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Skin cutaneous melanoma (SKCM) is a highly aggressive and resistant cancer with
immense metabolic heterogeneity. Here, we performed a comprehensive examination
of the diverse metabolic signatures of SKCM based on non-negative matrix factorization
(NMF) categorization, clustering SKCM into three distinct metabolic subtypes (C1, C2,
and C3). Next, we evaluated the metadata sets of the metabolic signatures, prognostic
values, transcriptomic features, tumor microenvironment signatures, immune infiltration,
clinical features, drug sensitivity, and immunotherapy response of the subtypes and
compared them with those of prior publications for classification. Subtype C1 was
associated with high metabolic activity, low immune scores, and poor prognosis.
Subtype C2 displayed low metabolic activity, high immune infiltration, high stromal score,
and high expression of immune checkpoints, demonstrating the drug sensitivity to PD-
1 inhibitors. The C3 subtype manifested moderate metabolic activity, high enrichment
in carcinogenesis-relevant pathways, high levels of CpG island methylator phenotype
(CIMP), and poor prognosis. Eventually, a 90-gene classifier was produced to implement
the SKCM taxonomy and execute a consistency test in different cohorts to validate its
reliability. Preliminary validation was performed to ascertain the role of SLC7A4 in SKCM.
These results indicated that the 90-gene signature can be replicated to stably identify the
metabolic classification of SKCM. In this study, a novel SKCM classification approach
based on metabolic gene expression profiles was established to further understand the
metabolic diversity of SKCM and provide guidance on precisely targeted therapy to
patients with the disease.

Keywords: metabolism subtypes, tumor microenvironment, skin cutaneous melanoma, immune signature,
mutation landscape, immunotherapy response

Abbreviations: SKCM, skin cutaneous melanoma; ICI, immune checkpoint inhibitors; CTLA-4, cytotoxic T-lymphocyte-
associated protein-4; GDSC, genomics of drug sensitivity in cancer; GEO, Gene Expression Omnibus; TCGA, The Cancer
Genome Atlas; Tem, effective memory T cell; GSVA, gene set variation analysis; GSEA, gene set enrichment analysis; SLC7A4,
solute carrier family 7 member 4; NMF, non-negative matrix factorization; CIMP, CpG island methylator phenotype; OS,
overall survival.
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INTRODUCTION

Skin cutaneous melanoma (SKCM) is the deadliest type of skin
cancer due to its high metabolic and metastatic rates, accounting
for more than 80% of skin cancer-related deaths (Guy et al.,
2015; Bolick and Geller, 2021). In the past few years, the
advancement of immune checkpoint blockade agents has become
a pillar of SKCM therapy, remarkably boosting the therapeutic
outcomes. However, the response of patients with SKCM to
immunotherapy is heterogeneous, with approximately 50% of
them experiencing unfavorable responses (Robert et al., 2011;
Schadendorf et al., 2015). Therefore, it is imperative to uncover
the latent molecular mechanisms of SKCM heterogeneity to
develop precise immunotherapies and determine the populations
that would benefit the most from them.

Skin cutaneous melanoma is characterized by prominent
metabolic plasticity, a feature that results from the activation
of oncogenic pathways due to a high frequency of somatic
mutations (Alexandrov et al., 2020). SKCM has been classified
into four genomic subtypes, BRAF subtype, RAS subtype, NF1
subtype, and triple wild type based on the somatic mutations in
these genes and their ratios (2015). These intrinsic oncogenes
contribute to the metabolic conversion of SKCM, which leads
to a high degree of plasticity and adaptation of melanoma to
unfavorable conditions (Ratnikov et al., 2017). Moreover, the
transformed metabolic microenvironment can reprogram the
function of immune cell subpopulations, allowing melanoma to
evade the immune system (Bristot et al., 2020).

A recent proteogenomic research divided patients with SKCM
into two subgroups according to whether they responded to
immunotherapy against PD-1 or TIL (Harel et al., 2019),
namely, the responder and the non-responder subgroups.
Differential protein expression analysis found that differences in
mitochondrial metabolism were responsible for the response of
patients to immunotherapy rather than the treatment protocol.
In summary, the heterogeneity of melanoma metabolism is
an important reason for the poor efficacy of immunotherapy.
Therefore, this study was conducted to categorize SKCM from
a metabolic viewpoint to reveal its heterogeneity.

In the present study, we performed a systematic examination
of the diverse metabolic signatures of SKCM using a screened
metabolic gene based on a non-negative matrix factorization
(NMF) clustering algorithm and identified three distinct
metabolic subtypes. In this process, The Cancer Genome Atlas
(TCGA)-SKCM cohorts were merged into a metadata set
for clustering based on the expression of metabolism genes.
Additional processed microarray profiles of Gene Expression
Omnibus (GEO) SKCM samples were used for external
validation. Unsupervised transcriptomic analysis identified
three subtypes of SKCM, namely, C1, C2, and C3. In
addition, by comparing transcriptomic data from patients
with different metabolic subtypes, differentially expressed genes
(DEGs) were retrieved. We estimated the prognostic difference,
transcriptome features, relationships with metabolic signatures,
tumor microenvironment features, immune infiltration, clinical
traits, somatic mutation signatures, immunotherapy, and drug
sensitivity of the SKCM subtypes, and a comparison was made

with previously established classifications. Finally, a 90-gene
classifier was used to determine SKCM classification. This
research may also provide in-depth insights into tumor–immune
cell interactions, showing considerable promise for the clinical
therapeutic interventions of patients with SKCM.

MATERIALS AND METHODS

Patients and Samples
Gene expression profiles of SKCM, including TCGA-SKCM
(Cancer Genome Atlas Network, 2015), GSE54467, and
GSE65904, were obtained from three independent cohorts
of patients. In addition, only SKCM samples were retained
for further analysis. TCGA-SKCM project was downloaded
using the TCGAbiolinks package (Colaprico et al., 2016) and
converted to the TPM format for subsequent analysis. The
annotation of Ensembl ID for protein-coding mRNAs was
transformed to the gene symbol based on the GENCODE gene
model (GENCOED27). Then the batch effect from the different
datasets was corrected using the ComBat package (Zhang et al.,
2020) in the SKCM cohorts. Clinical data regarding the disease,
including age, sex, tumor stage, and survival information,
were retrieved from TCGA Pan-Cancer Clinical Data Resource
(TCGA-CDR), and the clinical characteristics of the TCGA-
SKCM patients are shown in Supplementary Table 1, of which
only the overall survival (OS) information was obtained for
further data processing. In addition, the copy number mutation
data of TCGA-SKCM cohorts were downloaded from the
GDAC-Firebrowse website1.

