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Abstract: Colored titanium oxides are usually unstable in the atmosphere. Herein, a gray rutile
titanium dioxide is synthesized by two-step calcination successively in a high-temperature reduction
atmosphere and in a lower-temperature air atmosphere. The as-synthesized gray rutile TiO2 exhibits
higher photocatalytic activity than that of white rutile TiO2 and shows high chemical stability. This is
attributed to interior oxygen vacancies, which can improve the separation and transmission efficiency
of the photogenerated carriers. Most notably, a formed surface passivation layer will protect the
interior oxygen vacancies and provide long-term photocatalytic activity.
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1. Introduction

Among titanium oxides, TiO2 is well investigated in the photocatalysis research field because
of its high chemical stability, low cost, and nontoxicity [1]. However, it can only absorb ultraviolet
light, resulting in low photocatalytic efficiency. To expand its light absorbance range and enhance
the separation efficiency of the photogenerated carriers, many efforts, such as doping with other
elements, sensitizing with dyes, and coupling with metal or nonmetal nanoparticles or different
semiconductor materials, have been made to solve the aforementioned problems [2–7]. Very recently,
TiO2 nanotubes synthesized via the electrochemical anodization of titanium foil exhibited visible light
response characteristics for the photodecomposition of formaldehyde [8].

It has been reported that when TiO2 is partially reduced by H2 or CO, or bombarded by high-energy
particles (laser, electron, or Ar+), the obtained colored TiO2 powers show visible light photocatalytic
activity. In 2010, a blue titanium dioxide with a mixture of anatase and rutile phase was synthesized
via hydrolysis and the reduction of isopropyl titanium, showing a higher photocatalytic activity than
that of commercial anatase TiO2. The higher photocatalytic activity was attributed to the presence
of Ti3+ in the interior of the titanium dioxide crystal [9]. In 2011, Giamello et al. used an isotope
labeling method to study the existence of Ti3+ in rutile titanium dioxide in detail [10]. In the same
year, a black TiO2 with a strong absorption of visible light was synthesized via a high-temperature
hydrogenation reduction of P25 TiO2 by Chen et al. The obtained higher photoactivity of the black TiO2

was attributed to the reduced band gap of titanium dioxide caused by the generation of the surface
disordered structure [11]. Another kind of simple method to produce colored TiO2 is the addition
of fluorine species during TiO2 preparation [12,13]. In 2014, Xu et al. synthesized stable blue TiO2

nanoparticles with a non-stoichiometric TiO2−x core and stoichiometric TiO2 shell structure for the
photodecomposition of methylene blue (MB) dyes under visible light irradiation [12]. In addition to
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the black- or blue-color TiO2, Ye et al. found that TiO2 nanocrystal assemblies show a yellow color,
caused by the interfacial Ti–Ti electronic bonding. Until now, many outstanding works on colored
TiO2 have been reported [14–28]. They usually showed a broader light absorbance range and higher
photocatalytic activity than that of white TiO2. However, the mechanisms for the higher photocatalytic
activity still remain a controversy. Some studies have suggested that it is ascribed to a surface disorder;
other reports suggest that it is caused by the “oxygen vacancy” states associated with the Ti3+ within
the band gap of the TiO2 [16,29,30]. Most notably, the reported colored titanium oxides are usually
unstable in the atmosphere because of a large number of oxygen vacancies and the presence of Ti3+

with poor stability [24]. It is still a challenge to synthesize a stable colored TiO2 photocatalyst.
In contrast to anatase TiO2, rutile TiO2 has attracted less attention in the photocatalytic research

field because of its low photocatalytic activity [31,32]. Herein, gray rutile (GR) titanium dioxide
particles (marked as TiO2-GR), which are composed of microcrystals with oxygen vacancies on
the surface, are synthesized by two-step calcination successively performed in a high-temperature
reduction atmosphere and in a lower-temperature air atmosphere. The as-synthesized gray rutile TiO2

exhibits a higher photocatalytic activity than that of white rutile (WR) TiO2 (marked as TiO2-WR).
This is attributed to the presence of oxygen vacancies, which can improve the photogenerated carrier
separation and transmission efficiency. Most notably, the formed surface passivation layer will protect
the interior oxygen vacancies and provide long-term photocatalytic activity.

2. Materials and Methods

2.1. Materials

Hexanoic acid (HA), tetrabutyl titanate (TBOT), methylene blue (MB) dye, and glucose were
purchased from Sinopharm Chemical Reagent Company. All chemicals were of AR grade. The ultrapure
water used in the experiment was obtained from a Mill-Q (electric resistivity 18.2 MΩ·cm) water
purification system.

