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GABAergic synaptic response and its opioidergic
modulation in periaqueductal gray neurons of
rats with neuropathic pain
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Abstract

Background: Neuropathic pain is a chronic and intractable symptom associated with nerve injury. The
periaqueductal gray (PAG) is important in the endogenous pain control system and is the main site of the
opioidergic analgesia. To investigate whether neuropathic pain affects the endogenous pain control system, we
examined the effect of neuropathic pain induced by sacral nerve transection on presynaptic GABA release, the
kinetics of postsynaptic GABA-activated Cl- currents, and the modulatory effect of μ-opioid receptor (MOR)
activation in mechanically isolated PAG neurons with functioning synaptic boutons.

Results: In normal rats, MOR activation inhibited the frequency of GABAergic miniature inhibitory postsynaptic
currents (mIPSCs) to 81.3% of the control without any alteration in their amplitude. In neuropathic rats, the
inhibition of mIPSC frequency by MOR activation was 82.4%. The frequency of GABAergic mIPSCs in neuropathic
rats was 151.8% of normal rats without any difference in the mIPSC amplitude. Analysis of mIPSC kinetics showed
that the fast decay time constant and synaptic charge transfer of mIPSCs in neuropathic rats were 76.0% and
73.2% of normal rats, respectively.

Conclusions: These results indicate that although the inhibitory effect of MOR activation on presynaptic GABA
release is similar in both neuropathic and normal rats, neuropathic pain may inhibit endogenous analgesia in the
PAG through an increase in presynaptic GABA release.

Keywords: Neuropathic pain Endogenous pain control system, Opioid analgesia, GABAergic synaptic transmission,
Periaqueductal gray

Background
Chronic pain can be classified into three categories:
nociceptive pain caused by tissue damage, neuropathic
pain caused by nerve injury, and mixed pain [1]. Patients
with neuropathic pain usually experience abnormal sen-
sations, including allodynia, which is defined as pain in
response to non-nociceptive stimuli and hyperalgesia,
which is defined as increased pain sensitivity to nocicep-
tive stimuli [2]. Although opioid receptor agonists are
the most widely used therapeutic agents for neuropathic
pain, the effectiveness of opioid analgesia is controver-
sial. Several studies have shown that neuropathic pain

can be effectively attenuated by morphine and other μ-
opioid receptor (MOR) agonists [3-10] as well as delta-
opioid agonists [11-14]. By contrast, some studies have
indicated that opioid peptides and morphine do not pos-
sess potent analgesic efficacy against neuropathic pain in
humans [15] and that this ineffectiveness of morphine
can be attributed to a down-regulation of central μ-
opioid transmission [16] and a reduced number of pre-
synaptic opioid receptors due to the degeneration of pri-
mary afferent neurons [17,18].
The midbrain periaqueductal gray (PAG) is believed to

be an important component in the endogenous pain
control system [19]. Several studies have shown that
administration of morphine or opioid peptides, either
systemically or directly into the PAG, produces antinoci-
ception, which is thought to be associated with
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inhibition of neuronal activity in the PAG [20,21]. The
inhibitory interneurons in the PAG are thought to con-
tain GABA as an inhibitory neurotransmitter and inhibit
tonically the output neurons [19,22-25]. Opioid agonists
have been shown to inhibit GABAergic inhibitory synap-
tic input to PAG neurons in rat slice preparations
[24,25]. In previous studies, we have shown that MOR
activation inhibits presynaptic GABA release in acutely
isolated PAG neurons from normal young rats [26].
Although many studies have investigated the analge-

sic effects of opioid agonists on neuropathic pain, it is
not clear whether opioidergic modulation of the endo-
genous pain control system in the PAG is altered by
neuropathic pain. Therefore, in the present study, we
isolated PAG neurons with intact synaptic terminals
from rats with neuropathic pain to examine the effects
of neuropathic pain on presynaptic GABA release, the
kinetics of postsynaptic GABA-activated Cl- currents,
and the opioid-induced inhibition of GABAergic
synaptic action.

