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Monolysocardiolipin (MLCL) is a three-tailed variant of cardiolipin (CL), the signature lipid
of mitochondria. MLCL is not normally found in healthy tissue but accumulates in mito-
chondria of people with Barth syndrome (BTHS), with an overall increase in the MLCL:CL
ratio. The reason for MLCL accumulation remains to be fully understood. The effect of
MLCL build-up and decreased CL content in causing the characteristics of BTHS are
also unclear. In both cases, an understanding of the nature of MLCL interaction with
mitochondrial proteins will be key. Recent work has shown that MLCL associates less
tightly than CL with proteins in the mitochondrial inner membrane, suggesting that MLCL
accumulation is a result of CL degradation, and that the lack of MLCL–protein interac-
tions compromises the stability of the protein-dense mitochondrial inner membrane,
leading to a decrease in optimal respiration. There is some data on MLCL–protein interac-
tions for proteins involved in the respiratory chain and in apoptosis, but there remains
much to be understood regarding the nature of MLCL–protein interactions. Recent devel-
opments in structural, analytical and computational approaches mean that these investi-
gations are now possible. Such an understanding will be key to further insights into how
MLCL accumulation impacts mitochondrial membranes. In turn, these insights will help
to support the development of therapies for people with BTHS and give a broader under-
standing of other diseases involving defective CL content.

Introduction
Monolysocardiolipin (MLCL) is a three-tailed glycerol-phospholipid and an intermediate product in
the biosynthesis and degradation of cardiolipin (CL) [1]. In eukaryotes, CL is found uniquely in mito-
chondrial membranes, comprising 10–20% of the lipid content of the inner mitochondrial membrane
[2]. CL is also found in bacteria, reflecting the common evolutionary origins of mitochondria and bac-
teria [3]. MLCL accumulates in the mitochondrial membranes of people with Barth syndrome
(BTHS) [4], a genetic disease caused by mutations in a transacylase enzyme, tafazzin, involved in CL
remodelling.
CL is involved in many mitochondrial processes: CL has a crucial role in mitochondrial energy pro-

duction, interacting with and enhancing the activity of all the major respiratory chain proteins [5] as
well as roles in cristae morphology [6], apoptosis [7], mitophagy [8], and mitochondrial fusion and
fission [9,10]. It is, therefore, not surprising that the deficiency of tafazzin, resulting in the accumula-
tion of MLCL and other CL variants, and a decrease in total CL content, might cause problems [11].
However, there remains much to be understood regarding the molecular mechanisms underlying the
effect of the change in lipid content and its impact in disease [11–13].
Here, the reason for MLCL accumulation, the effect of this build-up in mitochondrial membranes,

and what we know about the protein–MLCL interactions involved are reviewed.
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The structure and physical properties of MLCL
The chemical structure of MLCL and the mature (remodelled) form of CL is shown in Figure 1. The distinctive
features of CL, as compared with other lipids found in eukaryotic cells, are its geometric and electrostatic proper-
ties: CL has a conical shape due to its small headgroup and four acyl chains, and its two phosphate groups confer
a double negative charge. These properties help to inform an understanding of the physical properties of MLCL.

MLCL, CL and membrane curvature
Due to its geometry, CL has been shown in vitro to be sorted to membranes with negative curvature [14].
Molecular dynamics simulations of CL-containing membranes also show localisation of CL to curved regions
of the membrane [15–17]. MLCL, on the other hand, has one less acyl chain, therefore, would be expected to
have less of a propensity to localise to curved membrane regions, indeed MLCL-containing membranes have
been shown to have a greater preference for a lamellar phase than CL [18]. Molecular dynamics simulations
have also shown that MLCL does not localise specifically to curved regions of the bilayer [19] and that MLCL
bilayers take on less negative curvature than bilayers containing CL [20].

MLCL and CL headgroup charge
There has been some controversy over the charge of CL at physiological pH. CL has been shown to contain
only one negative charge in bulk bilayers at physiological pH, rationalised by assuming that the headgroup
‘traps’ one proton on one of the phosphate moieties by forming a tight bicyclic H-bonding structure with the
oxygen from the connecting glycerol moiety [21]. The finding led to the proposal that CL acts as a proton
shuttle [22]. However, subsequent work has since shown that CL exists with a double negative charge at physio-
logical pH [23–25]. Furthermore, the putative bicyclic H-bonding network has a particular headgroup geom-
etry; however, this is not observed in crystal structures of protein–CL complexes [26]. It has been demonstrated
in silico that MLCL has a double negative charge at physiological pH [24].