Identification of Skin Cutaneous
Melanoma Molecular Subtypes by
Non-negative Matrix Factorization
Clustering
The NMF clustering (Possemato et al., 2011) algorithm was
used to cluster the SKCM samples. The 2,752 metabolism-related
genes that encode all the well-known human metabolic enzymes
and transporters were selected for follow-up screening. First,
the metabolism-related genes that were significantly correlated
with OS time were subjected to Cox survival regression using
the survival R package. Then unsupervised NMF clustering
(Gaujoux and Seoighe, 2010) was performed based on the
TCGA-SKCM cohort, and validation was performed from the
integrated cohorts from GSE54467 and GSE65904 using the
same selected candidate genes. K values were chosen where the
magnitude of the cophenetic correlation coefficient started to
decrease with the optimum number of clusters (Brunet et al.,
2004). Next, we evaluated the similarity of subtype classification
between independent cohorts based on the expression profiles
of mRNAs by employing the class mapping analysis (SubMap)
(Gene pattern) method to assess whether the subtypes were
analyzed in the training, and validation sets were significantly
correlated. Simultaneously, the mRNA expression data of the

1http://firebrowse.org/
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abovementioned candidate genes were analyzed to verify the
subtype distributions using the T-distributed stochastic neighbor
embedding (t-SNE) method.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) (Hänzelmann et al., 2013) is a
gene set enrichment method that computes an estimated fraction
of certain pathways or signatures of different clusters based on
expression profiles. The relevant metabolism (Rosario et al., 2018)
and carcinogenesis- (Sanchez-Vega et al., 2018)-relevant pathway
gene sets were obtained from previous studies, and the GSVA R
package was used to investigate the gene set differences between
samples. Subsequently, metabolism gene scores were obtained
for differential analysis using the Limma package (Ritchie et al.,
2015) in R software, and differentially expressed signatures were
screened out with the following threshold (| log2FC| > 0.2,
adjusted p < 0.05).

Estimation of the Tumor
Microenvironment Signatures
The microenvironment cell population counter (MCPcounter)
(Becht et al., 2016) was used to estimate the number of infiltrated
immune cell populations and two non-immune stromal cell
populations (immune cell types: T cells, CD8 + T cells, natural
killer cells, cytotoxic lymphocytes, B-cell lineage, monocytic
lineage, myeloid dendritic cells, and neutrophils; stromal cell
types: endothelial cells and fibroblasts). Furthermore, another
approach applied to quantify tumor immune components
was the single-sample gene set enrichment analysis (ssGSEA)
method (Barbie et al., 2009), which calculates enrichment scores
representing the degree to which genes in a particular gene set
are coordinately upregulated or downregulated within a single
sample. In particular, six immune cell populations, including
regulatory T cells (Treg), helper T cells 1 (Th1), helper T cells
2 (Th2), helper T cells 17 (Th17), central memory T cells, and
effective memory T cells (Tem), were analyzed using the GSVA R
package. In addition, the ESTIMATE algorithm (Yoshihara et al.,
2013) was applied to computer immune and stromal scores in
different subtypes, thereby, reflecting the features of the tumor
microenvironment.

Characterization of Skin Cutaneous
Melanoma Subtypes
After data normalization, differentially expressed genes (DEGs)
between different SKCM subtypes were identified using the
Limma package (| log2FC| > 1 and p < 0.01). The gene signature
set files “c2.cp.kegg.v6.2. symbols.gmt” and “h,all,v60.2.symbols”
were downloaded from the Molecular Signature Database
(MSigDB)2. GSEA was then applied to investigate the pathway
and functional enrichment using the Clusterprofiler R package
(Yu et al., 2012) with the significance threshold set to an
adjusted p < 0.05. Furthermore, previously published molecular
classifications of SKCM were predicted using the nearest template
prediction (NTP) analysis from gene pattern modules, and then
the prediction outcome was compared with our classification.

2http://software.broadinstitute.org/gsea/msigdb/index.jsp

Construction and Validation of the Skin
Cutaneous Melanoma Gene Classifier
To identify specific genes in the SKCM subtypes, we screened
genes with statistically significant differences in the different
subclasses according to the following criteria: for adjusted
p < 0.01 and absolute log2 FC > 2. Only the genes with a
significantly different expression in all three possible parameters
were considered as subclass-specific genes. The top 30 genes
with the largest log2FC values in each subtype (only genes
with log2FC > 0 were selected) were further used to generate
the prediction models such that a 90-gene subtype classifier
was created. Next, we used the NTP algorithm to predict the
subclasses of the 90-gene signature in GSE14520 and compared
them with the previous classification results derived from
the NMF algorithm.

Prediction of the Efficacy of Each
Subtype of Immunotherapy and Targeted
Therapy
We used data from patients with melanoma treated
with immunotherapy to indirectly predict the efficacy of
immunotherapy in melanoma subclasses by measuring the
similarity of gene expression profiles between the subclasses
determined in this study and those in patients with melanoma
based on SubMap analysis (gene pattern). Furthermore, we
downloaded and performed SubMap analysis from the genomics
of drug sensitivity in cancer (GDSC) database (Yang et al., 2013)
to investigate its drug sensitivity.

Gene Ontology and KEGG Analyses
We performed Gene Ontology (GO) and KEGG enrichment
analysis for the different subclasses of differentially expressed
genes, where the GO includes biological process (BP), molecular
function (MF), and cellular component (CC). GO analysis
of differentially expressed genes was conducted using DAVID
(Huang et al., 2007; Huang da et al., 2009) (FDR < 0.1) and
visualized using the ggplot23 R package and Goplot package
(Walter et al., 2015).

We performed the KEGG pathway enrichment analysis using
the KOBAS 3.0 database4 (Wu et al., 2006) for the integration
of DEGs with Ensemble ID in the differential gene list and then
obtained pathway enrichment lists where pathways with p < 0.05
were considered significantly enriched.

Mutation Analysis Using a 90-Gene
Classifier
The gene mutation and gene copy number data of the 90-gene
classifier in 32 TCGA pan-cancer databases were retrieved from
the cBioportal (Gao et al., 2013) web portal. The mutation status
of these genes in these databases were analyzed, and a bar chart
showing the distribution ratio of the 90 genes in TCGA pan-
cancer databases by mutation type, fusion, amplification, deep
deletion, and multiple alterations were constructed.

3https://cran.r-project.org/web/packages/ggplot2/index.html
4http://kobas.cbi.pku.edu.cn
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Transcription Factor Prediction
Transcription factors often modulate several metabolic genes
that are closely functionally associated. Therefore, we utilized
the NetworkAnalyst network platform (Zhou et al., 2019) to
analyze and predict the transcription factors that are most
likely to regulate the 90 genes included in the classifier and
construct a molecular interaction network. The targeted gene–
transcription factor interaction network also contains the TF–
mRNA–miRNA molecular regulatory network data obtained
from the RegNetwork information library.

Expression of Solute Carrier Family 7
Member 4 in Skin Cutaneous Melanoma
and Kaplan–Meier Analysis
RNA-seq data were downloaded from UCSC XENA in TPM
format, and GTEx was downloaded from UCSC XENA5 and
processed by the Toil project (Vivian et al., 2017). The Wilcoxon
rank-sum test was used to compare solute carrier family 7
member 4 (SLC7A4) expression in normal TCGA and GTEx skin
tissues and tumor samples from SKCM in TCGA. We categorized
patients into high and low SLC7A4 expression groups according
to the median value of their SLC7A4 expression (TPM format),
following which Kaplan–Meier analysis of OS was performed for
each group and visualized using the R package “survminer.”