2.2. Synthesis of TiO2-GR and TiO2-WR

First, uniform spherical anatase TiO2 particles (Figure 1a and Figure S1a) with a diameter of
200–300 nm were synthesized via a previous reported method [33]. In a typical process, hexanoic acid
(0.46 g) dissolved in ethanol (230.0 mL), and TBOT (1.70 g, 10% ethanol solution) was mixed by stirring
at room temperature. Then, 35.0 mL H2O was dropped into the mixture with vigorous stirring for 12 h
at room temperature. The products were obtained after centrifugal separation and were then ready for
use for the next two-step calcination procedure.

Second, the as-prepared TiO2 nanosphere was firstly calcinated in a tubular high-temperature
furnace with continuous argon flow at 900 ◦C for 3 h. Then, it was further calcined at 500 ◦C in
air atmosphere for 10 h, and gray rutile TiO2 particles with polyhedron morphology were obtained
(TiO2-GR, Figure 1b and Figure S1b). A white rutile TiO2 used as a reference sample (TiO2-WR,
Figure 1c and Figure S1c) was prepared by the calcination of the as-prepared TiO2 nanosphere at 900 ◦C
for 3 h in an air atmosphere.

The as-prepared photocatalysts were stored in an air atmosphere at room temperature.

2.3. Photocurrent Measurements

The photocurrent measurements were carried out on an electrochemical analyzer
(CHI660D Instruments, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) using a standard
three-electrode system. The as-prepared samples, a commercial Pt gauze electrode (Gaoss Union
Technology Co., Ltd., Wuhan, China, 2 cm × 2 cm, 60 mesh), and saturated calomel electrode were used
as working electrodes, counter electrode, and reference electrode, respectively. The working electrode
was prepared as follows: 0.05 g of the sample was ground with 0.10 g terpinol for 10 min to make
uniform slurry. Then, the slurry was evenly dripped onto a 4.0 cm × 1.0 cm indium tin oxide-coated
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glass (ITO glass) electrode masked by an adhesive tape with thickness of 0.5 mm and smoothed by a
doctor’s blade. Therefore, the formed film about had a thickness of 0.5 mm. Next, these electrodes
were dried in an oven and were calcined at 350 ◦C for 30 min in an air atmosphere. The electrode was
immersed in a 0.10 M NaClO4 aqueous solution to measure the transient photocurrent under a 300 W
Xe arc lamp irradiation with an incident light power density of 130 mW/cm2 at 0.4 V vs. the saturated
calomel electrode.
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rutile (TiO2-WR) (c).

2.4. Photoactivity Measurements

The photocatalytic discoloration of MB dyes was performed on a reformative XPA-7 photocatalytic
reaction instrument(Xujiang Electromechanical Plant, Nanjing, China). The incident light power
was 162 mW/cm2, which was measured by a handheld Optical Power Meter (Newport 1916-R,
Newport Corporation, California, CA, USA). The light exposure area of the quartz bottle was about
19.1 cm2. The discoloration effect was measured using the absorption spectroscopic technique. In the
typical process, an aqueous solution of the MB dyes (10.0 mg/L and 30.0 mL) and 20.0 mg of the
as-prepared photocatalysts were mixed in a 50 mL cylindrical quartz tube and left overnight in darkness
to reach the adsorption equilibrium for the MB dyes. Then, the mixture was exposed to 1000 W Xe lamp
irradiation with or without the light cutoff filters (λ > 420 nm), under ambient conditions and magnetic
stirring. At given time intervals, the reaction solution was sampled and analyzed by a UV-visible
spectrophotometer (UV 2250, Shimadzu, SHIMADZU (CHINA) Co., Ltd., Shanghai, China).

3. Results and Discussion

A spherical anatase TiO2 (Figure 1a and Figure S1a) in a white color was fabricated as the raw
material for the gray TiO2-GR via the hydrolysis of TBOT in the presence of alkyl chain carboxylic
acids [33]. It was determined that alkylchain carboxylic acids remained on the surface of the TiO2

nanospheres, which were used as a reductant for the subsequent high-temperature reduction of titanium
dioxide [4]. Both the gray rutile TiO2 and the reference sample (TiO2-WR) exhibited polyhedron
morphology (TiO2-GR, Figure 1b and Figure S1b).