Results
GABAergic mIPSCs in PAG neurons isolated from
neuropathic rats
There were no differences in morphological characteris-
tics between normal and neuropathic rats. Mechanically
dissociated PAG neurons retained short portions of
their proximal dendrites and usually presented an ovoid
soma (approximately 10-20 μm in diameter), although
some neurons presented a triangular soma.
We recorded and measured the mean amplitude and

frequency of mIPSCs 20 min after the rupture of the
patch membrane because it took 10-20 min for synaptic
currents to stabilize (Figure 1). In most neurons, record-
ings of these mIPSCs were stable for approximately 60
min, which indicated that the presynaptic nerve term-
inals attached to the dissociated PAG neurons were
functional and that their spontaneous activity was stable
for at least 60 min. In normal rats, the application of 3
μM bicuculline, a GABAA receptor antagonist, comple-
tely and reversibly blocked mIPSCs (Figure 1A). Reversal
potentials and the slopes of the current-voltage (I-V)
curves were almost identical in both groups. The rever-
sal potential (-5.2 mV for normal rats, -4.9 mV for neu-
ropathic rats) of these mIPSCs, as estimated from the
current-voltage (I-V) relationship, was very similar to
the theoretical Cl- Nernst equilibrium potential (ECl) of
-3.5 mV, calculated using extracellular and intracellular
Cl- concentrations of 161 and 140 mM, respectively
(Figure 1B). The conductance of mIPSCs was 0.924 ±
0.13 μS for normal rats and 0.859 ± 0.11 μS for neuro-
pathic rats (n = 9, P = 0.715). These results indicate that
spontaneous mIPSCs in normal rats are mediated by
GABAA receptors.

Effect of MOR activation on GABAergic mIPSCs in
neuropathic rats
In a previous report, we indicated that MOR activation
reduces GABAergic mIPSC in PAG neurons of young
rats [26]. In normal rats, application of 1 μM DAMGO,
a specific MOR agonist, also reduced the frequency of
GABAergic synaptic events in the majority of PAG neu-
rons tested (61%, 30 of 49 neurons). In the remaining
19 neurons, DAMGO did not significantly alter the fre-
quency or amplitude of mIPSCs. The DAMGO-induced
decrease in mIPSC frequency was reversible (Figure 2)
and could be blocked by pretreatment with 3 μM nalox-
one, a non-specific opioid receptor antagonist (100.5 ±
17.0% of the control, n = 3, P = 0.981, data not shown).
DAMGO decreased the mIPSC frequency to 81.3 ±
6.4% of the control (Figure 2Ba, Ca; n = 49, P < 0.01),
but did not alter their amplitude distribution (Figure
2Bb, Cb; 99.4 ± 2.0% of controls, n = 49, P = 0.779).
These data indicate that DAMGO inhibits presynaptic
GABA release via MOR activation at presynaptic term-
inals in PAG neurons of normal rats.
Although statistically not significant, the number of

neurons showing the inhibitory effect of DAMGO on
the frequency of mIPSCs was lower in neuropathic rats
(54%, 19 of 35 neurons) than in normal rats (61%, 30 of
49 neurons; Fisher’s Exact test, P = 0.654). The shape of
these DAMGO-responsive neurons was similar in both

Figure 1 GABAergic spontaneous mIPSCs in PAG neurons
isolated from normal and neuropathic rats. (A) In the presence
of 300 nM TTX, 3 μM CNQX and 10 μM AP5, the application of 3
μM bicuculline completely and reversibly blocked mIPSCs in PAG
neurons isolated from normal rats. The holding voltage (VH) was -60
mV. (B) I-V curve obtained from normal (open circle) and
neuropathic rats (closed circle) for the mean amplitude of mIPSCs
recorded at various VH. Each point is the mean of four neurons. ECl
is the reversal potential of mIPSCs.
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the neuropathic and normal rats. The DAMGO-induced
inhibition of mIPSC frequency was also reversible and
could be blocked by pretreatment with 3 μM naloxone
(data not shown). In neuropathic rats, DAMGO
decreased the frequency of mIPSC to 82.4 ± 4.6% of

controls (Figure 3Ba, Ca; n = 35, P < 0.05), but did not
change the distribution of their amplitudes (Figure 3Bb,
Cb; 102.1 ± 3.5% of controls, n = 35, P = 0.548). The
inhibitory effect of DAMGO on mIPSC frequency was
very similar in the neuropathic and normal rats. These

