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Abstract
Luminal A breast cancers are generally associated with low metastatic potential and good prognosis. However, there is a 
proportion of patients, who present with metastases in lymph nodes. The aim of our study was to determine the associa-
tion between the number of positive lymph nodes and infiltrates of tumor-associated cytotoxic CD8 + (CTLs), regulatory 
FOXP3 + T cells (Tregs), as well as other prognostic factors. Immunohistochemistry (IHC) for CD8 + and FOXP3 + was 
performed in 87 formalin-fixed paraffin-embedded primary breast cancer tissues, and cell infiltrate was assessed under light 
microscope. We observed that node-positive cases were associated with higher numbers of Treg cells and lower CTL/Treg 
ratio. There was also an inverse correlation between the CTL/Treg ratio and the number of metastatic lymph nodes. Similar 
relationships were found between the number of metastatic lymph nodes and Treg density or CTL/Treg ratio in pT1 BC. An 
elevated intratumoral CTL/Treg ratio was associated with pN0 stage. The relationship between lymphovascular invasion 
(LVI) and Treg density was also noted in node-negative tumors. In addition, more advanced nodal stage was related to LVI, 
higher pT, and lower PR expression. The numbers of CD8 + and FOXP3 + were also associated with tumor size, histologic 
grade, PR expression, and mitotic index. The results of our study suggested that the levels of tumor-infiltrating regulatory 
and cytotoxic cells as well as the balance between them play a role in lymphovascular spread of luminal A breast cancers.
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Introduction

Breast cancer (BC) is the most common cancer in women in 
both developed and developing countries. In 2018, 2.1 mil-
lion new cases were diagnosed worldwide, with mortality of 
over 600,000 women [1]. The incidence of BC is still rising, 
which is caused by the increase in world population and 
longer life expectancy [2]. The presence of cancerous tissue 
in lymph nodes is associated with worse prognosis. It is an 
important element of staging, used to assess patient progno-
sis and to choose the appropriate treatment method. Lymph 
node metastases reflect interaction between the tumor and 
the immune system and also promote the spread of cancer 
cells to distant sites of the patient’s body [3].

In clinical practice, the most commonly used molecu-
lar classification of BC is St Gallen 2015 International 
Expert Consensus, based on the expression of an estrogen 
receptor (ER), progesterone receptor (PR), a receptor for 
human epidermal growth factor 2 (HER2) in cancer cells 
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and Ki67 protein, which reflects proliferation levels [4, 5]. 
Currently, five molecular types of BC are distinguished: 
luminal type A (ER + , PR + , HER2-, low Ki67), HER2- 
luminal type B (ER + , low PR or high Ki67, HER2-), 
luminal B/HER2 + (ER + and HER2 +), HER2-positive 
non-luminal (ER-, PR-, HER2 +). and triple-negative BC 
(TNBC; ER-, PR-, HER2-) [6]. Immunohistochemistry 
(IHC) is a technique routinely used to assess BC subtype 
[4, 5]. The cell phenotype defined this way is an impor-
tant parameter while choosing treatment and assessing 
prognosis.

Luminal A is the most common molecular subtype of 
BC, accounting for up to 60–70% of cases. It is character-
ized by the most favorable prognosis, resulting from its 
positive response to hormonal treatment and low meta-
static potential. However, a tendency to cancer spread in 
its later stages (often more than 5 years after the onset of 
symptoms) is observed [6, 7], and metastases are mostly 
found in lymph nodes and bones [8].