MLCL vs. CL headgroup geometry
All-atom molecular dynamics simulations comparing MLCL and CL behaviour in bilayers suggest that the
hydroxyl group on the lyso side of the MLCL headgroup (Figure 1A) is prone to orient itself more towards the
interfacial polar region than the hydrophobic core of the membrane, causing the lyso side of MLCL to be
‘pulled’ towards the solvent phase and leading to headgroup tilt, whereas the headgroup of CL displayed no
such tilting [19]. The tilting of the MLCL headgroup means that the phosphate on the lyso side of MLCL is

Figure 1. Chemical structure of MLCL (A) and mature, tetralinoleoyl-CL (B).
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also positioned slightly further from the bilayer hydrophobic core than either phosphate moiety in the CL
headgroup. This has possible implications for MLCL–protein interactions as compared with CL–protein inter-
actions, given that the two phosphates on CL often form ionic interactions with positively charged protein side-
chains [27]. Molecular dynamics simulations also showed that the acyl chain on the lyso side of MLCL was
more ordered than other acyl chains [19].

MLCL and CL acyl chain content
The acyl chain content of MLCL in BTHS cells has a low degree of unsaturation [28,29] whereas remodelled,
mature CL has a higher level of unsaturation, although this does vary between tissue types [30]: (18:2)4 acyl chain
content is particularly tightly controlled in mammalian cardiac tissue [31], while brain CL is more diverse [32–34].

How does MLCL accumulate?
MLCL is produced from CL by a lipase removing a single acyl chain from CL, which can occur as part of CL
remodelling or degradation. To understand the accumulation of MLCL, it is first useful to briefly review CL
biosynthesis and remodelling. The biosynthesis of nascent CL occurs in the mitochondrial inner membrane
from phosphatidylglycerol (PG) and CDP-diacylglycerol [35]. The acyl chain composition of nascent CL is
remodelled, that is, acyl chains are removed and replaced, to form the mature form of CL, which typically has
higher unsaturated content. In yeast, CL deacylation is performed by a CL-specific phospholipase Cld1, which
has a specificity for saturated tails [36,37], whereas in mammals, phospholipase A2 (PLA2) is responsible [38–40],
most likely the calcium-independent iPLA2 gamma in vivo [41]. Tafazzin can then reacylate MLCL [42]
(Figure 2). Tafazzin uses acyl chains from other phospholipids to reacylate MLCL, or to act as a
CL-transacylase. The specificity of tafazzin remains controversial: it has been demonstrated that tafazzin may
have some acyl specificity [43]; however, the work from Schlame et al. [44] shows that the specificity of tafazzin
is dependent on the physical properties of the bilayer, particularly the ability of the bilayer to form non-bilayer
phases. There are other remodelling enzymes: CL can also be reacylated by acyl-CoA:lysocardolipin actyltrans-
ferase 1 (or ALCAT1) in mitochondrial-associated membranes [45] and in mitochondrial membranes by
monolysocardiolipin acyltransferase 1 (or MLCLAT1) [46]. There is also evidence that the trifunctional protein
alpha subunit, which is similar to MLCLAT1, is involved in CL remodelling [47–49].
MLCL accumulation occurs in people with BTHS leading to an increase in the MLCL:CL ratio, and other-

wise, MLCL is not present in normal tissue, except for testis [50]. The cause of an increase in the MLCL:CL
ratio in BTHS is yet to be fully understood [1]. Initially, MLCL accumulation was thought to be due to tafazzin
being part of a deacylation–reacylation cycle, with tafazzin deficiency causing the remodelling process to stall,
meaning that MLCL was not being reacylated. However, more recently, it has been shown that MLCL accumu-
lation may occur due to MLCL being an intermediate in CL degradation [51]. This hypothesis is based on the
finding that tafazzin deficiency in yeast increases CL turnover, while knock-down of Cld1 decreases CL turn-
over. The rationale is that due to less favourable interaction of MLCL and saturated CL within complexes of
mitochondrial membrane proteins, saturated CL is exposed to degradation to MLCL, which creates a cycle cul-
minating in the accumulation of MLCL.