Figure 2 Inhibitory effect of μ-opioid receptor activation on GABAergic mIPSCs in normal rats. (A) Representative recording trace of
mIPSCs before and during the application of DAMGO (1 μM). (B) Histograms showing cumulative frequency (a) and amplitude distribution (b) of
mIPSCs inhibited by DAMGO. (C) Each column is the mean of 49 neurons. All frequencies (a) and amplitudes (b) are normalized to those of
control mIPSCs.

Figure 3 Inhibitory effect of μ-opioid receptor activation on GABAergic mIPSCs in neuropathic rats. (A) Representative recording trace of
mIPSCs before and during the application of DAMGO (1 μM). (B) Histograms showing the cumulative frequency (a) and amplitude distribution
(b) of mIPSC inhibited by DAMGO. (C) Each column is the mean of 35 neurons. All frequencies (a) and amplitudes (b) were normalized to those
of control mIPSCs.
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results indicate that neuropathic pain does not alter the
inhibitory effect of MOR activation on presynaptic
GABA release in PAG neurons.

Effect of neuropathic pain on presynaptic GABA release
To investigate whether neuropathic pain alters presy-
naptic GABA release in PAG neurons as a mechanism
of hyperalgesia and/or allodynia, we compared the fre-
quencies of presynaptic GABA release in neuropathic
and normal rats. As shown in Figure 4, the frequency of
mIPSCs in neuropathic rats (1.503 ± 0.2 Hz, 151.8% of
the normal rats, n = 35) was higher than that in normal
rats (0.990 ± 0.1 Hz, n = 49; P < 0.05). In the presence
of the inhibitory effect of DAMGO, neuropathic pain
increased the frequency of mIPSCs from 0.616 ± 0.1 Hz
in normal rats (n = 49) to 1.091 ± 0.2 Hz in neuropathic
rats (n = 35, 177.1% of the normal rats; P < 0.05). These
results indicate that neuropathic pain may increase pre-
synaptic GABA release.

Effect of neuropathic pain on the kinetics of postsynaptic
GABA-activated Cl- channels
To elucidate the effect of neuropathic pain on the
kinetics of postsynaptic GABA-activated Cl- channels,
the kinetics of GABAergic mIPSCs were analyzed by fit-
ting the currents with two exponential functions and
were then described with time constants (Table 1 and
Figure 5). The 10-90% rise time constant of normal rats
(1.07 ± 0.1 ms) was not different from that of neuro-
pathic rats (0.91 ± 0.1 ms, P = 0.066, Table 1). The
weighted mean decay time constant of neuropathic rats
(17.44 ± 0.9 ms) was significantly faster than that of nor-
mal rats (21.03 ± 1.2 ms, P < 0.05). In particular, while
there was no difference between the slow decay time con-
stants (τslow) in both groups (39.89 ± 2.2 ms for normal
rats, 36.64 ± 2.0 ms for neuropathic rats, Table 1), the

