incubated as above and noted for the
presence/absence of growth. The lowest inoculum amount with
at least two out of three replicates positive for bacterial growth
after enrichment and plating was considered the detection limit.

The LOQ was determined for each organism as the
lowest inoculum amount that gave countable plates (2–300
colonies) for two out of three replicates after direct plating
(Supplementary Table 3). The LOD was determined as the lowest
inoculum amount that produced growth in at least two out of
three replicates after culture enrichment.

Percent recovery (mean of three replicates for each inoculum amount)

=
concentration of bacteria recovered from inoculated litter

(
cfu/g

)
concentration of inoculum added to the litter

(
cfu/g

)
Continuous variables did not meet the assumption of a

normal distribution; therefore, non-parametric testing for direct
comparisons was used for one-way analysis of variance tests. To
determine if there was a significant difference in recovery between
bacterial genera, and if the inoculum size significantly affected
bacterial recovery, we performed a Kruskal–Wallis rank-sum test
on log-transformed percentage of inoculum recovered. Statistical
tests were performed using R (version 3.4.1).
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RESULTS AND DISCUSSION

Proper litter management during pre-harvest is critical to the
overall well-being of each broiler flock and for food safety.
Broiler chickens that were positive for Salmonella at pre-harvest
are more likely to carry Salmonella after processing (Volkova
et al., 2010, 2011). However, our research on understanding
how and what makes pathogens such as Salmonella and
Campylobacter persist in broiler houses remains elusive. Multiple
factors can be attributed to the lack of research in this field
including the complexities of the poultry industry and the
“heterogeneity” of poultry litter. Poultry litter is an important
experimental unit for monitoring the prevalence and emergence
of pathogens before, during and after grow-out periods. As there
is no standard methodology, manipulating litter for pathogen
detection represents one of the major constraints of litter
research. Consequently, studies that have investigated pathogen
concentration in litter vary considerably in the methods used.

We searched the literature for methods that were used
for recovering Salmonella from poultry litter. We found 27
studies that measured Salmonella levels in litter: 14 studies
were from litter composed of wood or pine shavings, 1
from rice hull and 12 did not report the litter type.
For litter processing and enrichment, 17 different types
of media were reported with the most common being
BPW (n = 13 studies) (Supplementary Table 1). A large
assortment of media was used for enumeration, with no clear
explanation for choosing one selective medium over another.
Most enumeration methods, either direct plating or some form
of most probable number (MPN), involved enrichment in
BPW, followed by selective enrichment in Rappaport-Vassiliadis
broth (RV) and/or Tetrathionate Broth (TT) before plating
onto Brilliant Green Agar (BGA)/BGS and/or Xylose Lysine
Deoxycholate (XLD)/Xylose Lysine Tergitol 4 (XLT-4) agars.
Some methods required that the litter be stomached, shook, or
mixed after the enrichment broth was added, but the duration
reported varied between studies (Supplementary Table 1). Nine
studies reported a LOD or LOQ for their method (range; <1–
100 CFU or MPN/gram). However, over half (n = 18) of the
studies did not report a LOD or LOQ and no study reported
the recovery efficiency of the method used. Together, these
observations revealed no adequate metrics exist to ascertain if one
method performs better than another.

Therefore, to start a discussion on the complexities of
bacterial recovery from litter and encourage further research,
we conducted a spiked poultry litter experiment. We inoculated
oven-dried litter with a consortium of relevant poultry-
associated bacterial species at six different concentrations
(Supplementary Figure 1). We assumed that the oven-dried
litter used was 100% dry weight and that the microbiota
present comprised solely of inoculated bacterial strains. The
recovery efficiency of the method examined differed between
bacteria (X2 = 31.013, df = 3, p-value = 8.488e-07) (Table 1).
Salmonella exhibited the highest percent recovery, followed by
Enterococcus, E. coli, and Campylobacter. The method recovery
efficiency also differed by the concentration of inoculum added
(X2 = 15.07, df = 5, p-value = 0.01). For instance, we recovered

>200% [coefficient of variation (CV) = 43%] of Salmonella cells
inoculated when ∼ 102 CFU/g litter was used as inoculum
size, compared to 94% (CV = 18%) recovery when 106 CFU/g
litter was used. This inoculum-based difference was also true
for Enterococcus and E. coli (Figure 1). For Campylobacter, we
could only recover a maximum of around 31 ± 17% of the
inoculum added. Furthermore, the highest LOQ (1600 cfu/g)
and LOD (160 cfu/g) was for Campylobacter. Salmonella had the
lowest LOQ (44 cfu/g), while Enterococcus had the lowest LOD
(∼2 cfu/g) (Table 1 and Figure 1).