The tumor microenvironment consists of elements 
in the close vicinity of cancer cells, such as extracel-
lular matrix, fibroblasts, blood and lymphatic vessels, 
as well as immune cells (including various lymphocyte 
subpopulations). As in luminal A, the number of tumor-
infiltrating lymphocytes (TILs) is relatively small [9]; 
this subtype of BC is regarded as less immunogenic 
than the other [6]. The presence of TILs is regarded as 
a favorable prognostic factor, in particular if they are 
dominated by CD8+ cytotoxic lymphocytes (CTLs) [10]. 
They exert their anti-tumor properties primarily by the 
induction of apoptosis in cancer cells and the decrease 
in their proliferation rate. Through the production of 
interferon (IFNγ), CTLs stimulate the transformation 
of macrophages to M1 type, a phenotype with anti-
cancer properties [11]. On the contrary, the presence 
of regulatory T lymphocytes (Tregs), characterized by 
the expression of the Forkhead box P3 (FoxP3) tran-
scription factor, provides tolerance to tumor antigens, 
thus promotes its development [12] and worsens patient 
prognosis [13]. In BC with nodal metastases, a higher 
number of Tregs was found in primary tumors, but this 
association was not clearly determined for luminal A 
cancer [14, 15].

The aim of our study was to determine whether the infil-
trate of CD8+ CTLs and FOXP3+ Tregs in the microenvi-
ronment of primary invasive luminal A BC is associated 
with lymph node involvement or other prognostic factors. 
We believe this would provide missing information about 
the impact of tumor microenvironment on the occurrence 
of lymph node metastases and the progression of luminal 
A tumors. Additionally, we investigated the relationships 
between nodal stage and other prognostic factors in this 
type of BC.

Materials and methods

Material

The material comprised 87 routinely processed, formalin-
fixed paraffin-embedded tissues of primary invasive BC 
diagnosed between 2011 and 2018. All cases were classi-
fied as luminal A molecular subtypes according to St Gallen 
2015 International Expert Consensus [16]: ER + , PR ≥ 20%, 
Ki67 < 20%, and HER2-. The tissue material from patients 
who received presurgical chemotherapy was excluded from 
the study. The archival hematoxylin–eosin-stained slides 
were re-evaluated, and representative, well-preserved speci-
mens were chosen for immunohistochemistry. The informa-
tion on numbers of metastatic lymph nodes and the pres-
ence of lymphovascular invasion was obtained by reviewing 
medical records. Nottingham Histologic Grade system was 
used for grading, and the eighth edition of AJCC system was 
used for staging [17].

Immunohistochemistry

IHC for CD8, FOXP3, ER, PR, and Ki67 was performed 
according to the protocol routinely used in our laboratory. 
The selected blocks were cut into 4-μm-thick sections. 
Antigen retrieval was performed by incubating the slides in 
citrate buffer (pH 6.0; 0.01 M) or EDTA (pH 8.0; 0.01 M) 
at 97 °C in a water bath for 40 and 30 min, respectively. 
UltraVision Quanto detection system (Lab Vision, Thermo-
Scientific, USA) and 3,3’-diaminobenzidine as chromogen 
were used, and the slides were counterstained with Mayer 
hematoxylin (Thermo Fisher Scientific, Waltham, USA), 
and coverslipped. IHC for HER2 (PATHWAY 4B5, Ventana 
Medical Systems Inc., USA) was performed on BenchMark 
BMK Classic autostainer (Ventana, USA) using UltraVIEW 
DAB Detection Kit (Ventana Medical Systems Inc., USA). 
Primary antibodies used are listed in Table 1.

For specimens with HER2 status 2 + in IHC, fluores-
cence in situ hybridization (FISH) was conducted. FISH 
was performed using a PathVysion HER-2 DNA Probe Kit 
II (Abbott Molecular, USA) according to the manufactur-
er’s protocol. The LSI HER-2/neu and CEP17 signals were 
counted on fluorescence microscope equipped with specific 
filter sets, and HER-2/neu to CEP17 ratio > 2.0 was consid-
ered as HER2/neu overexpression [18].

Evaluation of immunostaining

Positive ER and PR expression thresholds were set 
when ≥ 1% of neoplastic cells showed positive immunostain-
ing. The threshold for discriminating between low and high 
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Ki67 expression was set at ≥ 20% of positive cells. Scoring 
of the HER2 staining was performed by standard method 
[18].