fast decay time constant (τfast) of neuropathic rats (8.92 ±
0.4 ms) was faster than that of normal rats (11.74 ± 0.8
ms, P < 0.05, Table 1). Due to the reduced fast decay
time constant, the half-width time of mIPSCs in neuro-
pathic rats could be shortened. Indeed, the half-width
time constant in neuropathic rats (10.29 ± 0.5 ms) was
shorter than that in normal rats (13.29 ± 0.8 ms, P <
0.05, Table 1). In addition, we calculated the area under
the mIPSCs (synaptic charge transfer), which indicates
the integration of the single channel open time and the
duration of the open time of Cl- channels [27,28]. The
synaptic charge transfer was significantly reduced in neu-
ropathic rats (753.6 ± 42.5 pAms for normal rats, 551.4 ±
35.4 pAms for neuropathic rats, P < 0.05, Table 1, Figure
5). By contrast, MOR activation with DAMGO showed
no effect on mIPSC kinetics in neuropathic rats (Table 1,
Figure 5). These results indicate that neuropathic pain
may promote faster inactivation kinetics of postsynaptic
GABA-activated Cl- channels.

Discussion
The present study was performed to examine whether
neuropathic pain alters presynaptic GABA release and
postsynaptic GABA-activated Cl- currents and whether
opioidergic modulation of the GABAergic inhibitory
synaptic response might be affected by neuropathic
pain. Our results show that neuropathic pain increases
the frequency of presynaptic GABA release and
decreases both the fast decay time constant and the
synaptic charge transfer of postsynaptic GABA-activated
Cl- currents, regardless of whether MOR agonists are
present. In addition, neuropathic pain did not alter the
inhibitory effect of MOR activation on GABAergic
mIPSCs.

Figure 4 Effect of neuropathic pain on presynaptic GABA
release. (A) Histograms comparing the frequency of mIPSCs
between normal and neuropathic rats in the absence of 1 μM
DAMGO. Each column is the mean of 49 neurons. (B) Histograms
comparing the frequency of mIPSCs between normal and
neuropathic rats in the presence of DAMGO. Each column is the
mean of 35 neurons.

Table 1 The kinetics of mIPSC in normal adult and
neuropathic rats

Normal adult Neuropathic

(Mean ± S.E.) (Mean ± S.E.)

Rise 10-90% (ms) Control 1.07 ± 0.1 0.91 ± 0.1

DAMGO 1.10 ± 0.1 0.94 ± 0.0

Decay 90-37% (ms) τfast Control 11.74 ± 0.8 8.92 ± 0.4†

DAMGO 13.32 ± 1.3 9.69 ± 0.6†

τslow Control 39.89 ± 2.2 36.64 ± 2.0

DAMGO 46.50 ± 3.9 36.99 ± 2.5

Weighted mean decay time
(ms)

Control 21.03 ± 1.2 17.44 ± 0.9†

DAMGO 23.55 ± 1.8 18.65 ± 1.0†

Half-width (ms) Control 13.29 ± 0.8 10.29 ± 0.5†

DAMGO 14.66 ± 1.1 11.52 ± 0.6†

Area under currents (pAms) Control 753.6 ± 42.5 551.4 ± 35.4†

DAMGO 897.0 ± 81.4 567.0 ± 39.1†

Values are mean ± S.E. † P < 0.05 for neuropathic rat compared to that of
normal adult rats (Normal adult rat, n = 49 and neuropathic rat, n = 35).
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Neuropathic pain associated with peripheral neuropa-
thy can manifest as severe and intractable pain. How-
ever, the mechanism of this severe and intractable pain
remains unclear. The PAG is an important component
of the endogenous pain control system and is the main
site of the powerful analgesic effects by morphine or
opioid peptides [19]. In a previous report, we suggested
that MOR-induced inhibition of GABAergic inhibitory
synaptic influence in the PAG is the main mechanism of
the opioidergic endogenous pain control system [26]. If
GABAergic synaptic inhibition of PAG neurons is
potentiated by neuropathic pain, this may represent a
potential mechanism of neuropathic pain. Although the
exact mechanisms are not clear, there have been reports
supporting this hypothesis. Activation of the descending
pain control system was shown to be important in the
maintenance of neuropathic pain [29]. The PAG-
mediated inhibition of nociception may be activated by
persistent nociceptive input, possibly reflecting the long-
term changes in the nociceptive circuitry that occur in
neuropathic pain states [30]. In this study, neuropathic
rats showed an increase in the frequency of presynaptic
GABA release in PAG neurons (Figure 4). This finding
indicates that endogenous pain control mechanisms in
the PAG may be inhibited in animals suffering from
neuropathic pain. Thus, this study suggests that neuro-
pathic pain inhibits the efficiency of the endogenous