Patient Tissue Specimen Collection and
Immunohistochemistry Validation
Melanoma tissues were collected from 25 melanoma patients of
Han Chinese ethnicity from 2015 to 2020. Informed consent
was obtained from each patient, and the study was approved
by The Foshan Subject Review Board of the First People’s
Hospital. Paraffin-embedded tissues were sectioned at 4-mm
thickness for immunohistochemistry (IHC) analysis. Antigen
retrieval was performed by incubating the samples in citrate
buffer (pH 6.0) for 15 min. After blocking with a mixture of
methanol and 0.75% hydrogen peroxide, sections were incubated
overnight with a primary antibody (SLC7A4, Proteintech, 1:200)
followed by incubation with a secondary antibody conjugated
with horseradish peroxidase (HRP; goat anti-rabbit IgG, 1:500,
Cell Signaling Technology). The sections were washed three times
with PBS and incubated with AEC (ZSGB-BIO). Staining was
performed as described previously (Zhou et al., 2021). Tissues
were examined through the cross-product (H score) of the
percentage of tumor cell staining at each of the three staining
intensities, and the staining score was graded through the H score
as follows: low, H score = 0–100; moderate, H score = 101–200;
and high, H score = 201–300.

Statistical Analysis
All data processing and analyses were performed using Excel
(Microsoft) and R software (version 4.0.2). Unpaired Student’s
t-test was employed for the comparison of two groups
with non-normal distribution, and the Mann–Whitney U-test

5https://xenabrowser.net/datapages/

was used for the comparison of two groups with non-
normal distribution. One-way analysis of variance (ANOVA)
and Kruskal–Wallis tests were performed for comparisons
among three groups. Contingency table (χ2) variables used
the χ2 test for statistical significance. Survival analysis was
performed using the Kaplan–Meier method, and the log-rank
test was used for comparison. Univariate Cox proportional
risk regression models were used to evaluate risk ratios
for univariate analyses. Two-tailed p < 0.05 was considered
statistically significant.

RESULTS

Non-negative Matrix Factorization
Determined Three Subtypes of Skin
Cutaneous Melanoma
Before conducting the NMF algorithm analysis of SKCM,
we first utilized the ComBat algorithm to remove the batch
effect for different SKCM cohorts and chart the PCA after
batch effect removal (Figure 1A). A total of 2,752 previously
reported metabolism-related genes were selected as the basis
for NMF analysis. We then adopted univariate Cox regression
for metabolism-related genes in the metadata set to identify
prognostic genes associated with OS (p < 0.1), and a total
of 517 candidate genes were obtained. We then extracted
TCGA data expression profiles of SKCM, clustering the 517
candidate genes using the NMF clustering algorithm, and the
non-negative matrix decomposition (NMF) with two to six
clusters was plotted (Figure 1B). The best clustering number k
value was established by computing the clustering correlation
coefficient, and k = 3 was regarded as the optimal clustering
number. The consensus NMF was performed again with several
decompositions of 3, defining three subtypes C1 (n = 113),
C2 (n = 103), and C3 (n = 234). To validate the clustering
subtypes, we performed t-SNE dimension reduction to reduce
the feature dimensionality for all samples of metabolic genes in
the expression profile of the test TCGA dataset and showed the
different two-dimensional distribution pattern plots for the three
types of samples (Figure 1C), and the clinical characteristics of
TCGA-SKCM are shown in Supplementary Table 1. We also
found that our subtypes were largely consistent with the two-
dimensional t-SNE distribution pattern. The same consensus
NMF for the same set of metabolic genes was performed for
the consolidated validation set (GSE54467 and GSE65904), and
three classes C1 (n = 93), C2 (n = 98), and C3 (n = 98)
were obtained. Finally, the subclass algorithm was used to
identify the subtype matching model of TCGA and validation
sets, and it was decided that TCGA-C1 = GEO-C1, TCGA-
C2 = GEO-C3, and TCGA-C3 = GEO-C2. We also utilized
survival information from the three cohorts to conduct a subtype
survival analysis of the SKCM subset. In TCGA-SKCM cohort,
the results showed a significantly higher OS in C2 than in C1
and C3 (log-rank test p < 0.0001, Figure 1D), and the same
survival differences were also verified in the GEO validation
dataset (GSE65904 and GSE54467). Similar survival outcomes
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FIGURE 1 | Identification of skin cutaneous melanoma (SKCM) subtypes using non-negative matrix factorization (NMF) consensus clustering in the metadata set.
(A) Visualization of principal component analysis of combined expression profiles of three cohort data sets. (B) Phenotype correlation coefficients for NMF clustering
of 816 metabolism-related genes at k = 2–5. (C) t-SNE analysis rendered in support of classification into three SKCM subtypes. (D) Overall survival analysis of three
subtypes (C1, C2, and C3) in two independent cohorts—test set (TCGA-SKCM) and (E) Validation set (GSE65904, GSE54467). Statistical significance of differences
was determined using the log-rank test.

were observed; however, the prognosis of C2 in the validation set
worsened, and the median survival time was more similar to that
of C1 (Figure 1E).

Association of Skin Cutaneous
Melanoma Subtypes With
Metabolism-Related Signatures
Considering that the SKCM subclass classification was based
on metabolism-related genes, we further investigated whether
different metabolic signatures are present in the different
subclasses. First, we scored the metabolic pathways (gene sets
were acquired from the reported paper) using the GSVA
R package in the subtype cohorts. In TCGA-SKCM cohort,
GSVA enrichment scores of the metabolic pathways were
estimated, and a cross-group Limma difference test was
performed using two groups of “subtype n vs. other subtypes”
to confirm subtype-specific differential metabolic pathways;
the screening standard for GSVA enrichment was | logFC|

> 0.2, adjusted p < 0.05, and heat maps were constructed for
visualization (Figure 2A).

The heat map showed that C1, C2, and C3 had 21, 3,
and specific metabolic signatures, respectively. Among
them, C1 demonstrated a distinct metabolic signature,
with 21 metabolic pathways significantly upregulated.
Both C2 and C3 were significantly downregulated in these
pathways. These results demonstrated that each subtype was
enriched in unique metabolic pathways and had dissimilar
metabolic levels.