Evaluation of lymphocytic infiltrate

The immunostained slides were initially scanned on Olym-
pus BX53 optical microscope (Olympus Corporation, Tokyo, 
Japan) at low magnification (100 ×), and the areas with the 
highest number of CD8-positive (CTLs) or FOXP3-positive 
(Tregs) cells were chosen. Then, digital microphotographs of 
5 high-power fields (HPFs; 400 ×) in non-overlapping areas 
were taken using Olympus SC180 camera (Olympus Cor-
poration, Tokyo, Japan). Positively stained CTLs and Tregs 
were counted in the microphotographs with the use of Olym-
pus CellSens Standard 2.3 software (Olympus Corporation, 
Tokyo, Japan) and its tool object counting. The positive cells 
located in tumor surrounding stroma, no further than 1 HPF 

from the tumor edge, were regarded as invasive margin, 
while positive cells located within cancerous tissue were 
considered as intratumoral population (Fig. 1). In detail, in 
each microphotograph, two populations of cells (positively 
stained cells and cells lacking CD8 or FOXP3 expression) 
were labelled separately in mononuclear infiltrate located at 
invasive margin. The sum of the two labelled cell popula-
tions obtained in each slide represented the total mononu-
clear infiltrate. The numbers of positively stained cells (CTL 
or Treg) as well as their percentages in mononuclear infil-
trate obtained in each image were calculated automatically 
by the software. For intratumoral population, only positively 
stained cells were labelled, and their numbers were noted. 
Cell counts obtained in 5 microphotographs were added, 
and the percentage of positively stained investigated cells 
in mononuclear immune cell infiltrate was averaged. The 
ratios of examined T cell populations were calculated sepa-
rately for their numbers in intratumoral area (intratumoral 

Table 1   Antibodies used in the 
study

Clone Dilution Antigen retrieval Incubation time Manufacturer

CD8 C8/144B 1:100 Citrate 60 min Dako, USA
FOXP3 236A/E7 1:100 EDTA 30 min Abcam, UK
ER 6F11 1:100 Citrate 30 min Novocastra (Leica 

Biosystems, Ger-
many)

PR PgR636 1:100 Citrate 60 min Dako, USA
Ki67 MIB-1 1:100 Citrate 30 min Dako, USA

Fig. 1   The exemplary micro-
photographs of investigated 
immune cell populations 
in BC tissue: A Intratu-
moral CD8 + CTLs (CTLs 
number = 149), B invasive 
margin CD8 + CTLs (CTLs 
number = 231, CTL percent-
age = 55.8%), C intratumoral 
FOXP3 + Tregs (Tregs 
number = 54), D invasive 
margin FOXP3 + Tregs (Tregs 
number = 62, Treg percent-
age = 13.3%). Magnification 
400 × 
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CTL/Treg number ratio) and at the invasion front (CTL/Treg 
number ratio at invasive margin), as well as for their percent-
ages in immune cell infiltrate at invasion front (CTL/Treg 
percentage ratio at invasive margin).

Statistical analysis

Distributions were tested for normality with Chi-square 
test. To assess the differences between groups, ANOVA 
Kruskal–Wallis and U Mann–Whitney tests were performed. 
A t-test was applied for normally distributed variables. The 
correlations between groups were evaluated by using Spear-
man rank test. Chi-square test was used to analyze asso-
ciations between nominal variables. All analyses were per-
formed using Statistica 13 (StatSoft Inc., USA). In brackets, 
the data were expressed as median (interquartile range); p 
values < 0.05 were considered statistically significant.