After calcination at 900 ◦C in an Ar atmosphere, it can be seen from the High Resolution
Transmission Electron Microscope (HRTEM) pattern that a surface layer composed of a large number
of microcrystals surrounded by a disordered structure formed on the obtained gray TiO2 (Figure S2a).
The disordered structure is believed to be mainly caused by the presence of oxygen vacancies, which are
response for the black color of TiO2 [14,30]. Then, after further calcination at 500 ◦C in an air atmosphere,
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a dense layer with ordered lattice was formed by the refilling of oxygen atoms into the oxygen vacancies
on the outmost layer of TiO2 particles (Figure S2b). The formed dense layer with the size of 2–5 nm is
on the outermost layer of the TiO2-GR particle, which would act as a surface passivation layer to hinder
the further diffusion and infiltration of oxygen molecules into the interior oxygen vacancies. As a result,
the interior lattice disordered structure would be retained. The lattice width of the surface passivation
layer is 0.21 nm, which is ascribed to the (210) crystal faces of the rutile TiO2 (JCPDS 21-1276; Figure S2b).
However, no such surface layer structures were observed on the surface of the TiO2-WR particles
(Figure S2c). The lattice widths are 0.32 nm and 0.25 nm, which belong to the (110) and (101) crystal faces
of the rutile TiO2, respectively (JCPDS 21-1276; Figure 2a). The X-ray diffraction (XRD) peaks of the
gray TiO2 centered at 2θ = 27.75◦, 36.4◦, 39.45◦, 41.55◦, 44.35◦, 54.6◦, 56.9◦, 63.05◦, 64.35◦, 69.25◦, 70.05◦,
and 82.6◦ are ascribed to the (110), (101), (200), (111), (210), (211), (220), (002), (310), (301), (112), and (321)
crystal planes of the rutile TiO2, respectively (Figure 2b), which is consistent with the referenced white
rutile TiO2. Both of the XRD peaks of TiO2-GR and TiO2-WR are similar to that of the standard rutile
TiO2 (PDF# 87-0710). The Rietveld analysis (TOPAS V 6.0) of the XRD patterns shows that TiO2-GR
has an average particle size of 48.5 nm. This result is different from that intuitively observed from
the HRTEM patterns, which is attributed to the different detection areas between XRD and HRTEM.
Herein, the HRTEM patterns are mainly afforded the surface layer crystal structure of TiO2 particles.
Therefore, it can be inferred that the as-synthesized TiO2-GR nanoparticles are mainly composed of
microcrystals with an average size of about 48.5 nm, while their surface layers are composed of smaller
microcrystals. Additionally, the analysis results indicate that the broadening of the diffraction peak is
mainly due to grain refinement, and there is no existing microstrain. However, compared with the
cell parameters of the standard rutile TiO2 (PDF# 87-0710), both TiO2-GR and TiO2-WR show a lattice
expansion, with average lattice distortions of 0.11% and 0.13%, respectively. It is proposed that this is
mainly caused by the different treatments during the high-temperature calcination process. No peaks
centered at 2θ = 25.9◦, ascribed to carbon (JCPDS 26-1079), were observed in the XRD patterns of
gray TiO2 [34].
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The chemical state of the surface species of TiO2-GR and TiO2-WR was determined by X-ray
photoelectron spectroscopy (XPS), which was further analyzed by an XPS peak-fitting program
(version 4.0, Hong Kong, China). The C1s XPS peaks of TiO2-GR centered at 284.6 eV (FWHM = 4.55 eV)
and 282.9 eV (FWHM = 1.96 eV), which is similar to that of TiO2-WR, were ascribed to the *C and
(*CO)Ti species caused by the carbon contaminant (Figure 3a,b) [35,36]. It was reported that if a
carbon atom was doped in the crystal lattice of TiO2, a bonding energy peak ascribed to C* or Ti*–C
emerged at 281.6 eV or 454.90 eV, respectively [37,38]. However, no such carbon bonding energy peaks
were observed for either TiO2-GR or TiO2-WR. This indicates that there were no carbon atoms doped
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in the crystal lattice of the prepared gray TiO2, which means that the gray color did not originate
from the carbon residues. As shown in Figure 3c,d, the Ti2p XPS peaks of TiO2-GR were centered at
464.53 eV (FWHM = 2.84 eV) and 458.20 eV (FWHM = 3.82 eV), which are ascribed to Ti4+ 2p1/2 and
Ti4+ 2P3/2 of TiO2, respectively [39], which is similar to that of TiO2-WR. Two reduced titanium ion
XPS peaks centered at 462.43 eV (FWHM = 3.91 eV) and 455.92 eV (FWHM = 2.63 eV) were observed
for TiO2-GR, which could be ascribed to the low valence state titanium of nonstoichiometric TiO2−x