We also counted the GSVA enrichment points of
carcinogenesis-related pathways and plotted a box line among
groups. To further investigate their subtype characteristics,
we selected a collection of 11 carcinogenesis-related pathways
and quantified them using the GSVA algorithm. The results
showed significant between-group differences among the three
subgroups in cell cycle, HIPPO, MYC, NRF2, PI3K, TGF-β,
TP53, WNT, and angiogenesis, which are carcinogenic signaling
pathways (Figure 3A), indicating a close connection between
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FIGURE 2 | Correlation between metabolically relevant features and immune infiltration in SKCM subtypes. (A) Heat map of specific metabolism-related signatures in
three subtypes. (B) The heat map depicted the richness of immune and stromal cell populations in C1, C2, and C3 by MCPcounter and ssGSEA.

our subtypes and carcinogenesis. The results revealed that
C1 had a significantly strong cell cycle and WNT signature
than C2 and C3, C2 displayed increased expression of

components of the angiogenesis pathway, and C3 was
particularly enriched in the HIPPO, NRF2, PI3K, TGF-β,
and TP53 pathways.
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FIGURE 3 | Tumor microenvironment signatures of three subtypes in the TCGA-SKCM. (A) Box plots of characteristic marks discriminating different subtypes of
SKCM progression-related features. Box-line plots of the immune score (B) and stromal score (C) estimate three subtypes. For the box-line plot, the lines in the box
represent the median, the bottom, and top of the box, which are the 25th and 75th percentiles (interquartile range), and the vertical lines represent 1.5 times the
interquartile range. Statistical differences were compared by the Kruskal–Wallis test, and p-values are marked with an asterisk above each box line plot (ns indicates
no significance, **p < 0.01, ****p < 0.0001). (D) The boxplot showed the accumulation of immune and stromal cell populations discriminated by different subtypes.
(E) Expression level (normalized transcripts per million) of 14 immune checkpoint genes in three SKCM subtypes. The difference was verified statistically through the
Kruskal–Wallis test, and the p-values are noted with asterisks at the top of each boxplot (ns stands for no significance, *p < 0.05, ***p < 0.001).

Correlation Between Skin Cutaneous
Melanoma Subtypes and Immune
Infiltration
As significant differences in immune scores were detected
between SKCM subtypes, we surveyed immune cell infiltration
in SKCM subtypes to assess their immunological landscape. We
utilized the MCP-counter and ssGSEA algorithms to compute
the abundance of 16 immune infiltration cells and presented
them in an immune heat map (Figure 2B). We also plotted
box plots of inter-group differences in immune cells, and the
results displayed significant inter-group differences in all types of
immune cell populations among the three subtypes (Figure 3D).
Notably, the box plots revealed that C2 showed a significantly
higher enrichment immune score than C1 and C3 in almost all
immune cells, except for Th17 cells, in which both C1 and C2
had significantly higher Th17 cell enrichment scores than C3. Of
these results, C2 was enriched with more immune cells, which
is consistent with the finding that C2 had the highest immune
score among the three subtypes. With the current widespread use

of immune checkpoint inhibitors (ICIs) in clinical trials and for
the treatment of advanced melanoma (Woods et al., 2016), we
explored the correlation between the expression of 13 classically
targeted immune checkpoint genes in these subtypes, which
are currently based on immunotherapy inhibitors in clinical
trials or licensed for certain cancer types. The results showed
significant differences between groups, while C2 displayed a
higher expression of nine immune checkpoint genes than C1 and
C3, except for FGL1, CTAG1B, and MAGEA4 (Figure 3E).

Relevance of Skin Cutaneous Melanoma
Subtypes to the Clinical Characteristics
of Patients and in TCGA and GEO
Datasets
To investigate the associations between subtypes and clinical
characteristics, we analyzed the clinical tumor pathology
variables associated with subtypes based on TCGA-SKCM
(Figure 4A) and GEO validation set (Figure 4B) cohorts to
construct the clinical information heat map of subtypes. The
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FIGURE 4 | Clinical characteristics of three subtypes in the TCGA-SKCM and GSE14520 cohorts. (A) Correlation of C1, C2, and C3 subtypes with clinical features
and previous SKCM subtypes in the TCGA cohort. (B) Correlation of our classification with clinical features in the validation GSE14520 set cohorts.

results showed an independence test for discrepancies between
clinicopathological characteristics and metabolic subtypes.
Furthermore, we matched this metabolic classification with
the previously reported subtypes of SKCM in the literature,
including mutation subtypes (BRAF, NF1, RAS, and Triple-
WT), MethTypes (CpG island-methylated, Hyper-methylated,
Hypo-methylated, and Normal-like), the MIR cluster (four
types), the Protein Cluster (four classes), and the classification
of TCGA (Immune, Keratin, and MITF-low) (Figure 4A and
Supplementary Tables 2, 3). In TCGA-SKCM, the C1 subtype
was significantly correlated with protein cluster 2 (p = 0.006),
MIR type 3 (p < 0.001), hypomethylated type (p < 0.001),
and keratin type (p < 0.001). The C2 subtypes associated with
protein cluster 1 (p = 0.006), MIR type 2 (p < 0.001), normal-like
methylated type (p < 0.001), and immune type (p < 0.001). The
C3 subtype was related to protein cluster 3 (p = 0.006), MIR type

3 (p < 0.001), hyper-methylated type (p < 0.001), and immune
type (p < 0.001).

Association of Skin Cutaneous
Melanoma Subtypes With the Tumor
Microenvironment
To further evaluate whether the subtypes were associated
with the tumor microenvironment, we estimated the immune
and stromal scores using the ESTIMATE algorithm for each
group and constructed box-violin plots (Figures 3B,C).
The results showed statistically significant differences
in immune scores between the three groups, while the
stromal scores were not statistically significant among the
three groups. C2 had the highest immune score among
the three groups.
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The melanoma mutation landscape has been demonstrated to
lead to alterations in the tumor microenvironment (Nassar and
Tan, 2020) and immunotherapeutic response (Havel et al., 2019).
Next, we investigated whether somatic mutation frequencies
varied across SKCM subtypes and examined the mutation
patterns in these subtypes. We applied the maftools package
(Mayakonda et al., 2018) to estimate TCGA-SKCM-driven gene
mutations and mapped waterfall plots of clusters within each
group. High frequencies of mutations were observed for BRAF,
COL5A1, NRAS, MECOM, NF1, ARID2, TP53, and CDKN2A
in SKCM subtypes (Figure 5A and Supplementary Table 4). We
then classified the total number of mutations and the predicted
neoantigens (Figure 5B). The tumor mutation burden (TMB)
was calculated for each metabolic subtype (Figure 5C), and
box-line violin plots were constructed separately. Subsequently,
we determined the frequency of amplification (Figure 5D) and
deletion (Figure 5E) for the three subtypes using online GISTIC
2.0 analysis (Mermel et al., 2011) to construct box-line violin plots
of amplifications vs. deletions for each subtype.

Finally, we further reviewed the chromosomal segment
values of the three subtypes to ascertain whether there were
significant copy number alterations by performing online
GISTIC2.0 analysis on genePattern6 to map the copy number
change cytoband of each subtype. Cytoband revealed an overall
description of the copy number variation in each subgroup (red
representing gains and blue representing losses) (Figures 6A–
C). As expected, our profiling demonstrated that significant copy
number alterations emerged in the three subtypes, including
those observed in the chromosomal region of 9p21.3 (CDKN2A)
(Ghiorzo et al., 2006); amplification at 11q13.3 (CCND1) (Gibcus
et al., 2007) in C1 and C2; amplification at 22q13.2 (TOB2)
(Thanasai et al., 2006) in G1 and G3, in which TOB2 was
significantly amplified in C1; and a major amplification at 5p13.3
(TERT) (Peifer et al., 2015) in the C1 subtype. While the
cytobands for C1 and C3 displayed more regional amplifications
and deletions than C2, this could also be an essential explanation
for the superior prognosis of C2 over the C1 and C3 subtypes.
Thus, the alteration of copy number may be a dominant
mechanism responsible for the differences in metabolism and
prognosis among the three subtypes.