Results

Description of study group

The research group consisted of 87 cases of luminal A type 
BC. The average age of patients was 58.8 years (range, 32 to 
88 years) at the time of diagnosis. Tumor size in 49 (56.32%) 
cases was of the pT1 stage and in 38 (43.68%) of the pT2 
stage. The presence of lymphovascular invasion (LVI) was 
noted in 72 (82.76%) cases. Lymph nodes status as fol-
lows: pN0 in 29 (33.33%), pN1 in 36 (41.38%), pN2 in 11 
(12.64%), and pN3 in 11 (12.64%) patients. In pN0 group, 
LVI was observed in 16 (55.17%) tumors and 13 (44.83%) 
cases lacked features of LVI. Regarding pTNM stage, stage I 
was diagnosed in 24 (27.59%) cases, II in 41 (47.13%) cases, 
and III in 22 (25.29%) cases. On the basis of the histologic 
type, 68 (78.16%) cases were classified as “not otherwise 
specified” (NOS), 16 (18.39%) cases as infiltrating lobu-
lar carcinoma (ILC), and 3 (3.45%) as “other.” Nottingham 
Histologic Grade was G1 in 29 (33.33%) cases, G2 in 47 
(54.02%) cases, and G3 in 11 (12.65%) cases. The character-
istics of patients and tumor data are summarized in Table 2.

The relationships between nodal status of luminal 
A cancers and infiltrate of CTLs and Tregs

To determine the associations between nodal involvement 
and infiltrate of CTLs and Tregs, we initially investigated 
the differences between node-negative and node-positive 
lesions. We noted that node-positive lesions showed sig-
nificantly higher numbers of intratumoral Tregs as well as 
lower ratio of CTLs/Tregs in intratumoral area and at inva-
sion margin (Fig. 2, Table 3).

With respect to pN stage, we noted its association with 
intratumoral CTL/Treg number ratio. In post hoc analysis, 
the significantly higher value was observed in pN0 than in 
pN1 tumors (p < 0.01). We found also similar tendency for 
CTL/Treg number ratio at invasion front (Fig. 2, Table 3). 
Interestingly, the mean values of both the above-mentioned 
ratios were slightly higher for pN2 and pN3 tumors as com-
pared to pN1, but they did not exceed mean values observed 
in pN0 lesions (Fig. 2). We found that intratumoral and inva-
sive margin CTL/Treg number ratios showed weak negative 
correlations (R =  − 0.25, p < 0.03, and R =  − 0.26, p < 0.02, 
respectively) with the number of metastatic lymph nodes.

We also investigated other stratifications of study group 
according to nodal involvement. When compared cases 
with ≤ 1 positive lymph node vs. ≥ 2 positive lymph nodes, 
the only difference concerned higher CTL/Treg number ratio 
at invasion front in cases with ≤ 1 positive lymph node [4.21 
(2.74–6.93) vs. 3.21 (1.72–5.42), p < 0.05]. There were no 
statistically significant differences in infiltrate of analyzed 
cells between pN1 and pN > 1 as well as 1–2 and ≥ 3 meta-
static lymph nodes (data not shown).

Table 2   Clinicopathological features of the study group

Characteristic Number of cases 
N = 87

%

Age [years]
Range 32–88
Mean 58.8
Tumor size, n (%)
pT1 49 56.3%
pT2 38 43.7%
Lymph nodes status, n(%)
pN0 29 33.4%
pN1 36 41.4%
pN2 11 12.6%
pN3 11 12.6%
Lymphovascular invasion, n (%)
Absent 15 17.2%
Present 72 82.8%
pTNM, n(%)
I 24 27.6%
II 41 47.1%
III 22 25.3%
Nottingham Histologic Grade, n (%)
G1 29 33.3%
G2 47 54.0%
G3 11 12.7%
Histologic type, n (%)
NOS 68 78.2%
ILC 16 18.4%
Others 3 3.4%
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Fig. 2   The differences and tendencies in CTL and Treg infiltrates 
with reference to nodal involvement. Relationships between nodal 
status (absence or presence of metastatic lymph nodes) and A number 
of intratumoral FOXP3 + Tregs (p = 0.029), B intratumoral CD8 + /
FOXP3 + (CTL/Treg) cell number ratio (p = 0.001), C invasive 
margin CD8 + /FOXP3 + (CTL/Treg) cell number ratio (p = 0.009) 
and D invasive margin CD8 + /FOXP3 + (CTL/Treg) cell percent-
age ratio (p = 0.049). Relationships between pN stage and E intratu-