Figure 2. Schematic of CL remodelling.

Nascent CL is deacylated by Cld1 in yeast; phospholipase A2 (PLA2) in mammals. Tafazzin transfers an acyl chain from another

phospholipid (PL) to MLCL, forming CL and a lysophospholipid (LPL). After one or more cycles, this will result in the mature

form of CL. CL acyltransferase enzymes, which take MLCL and acyl-CoA as substrate, are also shown: acyl-CoA:lysocardolipin

actyltransferase 1 (ALCAT), monolysocardiolipin acyltransferase 1 (MLCLAT), and trifunctional protein alpha subunit (TFPα).

Enzyme names are coloured green and lipid names are in black.
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MLCL accumulation in disease
MLCL accumulates in people with BTHS [4,52,53], leading to the characteristic increased MLCL:CL ratio.
MLCL has also been shown to build-up after cardiac arrest in rats [54], and the lack of CL remodelling has
also recently been associated with cardiac arrhythmia [47]. However, despite defective or decreased CL content
being implicated in many other disease states (e.g. cancer, neurodegenerative disease, and diabetes), the accu-
mulation of MLCL is not widely found in other CL-linked diseases [11]. As introduced above, BTHS is known
to be caused by a mutation in the tafazzin gene [55].
People with BTHS present with myopathy, heart failure, muscle weakness, growth retardation and neutro-

penia [56]. On a cellular and molecular level, cells from people with BTHS have a reduced mitochondrial mem-
brane potential [57], lower electron transport chain protein activity [58,59], decreased respiratory coupling
index [60] and increased proton leak [29] (leading to possible further mitochondrial damage via the increased
production of reactive oxygen species [29,60]), destabilised respiratory supercomplexes [61], and abnormal
cristae structures [62]. Mutations in taffazin also cause altered ATP synthase organisation in Drosophila mela-
nogaster [63].
As well as a lower concentration of CL and altered CL composition (i.e. a higher proportion of CL with satu-

rated tails), an increase in the MLCL:CL ratio is a key marker for BTHS [64,65]: although dependent on cell
type, the MLCL:CL ratio typically increases from a range of 0.0–0.2 in control cells to the significantly different
range of 0.4–100 in cells from BTHS patients [28,64,66].
The reasons for altered lipid content causing BTHS symptoms, and the functional role of tafazzin remains

an open question, although the existence of BTHS underlines its importance [1,11,13,35]. Recently, it has been
suggested that the main role of tafazzin is to remodel CL such that it lowers the energetic cost of protein crowd-
ing in the protein-dense inner mitochondrial membrane: Xu et al. [51] showed that MLCL associates less
tightly with mitochondrial proteins and that the association of CL in respiratory supercomplexes protects CL
from degradation. The authors also showed that CL unsaturation promotes protein association, which in turn
is thought to protect CL from degradation. In further work, Xu et al. [37] showed that the expression of com-
plexes of the respiratory chain triggers remodelling; knock-down of other mitochondrial proteins, even includ-
ing others that inhibit the respiratory function, did not alter CL composition. This lead to the suggestion that
tafazzin remodels CL to have unsaturated tails since these will lower the energetic cost of the membrane
packing around respiratory complexes in the inner mitochondrial membrane. It was argued that as a result of
this, respiratory complexes can be incorporated into the mitochondrial membrane with higher density, without
loss of membrane stability. This might explain why membranes with high energy requirements are most vul-
nerable to tafazzin deficiency [56].

The nature of MLCL interactions with mitochondrial
proteins
The result that MLCL associates less tightly than CL with mitochondrial membrane proteins [51] forms a key
part of understanding how the MLCL:CL ratio increases in people with BTHS and why MLCL accumulation
might affect CL remodelling. It also provides a rationale for the destabilised respiratory supercomplexes and
thereby reduced membrane potential and lower electron transport chain protein activity [58,59] found in
people with BTHS. The weaker association of MLCL vs. CL was demonstrated using 31P-NMR spectroscopy,
which showed that MLCL was solubilised by digitonin, a relatively weak detergent, whereas CL and MLCL
were solubilised by SDS (sodium dodecyl sulphate), a stronger detergent [51]. The nature of MLCL–protein
interactions remains unclear but is a vital part of the picture.