pain control system in the PAG, thereby inducing severe
and intractable pain.
Although neuropathic pain does not alter the ampli-

tude of postsynaptic GABAergic response, the kinetics
of mIPSC was slightly inhibited in neuropathic rats (Fig-
ure 5, Table 1). Neuropathic rats showed a reduction in
the fast decay time with a reduced half-width time and
synaptic charge transfer of mIPSCs. These findings
might indicate that GABAergic inhibitory input to the
PAG neurons can be decreased in neuropathic rats,
which means that endogenous pain control mechanisms
in the PAG may be activated in neuropathic rats. How-
ever, the decrease in the fast decay time and synaptic
charge transfer of mIPSCs (76.0% and 73.2% of the nor-
mal rats, respectively) was significantly less than the
increase in presynaptic release of GABA (151.8% of the
normal rats, Figure 4). Thus, the changes in mIPSC
kinetics in neuropathic rats may not show a significant
influence to the inhibitory effect of the decreased presy-
naptic GABA release in neuropathic rats on endogenous
pain control mechanisms in the PAG.
Morphine and opioid peptides exert their powerful

analgesic effects through the endogenous pain control
system, especially in the PAG [19]. The efficiency of
opioid receptor agonists, especially the MOR agonist
morphine, has been reported in recent studies of central
and peripheral neuropathic pain disorders [31-34].

Figure 5 Effect of DAMGO on GABAergic mIPSC kinetics in normal and neuropathic rats. (A) Effect of DAMGO on GABAergic mIPSC
kinetics in normal rats. (a) The average current of the control (Control), DAMGO-treated (b), and superimposed (c) mIPSCs in normal rats. There
is no significant difference between control and DAMGO-treated currents. (B) Effect of DAMGO on GABAergic mIPSC kinetics in neuropathic rats.
The control (a) and DAMGO-treated (b) currents of the averaged mIPSCs of neuropathic rats, and the superimposed current of the mIPSCs (c).
There is no significant difference between control and DAMGO-treated currents. (C) Comparison of the kinetics of mIPSC modulated by
neuropathic pain in the presence and absence of DAMGO. The superimposed currents of control (a) and DAMGO-treated (b) mIPSCs in normal
and neuropathic rats.
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However, the development of long-term side effects,
such as immunological problems, physical dependency,
and misuse or abuse, is a limitation to the use of opioid
analgesics in patients with neuropathic pain [2]. Further-
more, and the effectiveness of opioid agonists on neuro-
pathic allodynia and hyperalgesia remains controversial.
Several studies have supported the effectiveness of
opioid receptor agonists on neuropathic pain [3-14].
However, some studies have raised questions about the
efficiency of opioid analgesics on neuropathic pain in
humans [15] and animals [16-18,35]. Other studies have
indicated that the PAG is important in opioidergic
analgesia of neuropathic pain. Neuropathic pain that is
induced by peripheral nerve injury has been effectively
alleviated by electrical stimulation of the PAG [36],
microinjection of opioid agonists into the PAG [37], and
supraspinal administration of morphine into the PAG
[9]. Although the analgesic mechanisms have not been
clearly elucidated, these studies suggest that the endo-
genous pain control system, including the PAG, is very
important in the control of neuropathic pain syndrome
and that opioid receptors are involved in this system. In
the present study, MOR agonists inhibited GABAergic
inhibitory synaptic activity in the PAG of neuropathic
rats, and this inhibitory effect of MOR activation was
not significantly different between neuropathic and nor-
mal rats (Figure 2, 3, and 4). Thus, the results of this
study suggest that MOR agonists can effectively exert an
analgesic effect on neuropathic pain through the modu-
lation of the endogenous pain control system in the
PAG and that the analgesic effectiveness of opioid pep-
tides in neuropathic animals is similar to that in normal
animals. However, because neuropathic pain may inhibit
the endogenous pain control mechanism in the PAG in
the resting state (as described above), it is possible that
the analgesic action of exogenous opioid agonists is less
effectively in a neuropathic pain state.
While the majority of proximal dendrites are still