moral CD8 + /FOXP3 + (CTL/Treg) cell number ratio (p = 0.009) or 
F invasive margin CD8 + /FOXP3 + (CTL/Treg) cell number ratio 
(p = 0.08). A, B, C, D, U Mann–Whitney test: the central point is 
arithmetical mean, box is mean ± 2*standard error (SE), and whisk-
ers are mean ± 0.95*standard deviation (SD); E, F, ANOVA Kruskal–
Wallis test: the central point is arithmetical mean, box is mean ± SD, 
and whiskers are mean ± 1.96*SD. p-value < 0.05 was considered sig-
nificant. *—p < 0.05 in post hoc test
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Regarding LVI, we noted that tumors with features of 
LVI showed significantly higher infiltrate of Tregs and 
lower CTL/Treg ratios (Table 3). In node-negative group, 
we observed that LVI-positive tumors had higher numbers of 
intratumoral and invasive margin Tregs than tumors without 
features of LVI [47.5 (19.50–111.0) vs. 19 (12–34), p < 0.03 
in intratumoral area and 125 (71–234) vs. 45 (32–145), 
p < 0.05 at invasion front].

The relationships between infiltrate of CTLs, Tregs, 
metastatic lymph nodes, and other prognostic 
markers in luminal A tumors

We observed that positive nodal status was associated with 
larger primary tumor diameter [21 (17–32) vs. 13 (11–21), 
p < 0.01] and lower PR expression [0.70 (0.50–0.80) vs. 0.85 
(0.70–0.90), p < 0.02] in comparison to node-negative sam-
ples. LVI-positive tumors had positive nodal status more 
frequently than negative (77.8% vs. 22.2%, p < 0.001). Non-
metastatic cases were more frequently of pT1 than pT2 stage 
(72.4% vs 27.6%, p < 0.04). No relationships between nodal 
involvement and patient age, histologic grade, mitotic index, 
ER, or Ki67 expression were found (data not shown).

Regarding tumor size, we found that pT2 tumors tended 
to have higher percentage of Tregs in infiltrate as well as 
lower CTL/Treg number ratio at invasion front (p = 0.087 
and p = 0.051, respectively) than pT1 cancers. After the 
stratification for pT, in pT1 tumors, we observed positive 
correlations between the number of metastatic lymph nodes 
and the numbers of Tregs located intratumorally (R = 0.46, 
p < 0.01) and at invasive margin (R = 0.29, p < 0.05) as well 
as the percentage of Tregs (R = 0.35, p < 0.02) at invasion 
front. Opposite relationships were found for CTL/Treg num-
ber ratio in intratumoral and invasion front area (R =  − 0.37, 
p < 0.01 for both) as well for CTL/Treg percentage ratio at 
invasion front (R =  − 0.33, p < 0.03) in these cases. No sig-
nificant differences were observed in pT2 group.

With regard to histologic grade, significantly greater 
number of intratumoral CTLs was observed in G3 than in 
G1 tumors (p < 0.05). Moreover, similar increase of Treg 
number and percentage with grade was noted at invasive 
edge of tumor (p < 0.05 and p = 0.068, respectively). No rela-
tionship was found with histologic type of tumor (Table 3).

The number of Tregs correlated negatively with PR 
expression both intratumorally and at invasive margin 
(R =  − 0.30, p < 0.01 and R =  − 0.29, p < 0.01, respec-
tively). The same was noted for Treg population percent-
age in infiltrate at invasion front of tumor (R =  − 0.22, 
p < 0.04). The opposite association was observed for CTL/
Treg number ratio at intratumoral and invasive edge area 
(R = 0.24, p < 0.03 and R = 0.32, p < 0.01). Mitotic index 
showed positive correlation with CTL number at intratu-
moral area (R = 0.38, p < 0.01) and invasion front (R = 0.39, Ta
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p < 0.01) as well as with number of intratumoral and inva-
sive margin Tregs (R = 0.29, p < 0.01 and R = 0.25, p < 0.02, 
respectively) and percentage of Tregs in mononuclear infil-
trate located at invasion front (R = 0.30, p < 0.01). For Ki67 
expression, its tendency for negative correlation with Treg 
percentage at tumor margin (R =  − 0.21, p < 0.06) was also 
identified.