Ninety-Gene Classifier and Performance
Validation
To build a subtype classifier for clinical application, we further
selected subtype-related signature genes. The results of the
Limma differential expression analysis were based on the whole
expression map “subtype n vs. other subtypes.” Using MOVICS
(Lu et al., 2020) package analysis, we retrieved the top 30 genes
specifically upregulated for each metabolic subtype as biomarkers
and then constituted clinical models and plotted correlation heat
maps (Figure 7A and Supplementary Table 4). Consequently,
we derived a 90-gene classifier and executed a consistency test
by operating the NTP algorithm to predict the metabolic subtype
attribution of each sample in the TCGA cohort as well as the GEO
test set cohort, and plotted the heat map of the true subtype if it

6http://www.genepattern.org/

matched the predicted subtype (Figures 7B,C). The results were
largely consistent between NMF and NTP in the three different
subtypes of the test and validation sets (κ = 0.631 p < 0.001,
κ = 0.714 p < 0.001), indicating that this 90-gene signature could
be replicated to identify the metabolic classification of SKCM.

Specific Sensitivity of Skin Cutaneous
Melanoma Subtypes to Immunotherapy
and Potentially Targeted Therapies
On the one hand, the different patterns of immune infiltration
and expression levels of immune checkpoint genes in different
SKCM subtypes suggest the need to further investigate the
possibility of an immunotherapeutic response. Therefore, we
matched the expression profiles of the three subtypes using a
subclass algorithm to ascertain the degree of similarity of TCGA
metabolic subtypes to the response profiles of 47 patients with
melanoma receiving immunotherapy (Hoshida et al., 2007; Roh
et al., 2017). The results indicate that the TCGA-C2 subtype was
more likely to be responsive to immunotherapy with anti-PD1
treatment (Figure 7E) (Bonferroni correction, p = 0.01).

On the other hand, to identify potential anti-melanoma drugs
that are associated with ICIs, we attempted to find potentially
sensitive and selective chemotherapy drugs using the GDSC drug
sensitivity database. We compared drug sensitivity for more than
100 drugs in the GDSC database, and the top 12 differential
response drugs were plotted and listed according to the Kruskal-
Wallis test (Figure 7D). We detected a significant difference in
the estimated IC50 values between the three subtypes and found
that C2 may be more sensitive to chemotherapeutic drugs.

Functional and Pathway Enrichment
Analysis of the 90-Gene Classifier
Gene Ontology and KEGG enrichment analyses were conducted
for the three group DEGs using the DAVID database, and GO
enrichment analyses were performed for each of the three GO
categories: BP, MF, and CC. The ggplot2 package was used
for visualization, and the top 10 enrichment results are shown
(Supplementary Figure 1 and Supplementary Table 6–8). The
GO enrichment results of the three groups of DEGs were
mainly enriched in the metabolism process, immune-specific
BP, protein binding, cell cycle, DNA damage and repair, and
cancer-associated biological processes. By taking the intersection
of the enrichment analysis results of the three groups of
differential genes in the KOBAS database, we identified six
KEGG pathways related to oncogenesis development and
metabolism for presentation. The red dots represent the
upregulated enriched genes, mainly enriched in apoptosis, cell
cycle, HIF-1 signaling pathway, human T-cell leukemia virus
1, cancer infection pathway, PI3K–Akt signaling pathway, and
carcinogenesis biological pathway (Supplementary Figure 2 and
Supplementary Table 9).

Mutation Analysis of the Gene Classifier
in TCGA Pan-Cancer Database
Based on the gene mutation and gene copy number data of the
90-gene classifier in 32 TCGA pan-cancer databases retrieved
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FIGURE 5 | Relationship of SKCM subtypes with tumor mutation burden characteristics. (A) Driver-type oncogenic mutations based on TCGA-SKCM typing with
intra-group aggregation waterfall plots. (B–E) Violin plots of the number of mutation-predicted neoantigens (B,C) and copy number aberrations (D,E) box lines for
SKCM subtypes. Wilcoxon rank-sum test was used to compare statistical differences (ns indicates not significant).

from the cBioportal web portal, the mutation rates of the genes
in the classifier were analyzed, and the distribution ratio of
each mutation type of the gene classifier in each pan-cancer
tumor, including gene mutation, fusion, amplification, deep

deletion, and multiple alterations, is shown in a bar chart
(Supplementary Figure 3A). Among them, the mutation rate
exceeded 50% in most tumor cancer types in TCGA, and the
mutation rate was higher in lung squamous cell carcinoma,
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FIGURE 6 | The landscape of somatic copy-number alterations in the three subtypes. (A–C) Cytoband showed the genomic copy-number change from three
subtypes. Amplification (red) and deletion (blue) of each regional peak are shown and highlighted.
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FIGURE 7 | Identification of predictive metabolism-gene classifier and prediction immunotherapeutic response. (A) The heat map exhibited the expression level of
the 90-gene classifier in C1, C2, and C3. (B) Consistency of SKCM metabolism subtype predictions between the 90-gene classifier and the original NMF-based
predictions in TCGA-SKCM. (C) Consistency of SKCM metabolism subtype predictions between the 90-gene classifier and the original NMF-based predictions in
GSE54467 and GSE65904. (D) C2 is likely sensitive to the PD-1 receptor inhibitor (nominal p = 0.01) by SubMap analysis. (E) Top 12 box plots of predicted IC50
values based on GDSC database drugs in three subtypes of TCGA-SKCM dataset.

esophageal adenocarcinoma, stomach adenocarcinoma, SKCM,
and bladder urothelial carcinoma, with an alteration frequency
of more than 80%.

The TF–mRNA–miRNA Network
Construction
Many closely related genes are often subject to simultaneous
regulation by specific transcription factors; therefore, we
utilized the NetworkAnalyst network platform to predict the
transcription factors most likely to regulate the 90 genes
in the classifier by analyzing them and constructing a
TF–mRNA–miRNA molecular interaction regulatory network
(Supplementary Figure 3B).