MLCL interaction with proteins involved in oxidative phosphorylation
CL is known to interact with, and affect the activity of, all of the key protein complexes of oxidative phosphor-
ylation, namely: Complex I [67,68], cytochrome bc1 (Complex III) [69], cytochrome c oxidase (Complex IV)
[70] and ATP synthase [71–73] as well as the ADP/ATP carrier [74], the mitochondrial transporter responsible
for shuttling newly synthesised ATP out of the mitochondrial matrix towards the rest of the cell.
In contrast, binding of MLCL to cytochrome c oxidase occurs but with lower affinity than CL. MLCL

retained 60% of the activity of cytochrome c oxidase compared with CL, and when CL is depleted altogether,
the enzyme has only 30–50% of the original activity [75]. This agrees with the findings of Xu et al. [51] that
MLCL interacts less tightly than CL, and further suggests that the loss of the activity of cytochrome c oxidase
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reconstituted with MLCL rather than CL is related to lower MLCL affinity. The partial retention of activity
with MLCL indicates that MLCL is in some ways able to mimic CL interaction.
The ADP/ATP carrier was also reported to retain only 12% of activity compared with CL on reconstitution

with MLCL [76]. In this case, it is not necessarily clear whether the loss of activity with MLCL compared with
CL is due to the loss of association or whether the MLCL could be as tightly bound, but with a lesser impact
on activity; compounding the difficulty in teasing these apart is the lack of knowledge of how exactly CL opti-
mises the activity of this carrier.

MLCL and proteins involved in apoptosis
In cultured lymphoblast cells from people with BTHS, apoptosis was found not to be increased [4]. However,
MLCL interactions with many proteins involved in apoptosis have been investigated demonstrating that MLCL
interacts with tBid more tightly than CL [77,78], caspase-8 [29] less tightly than CL, and also modifies the
release of cytochrome c [78,79].
Bid is a proapoptotic protein and member of the Bcl-2 family. Bid is cleaved by caspase-8 to form tBid,

which then associates at the mitochondrial outer membrane, leading to oligomerisation of other Bcl-2 family
proteins, Bax and Bak, and the release of cytochrome c [80]. CL had been suggested to target tBid to the OMM
during apoptosis [81]. Using electron spray mass spectroscopy, MLCL was shown to enhance Bid and tBid
mitochondrial membrane association, relative to CL [78]. MLCL also appeared to enhance the release of cyto-
chrome c [78] and affect the oxidation state of cytochrome c [79]. Furthermore, MLCL was shown to be
capable of inducing tBid dissociation from nBid (the other Bid-cleavage product) [77]. Although there exists
structural information regarding tBid [82–84], the nature of the interaction with CL and MLCL is not clear
[77]. In contrast with Bid, MLCL binds less tightly to active caspase-8 than CL [29]. Thus, whether apoptosis is
be enhanced or otherwise by MLCL accumulation remains a somewhat confounding picture.
The enhanced interaction of Bid with MLCL vs. CL is intriguing, as it contrasts with the findings showing

that MLCL associates less tightly with mitochondrial proteins [51]. However, Bid is a membrane-associated
rather than a membrane-embedded protein.

What does this tell us about MLCL–protein interactions?
It is not clear why the loss of an acyl chain in MLCL causes the loss of interaction with proteins and the loss
of activity compared with CL. A computational study of MLCL properties [19], discussed above, showed that
due to the loss of an acyl chain, the lyso side of the MLCL headgroup was tilted away from the hydrophobic
core, and the acyl chain on the lyso side of MLCL was more ordered. Both of these differences may cause a
weakening of the association with cytochrome c oxidase and possibly the ADP/ATP carrier, while retaining
some of the characters of the CL interaction. The ordering of the lyso acyl chain in MLCL may also contribute
to the preference for MLCL not to be sequestered in respiratory supercomplexes [37,51]. The fact that
non-embedded membrane protein Bid interacted more tightly with MLCL than CL may also be due to a head-
group tilt that exposes the lyso phosphate oxygen to the solvent phase.
EPR studies of the Na+/K+ ATPase show that CL and MLCL have a similar affinity for interaction with the