attached to the neurons, the mechanical dissociation can
alter the majority of distal dendrites. Although the
remaining dendritic as well as somatic synapses are well
elucidated to be still functioning [38], it cannot be ruled
out that the dendritic synapses may be modulated in a
different manner shown in the present study.

Conclusions
The results of this study suggest that neuropathic pain
inhibits the endogenous pain control system through an
increase in presynaptic GABA release in the PAG, which
then induces severe and intractable pain. Thus, although
the effect of MOR activation on presynaptic GABA
release in neuropathic rats is similar to that in normal
animals, exogenous opioid agonists may exert their
analgesic actions less effectively in neuropathic rats.

Methods
Animals and surgical procedures
All experimental protocols were approved by the Insti-
tutional Animal Care and Use Committee of the Kyung
Hee University and all efforts were made to minimize
animal suffering and the number of animals utilized.
Male Sprague-Dawley rats (8-12 weeks old) were sub-
jected to a neuropathic pain model, as described in
detail previously [39,40]. In brief, the tail response to a
mechanical stimulus was first tested in all animals prior
to surgery. The rats were restrained in a transparent
plastic tube (5 cm in diameter × 20 cm in length), and
their tails were laid onto a table prior to a behavioral
tail-flicking test. After rats were habituated to the test
environment for 1 h, the mechanical sensitivity of the
tail was determined based on the tail withdrawal
response evoked by the application of a 0.2 g (1.96 mN)
von Frey hair filament. The most sensitive spot of the
tail was first determined for each animal by systemati-
cally rubbing various areas of the tail with the shank of
the von Frey hair; these spots were marked with a sharp
marking pen. Then, each spot was challenged ten times
with the von Frey hair filament at 10- to 20-s intervals.
The occurrence of tail withdrawal in response to the sti-
mulation was expressed as a percentage of trials, which
served as an index of mechanical sensitivity following
peripheral nerve injury. The surgery was performed on
rats that were not responsive to the initial mechanical
stimulation. Each rat was anesthetized with an intraperi-
toneal injection of Zoletil 50® (50 mg/kg), after which
the left superior caudal trunk was exposed, freed from
the surrounding tissues and transected at the level
between the S3 and S4 spinal nerves. To prevent possi-
ble rejoining of the proximal and distal ends of the sev-
ered trunk, an approximately 1-mm-long section of the
trunk was removed from the proximal end. This surgery
eliminated the S1-S3 spinal nerve innervation of the tail
via the superior caudal trunk. Behavioral tests for signs
of neuropathic pain (mechanical allodynia) were per-
formed at 1 week after surgery. Only rats showing
greater than 80% mechanical allodynia were considered
to conform to the animal model for neuropathic pain.

Isolation of single PAG neurons with synaptic boutons
The mechanical dissociation of single PAG neurons with
functioning synaptic boutons was performed by using
the technique described previously [38,41-43]. In brief,
rats were decapitated under Zoletil 50® anesthesia (50
mg/kg). The brains were removed, and transverse slices
(350-μm thickness) were made with a microslicer (DTK-
1000, DSK, Kyoto, Japan). Slices were preincubated in
an incubation solution that had been well saturated with
95% O2 and 5% CO2 at room temperature (22-25°C) for
at least 1 h before mechanical dissociation. For
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dissociation, slices were transferred to a 35 mm culture
dish (Primaria 3801; Becton Dickinson, Rutherford, NJ,
USA), and the ventrolateral region of the PAG was iden-
tified under a binocular microscope (SZ-ST, Olympus,
Tokyo, Japan). Mechanical dissociation was performed
using a custom-built vibration device and a fire-polished
glass pipette oscillating at approximately 20-50 Hz (1-2
mm). The tip of the fire-polished glass pipette was
lightly touching the surface of the ventrolateral PAG
region with a micromanipulator and was vibrated hori-
zontally for approximately 2 min. Slices were removed,
and the mechanically dissociated neurons were allowed
to settle and adhere to the bottom of the dish for 15
min. The isolated neurons retained short portions of
their proximal dendrites.