Expression Signature, Prognostic Value,
and Preliminary Experimental Validation
of Solute Carrier Family 7 Member 4
The 90-gene classifier distribution in the three subtypes and the
fold changes are plotted in the heat map shown in Figure 7A and
Supplementary Table 5. Of these, SLC7A4 was not reported to

be associated with melanoma among the 90 genes. Therefore, we
performed an analysis and preliminary experimental validation
of the role of SLC7A4 in SKCM. SLC7A4 was overexpressed in
SKCM than in the adjacent normal skin tissues (Figure 8A). The
OS was poorer in patients with high SLC7A4 expression than
in those with low SLC7A4 expression (hazard ratio [HR] = 1.34
[1.02–1.76], p = 0.038, Figure 8B). SLC7A4 expression was
determined in tissue samples using IHC staining. The results
showed that melanoma tissues presented the highest expression
of SLC7A4, followed by benign nevi, whereas normal skin tissues
showed the lowest expression (Figures 8C,D). Generally, the
intensity of SLC7A4 staining increased with the progression of
melanoma. These results demonstrated that SLC7A4 plays a
hub role in SKCM progression and, to some extent, proved the
accuracy of this gene classifier.

DISCUSSION

Metabolic reprogramming is a key hallmark of cancer (Pavlova
and Thompson, 2016). On the one hand, SKCM is characterized
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FIGURE 8 | The expression signature, prognostic value, and preliminary validation of solute carrier family 7 member 4 (SLC7A4). (A) The expression of SLC7A4 was
higher in SKCM than in normal skin tissues. (B) The overall survival analysis of SLC7A4 in SKCM. (C,D) IHC staining demonstrated that the expressions of SLC7A4
staining increased with the progression of the disease. Normal skin tissues (n = 20) showed the lowest expression, followed by benign nevi (n = 20), and malignant
melanoma tissues (n = 25) showing the highest expression. IHC, immunohistochemistry. IHC stain, AEC, original magnification × 100, scale bar = 0.1 mm (inset, IHC
stain, AEC, original magnification ×400).

by its marked metabolic plasticity, and its development is
associated with an important relationship between carcinogenesis
and energy metabolism (Ruocco et al., 2019). On the other
hand, metabolic reprogramming of melanoma alters the subset
function of immune cells, enabling melanoma to evade the
immune system. Thus, there is an urgent need to better
understand the metabolic signatures of tumor heterogeneity
in patients with melanoma to provide precise immunotherapy
selection strategies and characterize the mechanisms of drug
resistance. Herein, we performed a thorough classification of the
metabolic profiles of SKCM specimens. Our findings revealed
that SKCM could be categorized into three different metabolically
relevant subtypes, and we verified the reproducibility of these
subtypes in the GEO test set. Each subtype was characterized
by different metabolic signatures, prognosis values, clinical
parameters, tumor microenvironment features, immune cell
infiltration, function and pathway enrichment, somatic copy
number alterations, response to immunotherapy, and drug
sensitivity. The C1 subtype displayed high metabolism levels,
resembling the keratin subtype, with an advanced pathological
stage and low immune infiltration. Furthermore, C1 had the
worst prognosis and the shortest DFS among SKCM patients.
In contrast, C2 was abundant in immune signatures with a
relatively high expression of immune checkpoint genes and high

immune and stromal scores, in line with the immune type
and normal methylation type, demonstrating drug sensitivity to
PD-1 inhibitors. This cluster was hardly engaged in metabolic
signatures. The C3 subtype had the highest enrichment scores
for carcinogenic pathways and the lowest enrichment scores for
immune infiltration. It exhibited lower enrichment for metabolic
signatures than C1 but greater enrichment than C2 for metabolic
signatures. Overall, this research was undertaken to explore the
metabolic landscape of SKCM and separately detect three clusters
with different characteristics.

The results indicated that C1 had the most differential
metabolic pathways, with 21 associated metabolic pathways
all upregulated in this subtype. Therefore, we defined C1 as
the metabolically active subtype. Several recent studies have
focused on building a connection between endogenous tumor
metabolism and immunotherapy. For example, recent studies
have indicated that an increase in glycolytic metabolism in SKCM
is linked to resistance to adoptive T-cell and immune checkpoint
blockade therapies (Cascone et al., 2018). The hypermetabolic
activation of C1 induces, on the one hand, nutrient depletion
and hypoxia in the tumor microenvironment, thus, establishing
metabolic competition between tumor cells and infiltrating
immune cells. On the other hand, the active metabolism of SKCM
in the tumor microenvironment leads to toxic concentrations
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of certain metabolites, including elevated concentrations of
adenosine, kynurenine, ornithine, and reactive oxygen species,
all of which markedly inhibit the anti-tumor immune response
(Leone and Powell, 2020). The taxonomic classification model
of SKCM reported in 2015 identified three transcriptomic
clusters based on mRNA transcriptional gene function, namely,
“immune,” “keratin,” and “MITF-low” (2015). Of the three
subtypes, the keratin subtype had the poorest prognosis among
patients with localized melanoma metastases and featured high
expression of keratin-coding genes and metabolic genes in organ
development, which was consistent with C1 having the poorest
prognosis and characterized by enrichment gene signatures of
keratin-related metabolic procedures. In addition, the clinical
signature analysis showed that most patients in C1 were in the
advanced pathological stage, followed by C3.

Several metabolic processes were upregulated in subclass C1,
including amino acid metabolism, carbohydrate metabolism, and
lipid metabolism. Enrichment results of metabolic signatures
indicate the possibility that C1 could benefit from targeted
metabolism therapy. Metabolic therapies targeting certain
metabolic processes provide alternatives for chemoresistant
patients. For instance, metformin can exert an anti-melanoma
effect (Li et al., 2018) and promote combination treatment
efficacy with anti-PD-1 and anti-cytotoxic T-lymphocyte-
associated protein-4 (CTLA4) agents (Afzal et al., 2018; Cha
et al., 2018). Identifying the potential beneficiaries of metabolic
therapies has always proven to be challenging (Goodpaster
and Sparks, 2017). Meanwhile, some key processes, such as
glycolytic metabolism, hexosamine biosynthesis pathway, and
glutathione metabolic pathways, were enriched in C3, suggesting
that patients with this (HBP) are a shunt pathway of glycolysis
and a key metabolic juncture in cancer cells. Recent studies
have demonstrated that treatment with small molecule drugs
that target HBP lead to increased infiltration of CD8 + T
cells, sensitizing pancreatic tumors to anti-PD1 therapy and
causing tumor regression and prolonged survival (Sharma et al.,
2020). This implies that we may achieve precise targeting of
C3 subclasses by targeting HBP in SKCM. This subcategory
survey provides new clues to forecast potential candidates for
metabolic therapies, which needs further verification in a large
clinical cohort.