(0 < X < 2), mainly including Ti3+ 2p1/2 of Ti2O3 and Ti2+ 2p3/2 of TiO [40,41], which is consistent
with the O 1s XPS peak results. However, the TiO2-WR showed no reduced titanium ion XPS peaks.
The O 1s XPS peaks mainly consisted of three components (Figure 3e,f). The two peaks centered at
529.47 eV (FWHM = 3.30 eV) and 531.58 eV (FWHM = 4.48 eV) were ascribed to the lattice oxygen
of the stoichiometric TiO2 [42] and nonstoichiometric TiO2−x (0 < X < 2) [43,44], respectively, and the
latter may also include some hydroxyl oxygen species [45]. The small O 1s peak centered at 527.51 eV
(FWHM = 2.21 eV) could be attributed to the attached ionic oxygen of CO or O2 [46].
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It has been reported that the produced Ti3+ originated from the oxygen vacancies on the surface
of the gray TiO2. The removed oxygen atoms left behind two excess electrons per oxygen vacancy,
which could be harvested by the neighboring Ti atoms, and induce the formation of Ti3+ ions showing
EPR signals [47]. Therefore, Electron Paramagnetic Resonance (EPR) is one powerful method for
identifying the presence of oxygen vacancies in solid materials. A low-field signal with a g-value
close to the free-electron value (g = 2.0023) is generally attributed to an unpaired electron trapped on
an oxygen vacancy site [11]. Herein, as shown in Figure 4, an EPR signal with a g-value of 1.997 is
attributed to the Ti3+ centers in the rutile phase environment. As a comparison, there were no EPR
peaks at the same position observed from the TiO2-WR EPR signals. It is believed that the surface
Ti3+ would tend to adsorb atmospheric O2, which would be reduced to O2

−, and shows an EPR signal
at g ≈ 2.02 [11]. The absence of such a peak in the TiO2-GR EPR signals indicates that after long
calcination in an air atmosphere, the surface oxygen vacancies are refilled by oxygen atoms and the
Ti3+ is mainly present under the formed surface passivation layer, which is proposed as a key factor for
the observed excellent stability of TiO2-GR.
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The photocatalytic activity of the as-prepared TiO2-GR was determined by the photocatalytic
discoloration of the MB dyes. As shown in Figure 5a,b, the gray TiO2 showed a higher photoactivity
than that of TiO2-WR under visible light or full-spectrum light irradiation. Herein, different from most
of the previously reported colored TiO2 materials, the as-synthesized gray TiO2 showed a long-life
photocatalytic activity (Figure 5c,d). The TiO2-GR samples retained their color and properties even
after six months of storage, and did not exhibit any reduction in their photocatalytic activity after six
photocatalysis cycles. This indicates that the gray TiO2 has an excellent chemical stability, which is
ascribed to the special nanostructure caused by the two-step calcination treatment. As shown in
Figure S2b, the formed surface passivation layer will protect the interior oxygen vacancies. As a result,
the T3+ on the most superficial layer will disappear, which has been confirmed by the aforementioned
EPR results. The thermal stability of TiO2-GR was further studied by Thermogravimetric Analyzer
(TGA) in open air, as shown in Figure S3. The sample was thermally stable up to 650 ◦C in open air,
with negligible weight variation. The slight weight gain and loss wave before 125 ◦C are ascribed to the
adsorption and desorption of O2, CO2, or H2O on the surface of TiO2-GR in the air. A distinguishable
weight loss from 380 ◦C is ascribed to the dissociation of the surface –OH. Above 650 ◦C, the obvious
weight increase is ascribed to the refilled interior oxygen vacancies, indicating that the surface
passivation layer would be destroyed at this temperature. This shows that the as-prepared TiO2-GR
has high thermal stability.

A higher photocatalytic activity is attributed to the presence of oxygen vacancies that can create a
higher light absorbance and improve the separation and transmission efficiency of photogenerated
carriers, which is preliminarily confirmed by the UV-vis spectra, photocurrent, and photoluminescence
spectra. The suggested photocatalysis mechanism is shown in Figure 6a. It is proposed that the
photocatalysis of TiO2-GR may undergo two different photogenerated carrier transfer pathways when
pumped by UV light and visible light separately. It can be seen, in both pathways, that the oxygen
vacancies all play a vital role. Compared with TiO2-WR, the as-prepared TiO2-GR exhibits a broad
spectral absorption in the visible light region (Figure 6b). This can be attributed to the transitions
from the TiO2 valence band to the oxygen vacancy levels, or from the oxygen vacancies to the TiO2