protein [85], which could indicate that for any difference to be observed, there would have to be a tightly inter-
acting CL binding site; since there is no evidence for the existence of a mitochondrial Na+/K+ ATPase [86], it
might be assumed that the protein has not evolved to have optimal CL binding. It may be in this case, there-
fore, that the rearrangements in the MLCL headgroup are too subtle to make a difference.
However, without further studies, it is not certain that the MLCL headgroup rearrangements observed in

bulk in bilayers [19] will translate to alterations in protein–lipid interactions.
Confounding any interpretation of MLCL–protein interactions is the problem that the molecular mechanism

through which CL optimises protein activity is itself unclear. However, this does mean that a greater under-
standing of MLCL–protein interactions may also help to shed light on the role of CL.

Conclusions and outlook
A key aspect of understanding the reasons for MLCL accumulation and the effect of MLCL accumulation in
mitochondrial membranes lies in understanding MLCL interaction with mitochondrial proteins. Recent work
has shown that MLCL interacts less tightly with mitochondrial membrane proteins [51] and that global impair-
ment of respiratory chain complexes triggers MLCL accumulation [37], leading to the hypothesis that an
increase in the MLCL:CL ratio impacts the stability of mitochondrial membranes, in particular impairing the
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tight-packing of the respiratory supercomplexes. To test this hypothesis, it will be important to understand
more about the nature of MLCL–protein interactions. Existing data indicate that the loss of an acyl chain in
MLCL diminishes membrane-embedded protein association at high-affinity CL interaction sites [75,76], pos-
sibly due to slight rearrangement in the MLCL headgroup as compared with CL [19]. MLCL association with
peripheral membrane proteins does not necessarily follow the trend [78]. However, it remains unclear how
MLCL interacts with mitochondrial membrane proteins and why it does so less tightly than CL with mitochon-
drial membrane-embedded proteins.

Other possible effects of MLCL accumulation
Altered mitochondrial morphology, i.e. deformed cristae, is a classic feature of BTHS. In a fly BTHS model,
ATP synthase organisation is altered, which may influence cristae structure, since it has been shown that rows
of ATP synthase dimers form on cristae edges, which drives membrane curvature [87–90]. Given that CL inter-
acts directly with ATP synthase, albeit transiently [91], and that CL is known to localise to curved regions,
whereas MLCL does not [19], it is conceivable that differences in MLCL interaction with ATP synthase may
contribute to altered mitochondrial morphology in BTHS. However, it could also be that other CL-associated
cristae-organising machinery [92] are also affected by abnormal CL composition, which then impacts on ATP
synthase organisation. MLCL interaction with ATP synthase dimers and even the localisation of MLCL within
cristae structures in vivo is unclear.
More generally, it is also possible that the accumulation of MLCL may disrupt mitochondrial membrane

properties, leading to further effects on the mitochondrial protein function. MLCL-containing bilayers, as men-
tioned above, are more likely to be flat [18–20] and are less susceptible to shape deformation under pressure
than CL-containing bilayers [19]. Since the mitochondrial inner membrane is highly curved, there may be
many proteins, localised to cristae tips, as discussed above, or at cristae junctions, or which perform dynamic
functions during mitochondrial fusion and fission, that therefore could be affected by an increase in the MLCL:
CL ratio. MLCL-containing bilayers are also less likely to have small ‘defects’, where the hydrophobic core of
the bilayer is exposed [19]. This may mean that, for peripheral proteins where partial interaction of the protein
with the hydrophobic core of the membrane is the mode of binding, MLCL-containing bilayers form less
favourable interactions.