Tumor immune infiltration results showed that C2 had
elevated levels of all immune cell lineages, indicating that
it was in a highly immune-activating state. We believe that
it contributes to the best prognosis of C2 among the three
subtypes. C2 matches the immune subtype and is accompanied
by the highest associated immune score. The immune subtype
exhibited high expression of immune cell subsets (T cells, B
cells, and NK cells), immune signaling molecules, and immune
checkpoint-related genes, and patients with regional metastatic
SKCM in the immune subtype had a better prognosis than
the other two subtypes due to their active host immune
response (2015). Furthermore, tumor microenvironment-related
assessments revealed that C2 had higher immune and stromal
scores. Research on SKCM classification based on TMB found
that those with high immune scores had a favorable prognosis,
and those with low immune scores had a poor prognosis

(Hu et al., 2020), and these findings were consistent with
the favorable prognosis of the immune-high C2 subtype in
our study. Immune checkpoint blocking antibodies, such as
pembrolizumab, nivolumab, and ipilimumab, which target PD-
1 or CTLA-4, have considerably transformed the therapeutic
landscape of SKCM in recent years (Schvartsman et al., 2019).
C2 exhibited a higher expression of immune checkpoint genes,
especially LAG3, CD274 (also known as PD-L1), PDCD1,
CD247, CTLA4, PDCD1LG2, TNFRSF9, TNFRSF4, and TLR9,
demonstrating that it shows promising sensitivity against anti-
PD-1 therapy and other checkpoint inhibitors. The high
expression enrichment score of PD-1 (CD274) may contribute
to the susceptibility of C2 to anti-PD-1 therapy. This aligns with
the results of the TIDE algorithm, in which C2 was sensitive
to PD-1 immunotherapy. In contrast, immune checkpoint
expression of fibrinogen-like protein 1 (FGL1) was highest in
the C3 subtype, and FGL1 is the major LAG-3 functional
ligand that acts independently of MHC-II (Wang et al., 2019).
FGL1 represses antigen-specific T-cell activation and exerts a
tumor immunosuppressive effect, and it is associated with poor
prognosis and resistance to anti-PD-1 therapy.

The C3 subtype paralleled the MITF-low subtype of SKCM.
The “MITF-low” cluster is marked with a low expression of genes
associated with immune regulation (2015) and pigmentation
markers, which is consistent with the low immune cell infiltration
in C3. Meanwhile, studies have consistently reported that low
MITF expression is an early resistance to multiple targeted drugs
(Müller et al., 2014). Furthermore, the enrichment scores of
C3 were significantly higher than those of C1 and C2 in most
carcinogenic pathways, such as NRF2, PI3K, TGF-β, TP53, and
Hippo, which accounts for the poor prognosis of patients in
the C3 subgroup. In particular, activation of NRF2 inhibits the
activity of the melanocyte lineage marker MITF and blunts the
induction of innate immune responses in SKCM (Jessen et al.,
2020). This is in line with the similarity of C3 with the MITF-
low cluster. These data suggested that the C3 subclass was of high
heterogeneity and might be refractory. Notably, previous studies
demonstrated that the MITF-low subpopulation can be reversed
by combining NK-κB inhibitors with SKCM resistance to BRAF
inhibitors (Konieczkowski et al., 2014; Su et al., 2020), implying
that the C3 subclass would best respond to the combination of
NFK-κB inhibitors and BRAF inhibitors. C3 was also similar to
the CpG island methylator phenotype (CIMP) (2015), one of the
reported molecular subtypes of SKCM. Studies have shown that
the CIMP pattern is implicated in the progression of the clinical
stage of malignant melanoma (Tanemura et al., 2009). This is due
to the fact that patients with SKCM of the C3 subtype are mostly
at a higher pathological grade. Therefore, the poor prognosis in
C3 may be attributed to the combined effects of low infiltration of
immune cells, high enrichment of carcinogenesis pathways, low
MITF expression, CIMP, and advanced pathological stage.

Skin cutaneous melanoma has an extremely high TMB due
to ultraviolet (UV) mutagenesis (Lo et al., 2021), and these
neoantigen burdens may alter T-cell responses in the tumor
microenvironment (Hollern et al., 2019). Therefore, we examined
whether copy number aberrations (deletions and amplifications),
TMB, and neoantigens could be associated with the subtypes
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of SKCM. The results illustrated no statistically significant
correlation between neoantigen burden and subtypes, with the
TMB in C2 being the highest in the three types. Regarding copy
number aberrations, C2 patients had fewer amplifications and
deletions than C1 and C3. Our data revealed a high TMB in
the C2 subclass, which is compatible with the result that the C2
subclass was sensitive to PD-1 treatment. Moreover, the number
of somatic mutations was higher in C1 and C3 than in C2, which
may lead to a poorer prognosis for C1 and C3. Notably, the
high frequency of BRAF mutations in C2 and C3 implies that
these two subtypes of patients may benefit from BRAF-targeted
inhibitors (Menzer et al., 2019). In t-SNE analysis, C1 separated
into two subpopulations, and some outliers of C1 were mixed
with C3. We speculate that C1, which shows heterogeneity, is
likely to be subdivided into two different subtypes, one of which
is similar to C3 accompanied by similar stromal scores and
mutation plots. In addition, C3 and C1 showed similar molecular
patterns. Relatively higher metabolic signature level and worse
prognosis, as well as lower abundance in immune signatures,
distinguished C1 from C2. A more reasonable outcome will be
attained if these C1 outliers are relabeled as C3.

Furthermore, we identified significant somatic mutation
alteration sites in different subtypes according to GISTIC2.0.
The number of loci and the degree of copy number variation of
these genes were lower in C2 than in C1 and C3. In contrast,
the number of amplification and deletion sites of the SKCM
gene was higher in C3 than in C1 and C2. Furthermore, the
magnitude of copy number variation showed the same trend.
These results also showed a better prognosis of C2 than C1 and
C3 and illustrated the association between the immune stromal
infiltration of C1 and C3 and the occurrence of their tumor
copy number variations. From the drug sensitivity analysis, we
hypothesized that C2 may be more sensitive to chemotherapeutic
agents than C1 and C3, suggesting that C2 may benefit from the
combination of chemotherapy and immunotherapy. The GDSC
drug sensitivity results indicated that two compounds, CGP-
60474, a potent inhibitor of cyclin-dependent kinase (CDK), and
bryostatin-1, a powerful protein kinase C (PKC) agonist, showed
high drug sensitivity toward the three subtypes, representing
promising chemotherapeutic drug candidates that target SKCM.
The above discussion reveals that patients with the C2 subtype
of SKCM may benefit from a combination of chemotherapy
and immunotherapy. This study aimed to substantiate the need
for personalized and precise treatment in clinical practice. The
above discussion reveals that the three subtypes of SKCM
may potentially benefit from the combination of chemotherapy
and immunotherapy. This study aimed to provide supporting
evidence for the availability of candidate target agents in clinical
practice and achieve personalized precision therapy.

In the 90-gene classifier, many of the metabolic genes
have been reported to play an important role in the inner
metabolism and progression of SKCM, such as tyrosinase-related
protein 1 (TYRP1) (Gilot et al., 2017) and OCA2 melanosomal
transmembrane protein (OCN2) (Peterson et al., 2019), in
particular, SLC7A4 of the solute carrier family of C1 to the
transportation of cationic amino acids (Wolf et al., 2002).
However, there have been no studies on SLC7A4 in SKCM.