The number of CTLs in intratumoral area and at invasive 
margin correlated positively with number and percentage of 
Tregs in both locations. Moreover, the percentage of CTLs 
in mononuclear infiltrate at invasion front correlated posi-
tively with all investigated CTL/Treg ratios. Conversely, the 
number and percentage of Tregs showed negative correlation 
with the values of CTL/Treg ratios (data not shown).

Discussion

As immunohistochemistry-based identification of BC molec-
ular subtypes is imperfect, great efforts have been made to 
stratify luminal A BC subtype according to progression 
risk and treatment options [7, 19]. Based on micro-RNA 
expression study, two luminal A subtypes, which differ in 
clinical outcome, were identified. High expression of stromal 
cell–derived proteins in luminal A BC were associated with 
better prognosis [19]. Guo et al. observed that microenviron-
ment of high-risk luminal A subgroup is characterized by 
impaired immune response [20]. Some authors postulate that 
distinct gene expression pattern as well as certain gene muta-
tions underlies biological differences between subtypes and 
subsequently affect varied immune cell infiltration [21, 22].

Due to significantly lower rates of immunological mark-
ers and modest immune infiltrate as compared to other 
subtypes, luminal A BC is considered to be non-immuno-
genic [5, 9, 21, 23, 24]. Thus, the vast majority of research 
investigating immune microenvironment in BC focus on 
its non-luminal types. Chung et al. suggested that aggres-
sive ER-negative cancers show high genomic instability that 
attracts TILs. TILs, in turn, stimulate tumor cells to express 
antigen-presenting molecules [25]. Conversely, higher TILs 
density in these tumors were linked to higher human leuko-
cyte antigen class I (HLA I) expression induced by lympho-
cyte-independent, autonomous interferon (IFN) signaling 
in cancer cells [23, 25] and to distinct level of sialylation 
of several cell membrane proteins in HR-negative BC [26]. 
The increase in the expression of TILs, CTLs, and Tregs 
in mammary tissue during the progression of non-luminal 
cancer is well-documented [24, 27–29]. The presence of 
CTLs and Tregs appears to be associated with the expres-
sion of HLA I in cancer tissue, which is low in ER-positive 
BC [23, 25]. There are data indicating that the numbers of 
CTLs and Tregs are significantly decreased in luminal A in 
comparison to non-luminal cancers [21, 26, 29–32]. These 

observations were confirmed by our previous study [9]. 
Some authors postulate that in ER-positive tumors, higher 
TIL density is associated with more aggressive course [10] 
and worse prognosis, which is explained by the concurrent 
absence of CTLs within tumor islets [22]. However, the 
prognostic impact of CTLs and Tregs on BC and, in particu-
lar, its ER-positive subtypes, remains controversial [11, 30, 
33, 34]. Our previous research revealed that in luminal can-
cers, more numerous CTLs and Tregs are related to greater 
tumor diameter [9].

Cancer spread to lymph nodes is one of the most impor-
tant prognostic factors in BC [8, 34]; thus, the association 
between TILs and nodal stage is an interesting issue to 
explore. Some authors postulate that tumor microenviron-
ment generates immunosuppressive niche in lymph nodes 
that facilitates the formation of metastases [3], while others 
question such a relationship [29]. According to the results 
of some authors, strong HLA I expression appears to be a 
protective factor against nodal spread of BC [23, 25]. The 
association between CTLs or Tregs and nodal status in BC 
has not been fully elucidated. It was observed that both 
the decreased CTLs and the increased Tregs in early stage 
BC are associated with lymph node metastases [32, 35]. 
On the other hand, Sheu et al. noted more prevalent CTLs 
in the infiltrate of lymph node-positive BCs [27]. There 
were also studies showing no relationship between the two 
T cell types and nodal stage [21, 30, 36]. Our previous study 
implicated that non-luminal and luminal BCs show differ-
ent pattern of CTL and Treg infiltrate with regard to nodal 
involvement [9].