Advances in investigating protein–lipid interactions
Although there remains much to be understood about the role of MLCL and its interaction with mitochondrial
proteins, we are currently at an exciting time for research into protein–lipid interactions, since advances in
both experimental and computational methods promise (and already are starting to achieve) significant
advances.
While there have been some notable cases of CL being resolved directly in crystal structures (e.g. the ADP/

ATP carrier [74,93], cytochrome bc1 [94], and cytochrome c oxidase [95]), the cryo-electron microscopy ‘reso-
lution revolution’ [96] means that there are now many more membrane protein structures with CL resolved,
such as the yeast respiratory supercomplexes [97,98], mammalian Complex I [99,100], and ATP synthase [101].
As such, there are not to my knowledge any structures of mitochondrial proteins resolved in the presence of
MLCL. Such structures would give invaluable insights as to the molecular detail of how MLCL interacts with
mitochondrial proteins, and how that may differ from interaction with CL, although the obvious problem
might be that with less tight association, MLCL is less likely to be resolved in any structures. Similar advances
in cryo-electron tomography have led to visualisation of membrane proteins in intact mitochondria with unpre-
cedented resolution [102]. However, again, to my knowledge, this technique has not been applied to mitochon-
dria of people with BTHS, or more generally, cells with a high MLCL:CL ratio. Cryo-electron tomography
would allow us to understand further how certain distinctive mitochondrial proteins (such as Complex I, ATP
synthase, and cytochrome bc1) are organised in the disrupted cristae of BTHS mitochondria, and in particular,
how the arrangement of respiratory supercomplexes is altered.
Mass spectroscopy has, as discussed above [37,51], provided invaluable insight into MLCL–protein interac-

tions. New techniques that allow for mass spectroscopy of proteins ejected directly from native mitochondrial
membranes have also recently been published [103]. Although such an approach may require some fine tuning
[104,105], this methodology could potentially be used to look at the mitochondria of people with BTHS and
would allow further understanding of the extent of MLCL–protein interaction and effects of MLCL accumula-
tion [106].
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Computational techniques, in particular molecular dynamics simulations, have also seen significant develop-
ment [107]. Molecular dynamics simulations allow multiple lipid interaction sites to be identified and charac-
terised [108,109], and new methodologies mean that relative free energies of lipid binding can be assessed
[110]. Molecular dynamics simulations have been used successfully to investigate CL interactions with mito-
chondrial [111–115] and bacterial [116–118] proteins, although, to my knowledge, have yet to be extended to
investigate MLCL. Simulations of MLCL embedded in mitochondrial membranes containing mitochondrial
proteins would demonstrate differences between interaction sites of MLCL and CL and enable the calculation
of MLCL vs. CL binding free energies. Coarse-grained molecular dynamics simulations [119] of crowded mito-
chondrial membranes (e.g. [120,121]) will further help to show how protein crowding impacts on MLCL–
protein interactions. We now have a good indication of where CL would bind in yeast supercomplexes [97,98]
(Figure 3). Given the increasing sophistication of molecular dynamics simulations and their success in reprodu-
cing the effect of membrane curvature on MLCL and CL localisation [19], it appears that the use of simulations
could give an exciting insight into the hypothesis that MLCL is less favourably sequestered than CL in respira-
tory supercomplexes, and the nature of MLCL–protein interactions more broadly.
Such advances will help to shed light on possible therapies both for BTHS, a disease specifically caused

defective CL remodelling leading to defective CL content and accumulation of MLCL as well as the much
broader category of pathologies where CL content is altered.

Perspectives
• A marked increase in the MLCL:CL ratio is the hallmark of people with BTHS, a genetic

disease caused solely by defective CL remodelling. People with BTHS have mitochondria dis-
playing defective oxidative phosphorylation and abnormal cristae structure, causing multi-
system disorder with potentially life-limiting effects.

• It has been shown that MLCL associates less tightly with many inner membrane proteins, and
this finding underlies an explanation for how an increase in the MLCL:CL ratio affects people
with BTHS. However, the nature of MLCL interaction with mitochondrial proteins is unclear.

• Structural, analytical, and computational techniques, used in combination, are poised to
provide answers.

Figure 3. Cryo-electron microscopy structure of a yeast supercomplex.

A yeast supercomplex (PDB ID: 6HUY [98]) containing a dimer of cytochrome bc1 (or Complex III; in white), two monomers of

cytochrome c oxidase (Complex IV; grey), with resolved cardiolipin lying in the protein–protein interfaces (cardiolipin is shown

as spheres: carbon atoms in yellow; oxygen, red; phosphorous, brown).
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