Therefore, we analyzed the expression signature of SLC7A4
and its prognostic value in TCGA-SKCM. We performed an
IHC analysis of SLC7A4 from a clinical cohort to validate
its role in SKCM. The results demonstrated that SLC7A4 was
more highly expressed in melanoma tissues than in normal
skin tissues, and the relatively higher expression of SLC7A4
presented a poor prognosis in SKCM patients, indicating that
it could serve as a prognostic biomarker for SKCM. Moreover,
the IHC results illustrated that the expression of SLC7A4 was
proportional to the progression of melanoma. Therefore, SLC7A4
could be utilized as a therapeutic target for SKCM. These reports
and experimental analyses reinforced the reliability of this gene
classifier to a certain extent.

To the best of our knowledge, the present study is the first to
generate a metabolic classification of SKCM that confirms the
results of previous studies on SKCM subtypes while retaining
their characteristics. Specifically, this classification matched the
three subtypes from TCGA (keratin type, immune type, and
MITF-low). C1 matched the keratin type and was highly
metabolically active. C2 was the immune type, characterized
by high immune infiltration, high expression of immune
checkpoints, high immune and stromal scores, and favorable
prognosis. We demonstrated for the first time that the C2
subtype corresponding to the immune type was prone to be
a responder to PD-1 immunotherapy. C3 corresponded with
MITF-low and was enriched in CpG island methylation. We
also performed a preliminary experimental validation of the
role of SLC7A4 in SKCM from the 90- gene classifier. Hence,
the current study constitutes a novel demonstration of the
presence of TCGA subtypes in TCGA-SKCM cohort and the
GEO-SKCM cohort. Furthermore, this study not only validates
the clinical significance of TCGA-SKCM classification but also
reveals unexplored features, such as tumor microenvironment
signatures and response to immunotherapy. This study provides
new insights into the heterogeneity of SKCM in terms of the
metabolic landscape by classifying SKCM into three clusters,
active, intermediate, and depleted metabolic activity, which
suggests possible therapeutic options for each subtype. However,
we acknowledge several flaws in this study. First of all,
more clinical data are needed to verify the reliability of this
classification standard. Second, additional validation like cellular
and molecular experiments of the classifier is required to
prove the findings.

In conclusion, here, we proposed novel classifications of
SKCM from a metabolic perspective with three subtypes, namely,
metabolically active, intermediate, and depleted. C1 was closely
associated with metabolic processes and had the worst prognosis,
consistent with the keratin subtype. C2 exhibited higher immune
infiltration, high immune and stromal scores, and sensitivity to
PD-1 immune blockade agents, correlating with the immune
type, and it had a favorable prognosis. C3 had an enriched
carcinogenic pathway with a high degree of prognosis and
relatively poor prognosis, and it was less metabolically active than
C1 but more active than C2. Furthermore, the generated 90-gene
classifier had a high predictive value for SKCM, and this classifier
may help predict the prognosis of patients with SKCM more
accurately and provide precise therapeutic approaches for these
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patients. Thus, our study further enhanced the recognition of
the metabolic hallmarks of SKCM and contributed valuable new
information regarding SKCM subtypes such that patients with
this disease can receive personalized immunotherapy and more
accurate prognosis prediction.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Foshan First People’s
Hospital. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

RY and ZW conceived and designed the study. SZ, JL, ZW, RY,
and YQ contributed to the data acquisition. JM, RG, and XP
analyzed the data. ZW and SZ wrote the manuscript. All authors
read and approved the final manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Nos. 82002913 and 81772136), the
Foundation of Foshan City (Nos. FS0AA-KJ218-1301-0034 and
2018AB003411), the Special Fund of the Foshan Summit Plan
(Nos. 2019C002, 2019D008, 2019A006, and 2020A015), the
Foundation of Sichuan Science and Technology Department
(2019YJ0652), Guang Dong Basic and Applied Basic Research
Foundation (2021A1515011453), and the Medical Science
Foundation of Cheng Du (2018003).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
707677/full#supplementary-material

Supplementary Figure 1 | GO enrichment analysis of differential genes by
Goplot package. GO enrichment of differential genes between C1 clusters and C2
and C3 clusters by the Goplot package, which is visualized as a taxonomic bubble
plot (A) and a circle plot (B). Venn diagram (C) of differential gene enrichment in
“autophagy,” “protein binding,” “lysosome organization” three biological
processes. Goplot package for GO enrichment of differential genes between C2
clusters and C1 and C3 clusters, and visualized as categorical bubble plots (D)
and circle plots (E). Venn diagram (F) of differential gene enrichment in the three
biological processes “immune response,” “regulation of immune response,”
“adaptive immune response.” GO enrichment of differential genes between C3
clusters and C1 and C2 clusters was carried out by the Goplot package and
visualized in the form of classification bubble plots (G) and circle plots (H). Venn
diagram (I) of differential genes enriched in three biological processes: “protein
binding,” “nucleotide-excision repair,” “DNA damage recognition,” and “poly(A)
RNA binding.”

Supplementary Figure 2 | KEGG pathway enrichment analysis was performed
using KOBAS 3.0. The pathway figures depicted the common KEGG enrichment
pathways for genes that are different between the three clustered subtypes and
other subtypes. p < 0.05 pathways are considered significantly enriched.
Apoptosis (A), Cell cycle (B), HIF-1 signaling pathway (C), Human T-cell leukemia
virus 1 (D), Pathways in cancer infection (E), PI3K-Akt signaling pathway (F), red
color stands for enriched genes with up-regulated expression.

Supplementary Figure 3 | Mutation profiling of 90-gene classifier in the
pan-cancer analysis and the TF-mRNA-miRNA network construction. (A) The
gene mutation and gene copy number of 90-gene classifier in 32 TCGA
pan-cancer databases were obtained from the cBioportal online database, and
the analysis of the mutation was performed to illustrate the distribution proportion
of each mutation type of this gene classifier in pan-cancer types, including gene
mutation, fusion, amplification, deep deletion and multiple alterations in a bar
chart. (B) Construction of potential transcription factor and miRNA
(TF-mRNA-miRNA) interaction network for 90-gene classifier using Cytoscape
software, with red representing transcription factors, blue representing mRNA, and
green representing miRNA.

Supplementary Table 1 | The information of clinical characteristics of
TCGA-SKCM cohorts.

Supplementary Table 2 | Independency test between meta cluster and other
clinical information and previous classification in TCGA-SKCM cohorts.

Supplementary Table 3 | Independency test between meta cluster and other
clinical information in GEO-SKCM cohorts.

Supplementary Table 4 | The ratio of driver-type oncogenic mutations based on
TCGA-SKCM in each subtype.

Supplementary Table 5 | The gene list of the 90 gene-classifier.

Supplementary Table 6 | Analysis of GO enrichment of differential genes
between subtypes C1 and C2 and C3 by Goplot package.

Supplementary Table 7 | GO enrichment analysis of differential genes between
subtypes C2 and subtypes C1 and C3 by Goplot package.

Supplementary Table 8 | The GO enrichment analysis of differential genes
between subtypes C3 and C1 and C2 by the Goplot package.

Supplementary Table 9 | KEGG pathway enrichment analysis was performed
using KOBAS 3.0 (p < 0.05), and the table showed the Top10
enriched KEGG pathways.
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