Although it is not theoretically possible to recover >100%
of the inoculum added to litter, our data showed that this was
the case. One plausible explanation is that bacterial growth
occurred throughout the process of preparing the inoculum,
making dilutions, mixing with litter, and spread plating on agar.
Even though the process took less than an hour, bacteria have
been shown to substantially increase in concentration within
short periods of time (Oladeinde et al., 2018b; Chase et al., 2019).
Alternatively, the large volume of PBS (20 ml) used for spiking
the litter (5 g) could create an artificially high microbial load in
the saline, as the bacteria would have been more tightly associated
with the litter in a naturally occurring environment.

The dearth of broiler litter studies reporting measures for
method validation makes it impossible for us to compare
this method to other published methods. Previous studies
(Supplementary Table 1) that determined Salmonella
concentration in litter grab samples reported the LOQ and LOD
of those methods to be between 0.3 and 100 CFU or MPN per
gram of litter. Our method revealed that there is high variability
and difficulty associated with detecting and quantifying
pathogens present in poultry litter. The method’s variability was
dependent on inoculum concentration and Salmonella had the
highest variability (Figure 1), which was also the bacteria with
the highest recovery. Contrastingly, Campylobacter results were
less variable but had the lowest recovery in litter. Studies have
reported that Campylobacter might not be readily detected in
litter with culture methods, so DNA-based techniques such as
PCR have been recommended (Brooks et al., 2015; Kassem et al.,
2017). Another source of variability could be the different media
we used for inocula preparation. Cefex agar and MH broth were
used for Campylobacter strains, while TSA and LB broth were
used for other bacterial strains.

Furthermore, Salmonella concentration was not normalized
by the litter moisture content in the majority of studies reviewed.

TABLE 1 | Limit of quantitation, detection, and percent recovery for this method.

LOQ (cfu/g
litter)

LOD (cfu/g
litter)

Average %
Recovery (± SD)

Campylobacter 1600 160 24 ± 12a

E. coli 680 6.8 138 ± 36b

Enterococcus 230 2.3 186 ± 78b

Salmonella 44 4.4 208 ± 86b

LOQ, limit of quantitation; LOD, limit of detection; SD, standard deviation.
Average values within columns with no like superscripts are significantly different
(p ≤ 0.05).
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FIGURE 1 | Percent of bacterial inocula recovered from litter.

Moisture content of litter can range from 10 to 70% depending
on a variety of factors: sample location within broiler house,
number of flocks raised on litter, and if/how composted (Martin
et al., 1998; Furtula et al., 2010; Miles et al., 2011; Pepper and
Dunlop, 2021). Salmonella numbers reported on a dry weight
basis are higher than the same result when reported as wet
weight or “as-is” basis. The uncorrected bacteria concentration is
biased low because it includes bacteria in the moisture or other
liquid phase of the litter. The degree of bias in the pathogen
concentration reported is affected by the moisture content of
the litter sample. For example, a litter that has 75% moisture
and was reported to carry 30 CFU of Salmonella/g wet weight
would carry∼120 CFU/g dry weight. This is fourfold higher than
the value reported in wet weight and significantly changes the
interpretation of the result. The differences in methods chosen for
analyzing poultry litter suggests that comparison of data across
studies should be done carefully and cautiously.

Our intent is not to provide a validated method for further use
by poultry researchers as the spiked litter experiment has several
limitations: the absence of indigenous bacteria, low moisture,
the weakly basic pH, and the age of the oven-dried litter. These
properties are expected to affect the recovery of pathogens from
litter and would require further studies involving many poultry
research facilities and farms to determine their role in pathogen
survival and recovery.

CONCLUSION

Having accurate and efficient methods for pathogen
quantification and detection from litter is one of the first
steps to implementing pre-harvest reduction interventions.
This study provides a template that poultry researchers can use
when developing newer methods or for validation of current
methods used for pathogen detection in litter. It is likely that

method performance will differ by litter composition (e.g., pine
shavings versus peanut hulls), litter age, and litter moisture;
therefore, further studies to evaluate these differences are needed.
Likewise, litter sampling methods such as drag/boot swabs
require separate validation studies. In the short term, these
studies will aid in the repeatability and reproducibility of litter
studies and in the long-term assist in pathogen reduction in
poultry pre-harvest.
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