conduction band pumped by visible light [30], which is responsible for the distinguishable higher
photoactivity of TiO2-GR than that of TiO2-WR. These results are consistent with the photocurrent
density results under visible light irradiation (Figure 6c). This indicates that, in this case, the visible
light absorption of TiO2-GR does lead to charge carrier generation and contributes directly to the
photocurrent. However, as shown in Figure 6c,d, the photocurrent density under a full-spectrum light
condition is about 100 times that under a visible light condition, which indicates that the contribution
of visible light to the improvement of the photocatalytic activity is very limited. This is consistent
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with previously reported results [48]. Therefore, it is proposed that the main factor for the higher
photocatalytic activity of TiO2-GR is the photogenerated carrier transfer path pumped by UV light. [49]
In this process, the Vo is still proposed to be a key factor for the improvement of the separation
efficiency of the photogenerated carriers. First, the Vo can act as a trap site for the temporary storage of
electrons, which can be further pumped to the conduction band to react with the substrates, resulting in
suppressed recombination of photogenerated carriers. [50]. Herein, the suppressed recombination
of photogenerated carriers is preliminarily confirmed by the photoluminescence spectra. If the
recombination of carriers was suppressed, the photoluminescence of semiconductor materials would
be quenched to some degree [51,52]. As shown in Figure 6e, compared with the reference TiO2-WR
sample, the TiO2-GR samples show a much lower photoluminescence intensity. This indicates that the
as-prepared gray TiO2-GR has a much higher photoinduced charge separation efficiency than that of
the white TiO2-GR materials. In addition, because of the presence of free electrons bound loosely to
the titanium atom in the oxygen vacancies [47], the surface electric conductivity of TiO2-GR will be
improved, as a result of improving the carriers’ transmission efficiency [26], which is also helpful for
improving the photocatalytic activity.
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Figure 5. (a) Methylene blue (MB) dye photocatalytic discoloration plots of TiO2-GR and TiO2-WR
samples under full-spectrum light irradiation; (b) MB dye photocatalytic discoloration plots of TiO2-GR
and TiO2-WR samples under visible light irradiation; (c) photocatalytic activity tests of TiO2-GR
samples stored for different times via the photocatalytic discoloration of MB dyes under full-spectrum
light irradiation; (d) photocatalytic activity cycle tests of TiO2-GR samples under full-spectrum light
irradiation. The aqueous solution of the MB dyes (10.0 mg/L, 30.0 mL) without photocatalysts was used
as the control sample marked as a blank in Figure 5a,b. C/C0 is the ratio of the real-time concentration
to the initial concentration of MB dyes.
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Figure 6. (a) Schematic illustration of the photocatalysis mechanism of TiO2-GR; (b) UV-vis diffuse
reflectance spectra of TiO2-GR and TiO2-WR; (c) photocurrent density of TiO2-GR and TiO2-WR under
visible light irradiation; (d) photocurrent density of TiO2-GR and TiO2-WR under full-spectrum light
irradiation; (e) photoluminescence spectra of TiO2-GR and TiO2-WR with an excitation wavelength of
380 nm.

4. Conclusions

In summary, gray rutile titanium dioxide was synthesized via two-step calcination,
performed successively in a high-temperature reduction atmosphere and in a lower-temperature air
atmosphere. The results indicate that, compared with the white rutile titanium dioxide, the as-prepared
gray titanium dioxide exhibits the typical characteristics of black- or blue-color TiO2, such as the
presence of Ti ions in a low valence state, surface disorder structure, and oxygen vacancies, which are
caused by the loss of oxygen atoms under reduction reaction conditions. According to previous
reports [14], it is proposed that the presence of Ti3+ or a surface disorder structure is mainly induced by
oxygen vacancies. The as-synthesized gray titanium dioxide exhibits a higher photocatalytic activity
than does white rutile TiO2. This is attributed to the interior vacancies, which can create a higher
light absorbance and improve the separation and transmission efficiency of photogenerated carriers.
Most notably, it is proposed that the two-step calcination can produce a surface passivation layer on
the surface of gray titanium dioxide particles, as a result of protecting the interior oxygen vacancies,
which provides long-term photocatalytic activity. This study provides a considerable reference for
the design and synthesis of other semiconductor photocatalysts rich in oxygen vacancies, with high
activity and high stability.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/920/s1:
Figure S1: Morphology of spherical anatase TiO2 (a), TiO2-GR (b), and TiO2-WR (c). Figure S2: HRTEM of
TiO2-only calcination at 900 ◦C in Ar atmosphere (a), TiO2-GR (b), and TiO2-WR (c). Figure S3: TGA curve in
open air for the TiO2-GR sample.
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