The information on CTL infiltrate in luminal BC is 
scarce. Data obtained from ER-negative subtypes indicate, 
on the one side, the role of these cells in spontaneous healing 
[37] and favorable prognosis [37, 38] and, on the other, an 
inactive, exhaustive state of CTLs, which supports immune 
escape [30, 34, 39]. The few studies conducted on lumi-
nal tumors show higher CTL percentage in these subtypes 
than in others, which is associated with better survival [29, 
40]. This phenomenon can be explained by the existence of 
antigen-specific CTLs, which are able to eliminate cancer 
stem cells [41]. In a study by Cimino-Matthews et al., CTLs 
were the only cell population that was decreased in meta-
static tumors in comparison to primary lesions in luminal 
cancers [31]. The authors noted that denser CTL infiltrate 
was related to poor tumor differentiation and higher mitotic 
index that is the factors of worse prognosis. This is consist-
ent with our results.

Tregs impair anti-tumoral function of other lymphocytes 
[29]. Prognostic significance and function of tumor-infil-
trating Tregs appears to vary across different malignancies, 
possibly due to varied interaction between these cells, micro-
environment, and signaling pathways [13]. In BC, high lev-
els of Tregs are associated with low levels of CTL-derived 

878 Virchows Archiv (2021) 479:871–882



1 3

cytokines [29], increased expression of indoleamine 
2,3-dioxygenase (IDO), which is regarded as Treg induc-
tive factor [32, 42], and hypoxia that contributes to their 
recruitment, particularly in clinically aggressive subtypes 
[43]. Pronounced Treg infiltrate is related to high grade, 
HER2-positivity, basal-like phenotype [13, 43], and poor 
patient survival [32, 42]. Some authors postulate that at least 
some of these relationships are independent of ER status [13, 
28, 30, 43]. In non-luminal cancers, Tregs are supposed to 
induce immune tolerance [30]. The increase in the numbers 
of Tregs in BC tumor tissue during its spread indicates the 
enhancement of immune suppression in this process [31], 
but their relationship with nodal involvement has not been 
established yet [30]. In the present study, we observed that 
denser intratumoral Treg infiltrate is associated with posi-
tive nodal status and higher pT, suggesting that Treg influx 
into tumor islets is related to the progression of luminal A 
BC. Moreover, correlations between dense Treg infiltrate 
and higher grade, mitotic index, or lower PR indicate their 
relationship with more aggressive cancer features.

The balance between CTLs and Tregs reflects a shift in 
immune response — the predominance of cytotoxic over 
regulatory cells, which is an indicator of effective immune 
response [31] or the prevalence of Tregs, which suggests 
immune suppression [21]. The expression of HLA I, a tumor 
grade, and the proliferation rate are factors that affect CTL/
Treg ratio [25]. High CTL/Treg ratio in primary BC tis-
sue is associated with improved survival [25, 30, 31, 38] 
and lower recurrence rates, suggesting that the activation 
of cytotoxic functions of immune system prevents the for-
mation of metastases [38]. This appears to be consistent 
with our results, as higher CTL/Treg ratio was observed in 
primary luminal A lesions without nodal involvement and 
of smaller diameter. In terms of pN, it is noteworthy that 
the only significant difference in CTL/Treg ratio was found 
between pN0 and pN1 tumors and no difference was noted 
between pN1 and pN2 cancers. Moreover, adverse corre-
lation between the number of metastatic lymph nodes and 
CTL/Treg ratio and positive correlation between Treg den-
sity and metastatic lymph nodes number were observed in 
small-sized (pT1) tumors. Therefore, we hypothesize that 
the role of interplay between tumor-infiltrating CTLs and 
Tregs in nodal spread is the most important in the initial 
phase of BC progression and rather results from change in 
Treg density than CTL decrease. In a few research studies, 
luminal tumors presented with higher CTL/Treg ratio than 
other BC subtypes [21, 30].

LVI observed in peritumoral area of pN0 primary BC is 
a prognostic factor strongly related to lymph node metas-
tases [6, 36]. Although relationship between LVI and TIL 
subpopulation in BC is debatable [21, 25, 27, 36], we found 
that higher numbers of Tregs were related to LVI in node-
negative luminal A BC. Again, this would suggest that Tregs 

are pivotal contributors to the initiation of lymph node 
metastases. Moreover, in our study, the presence of lymph 
node metastases correlates with larger primary tumor size 
in comparison to tumors with the pN0 feature. In addition, 
tumors that did not metastasize to lymph nodes showed more 
frequently pT1 stage than pT2. The similar association was 
noted by Pehlivan et al. [36]. Van Calster et al. also showed 
that the increase in tumor diameter of 1 cm significantly 
increases the risk of lymph node metastasis, but these data 
did not include the molecular classification of breast cancer 
subtypes [44]. The associations between pN stage and both 
tumor size and T stage were shown in ER-positive/HER2-
negative BC by Noda et al. [33]. Several other authors have 
obtained similar results [45], but some did not show any 
relationships between tumor size and lymph node involve-
ment in luminal A BC [46]. Our study showed that patient 
age does not correlate with lymph node involvement in this 
molecular subtype. These results are confirmed by other 
authors [33, 46, 47]. Surprisingly, Van Calster et al. showed 
that the increase of patient age by 10 years reduces the 
chance of nodal involvement [44].

Our observations show that lymph node involvement is 
not dependent on the degree of tumor differentiation. Our 
findings confirm the observations of Tullberg et al. concern-
ing luminal A cancer [46] as well as studies conducted in 
breast cancers regardless of their molecular subtype [47]. 
On the contrary, Van Calster et al. showed that tumor grade 
correlates with lymph node involvement in all subtypes 
of breast cancer [44]. Moreover, we demonstrated that an 
increase in tumor lymph node involvement inversely corre-
lates with PR expression. Many authors did not confirm this 
observations [33, 44, 47]. However, these studies concerned 
all subtypes of breast cancer, including those in which the 
expression of PR is assumed to be low. Thus, we hypothesize 
that decreased lymph node involvement is relevant only in 
cases with significant expression of PR. This observation 
supports the view that high PR level is an indicator of good 
prognosis in luminal A cancer. In line with other studies, our 
findings showed that there is no correlation between lymph 
node involvement and ER expression [44, 47].

We showed that mitotic index as well as Ki-67 expression 
did not change with an increase in pN stage. Liikanen et al. 
obtained similar results [47]. In contrast, Rossi et al. showed 
that in patients with high mitotic index and high Ki67, lymph 
node metastases were more prevalent compared to those 
with low mitotic index. However, in this study, T3 tumors 
were considered, without the stratification into molecular 
subtypes of BC [48]. Considering our above-mentioned find-
ings, we hypothesize that in luminal A BC, lymphovascular 
spread develops with tumor growth and does not results from 
its more aggressive phenotype.

The results of this study indicate that denser intratumoral 
Treg infiltrate and lower CTL/Treg ratio are associated with 
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LVI, positive lymph nodes and more numerous metastatic 
lymph nodes in luminal A BC. Moreover, more numerous 
Tregs and lower CTL/Treg ratio are related to greater tumor 
diameter, higher histologic grade, lower PR expression, and 
higher proliferation rate. On the other hand, denser tumor-
associated CTL infiltrate is observed in high grade and more 
proliferating tumors. This suggests that Treg and CTL infil-
trates are implicated in the initial phase of progression and 
spread of luminal A BC. With regard to other prognostic 
factors in this subtype, only tumor size and lower PR expres-
sion showed associations with nodal involvement. Therefore, 
we hypothesize that the levels of tumor-infiltrating regula-
tory and cytotoxic cells, the balance between them, and the 
interplay between T cell infiltrate and other conventional 
clinicopathological indicators contribute to nodal spread of 
luminal A BC.
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