Electrical measurements
Electrical recordings were performed in the conventional
whole-cell patch-clamp recording mode [44] under vol-
tage-clamp conditions at holding potential (VH) of -60
mV. Patch pipettes were made from borosilicate capil-
lary glass (1.5 mm outer diameter; 1 mm inner diameter;
G-1.5; Narishige, Tokyo, Japan) in two stages on a verti-
cal pipette puller (PP-83; Narishige, Tokyo, Japan). The
resistance of the recording pipettes that were filled with
internal solution was 5-6 MΩ. The patch pipette was
positioned on the neuron using a water-driven micro-
manipulator (WR-60; Narishige, Tokyo, Japan). Neurons
were visualized under phase contrast on an inverted
microscope (IX-70, Olympus, Tokyo, Japan). Electrical
stimulation, voltage control, current recording, and fil-
tration of current (at 1 kHz) were obtained with an
EPC-9 patch-clamp amplifier (EPC-9, HEKA Electronik,
Lambrecht, Germany) linked to a PC controlled by
HEKA software. Current and voltage were monitored
continuously on a computer monitor for the EPC-9
amplifier and displayed on a paper chart linearcorder
(WR3320, Graphtec, Yokohama, Japan). Membrane cur-
rents were digitized at 5 kHz with an ITC 16 board
(HEKA Electronik, Lambrecht, Germany), and stored on
a computer equipped with pCLAMP (version 8.0, Axon
Instruments Inc., Burlingame, CA, USA). During record-
ings, -70 mV hyperpolarizing step pulses (30 ms in
duration) were periodically delivered to monitor access
resistance. All experiments were performed at room
temperature (22-25°C).

Drugs and solutions
Zoletil 50® (tiletamine HCl 125 mg/5 ml + zolazepam HCl
125 mg/5 ml) was purchased from Virbac (Carros,
France). Potassium phosphate monobasic, N-2-hydro-
xyethylpiperazine-N’-2-ethanesulfonic acid (HEPES),
dimethyl sulfoxide (DMSO), ethylene glycol-bis (b-ami-
noethylether)-N,N,N’N’-tetraacetic acid (EGTA), tetraethyl

ammonium chloride (TEA), BaCl2, CsCl, magnesium sul-
fate, magnesium chloride, Na-GTP, Mg-ATP, tetrodotoxin
(TTX), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX),

DL-2-amino-5-phosphonovaleric acid (DL-AP-5), [D-Ala
2,

N-MePhe4,Gly5-ol]enkephalin (DAMGO), naloxone HCl,
(-)-bicuculline methochloride, Cs-methanesulfonate and
cadmium chloride were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). CNQX was dissolved in DMSO
at 10 mM as a stock solution. Drugs were added to the
standard external solutions at the final concentrations
indicated in the Result section and the vehicle concentra-
tions never exceeded 0.01%. Drugs were superfused using
a rapid application system termed the “Y-tube method”
that has been described elsewhere [45,46]. The incubation
solution had the following composition (in mM): 124
NaCl, 5 KCl, 1.2 KH2PO4, 1.3 MgSO4, 2.4 CaCl2, 10 glu-
cose, and 24 NaHCO3. The pH was adjusted to 7.4 by
continuous bubbling with 95% O2 and 5% CO2. The stan-
dard external solution had the following composition (in
mM): 150 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, and
10 N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid
(HEPES). The pH was adjusted to 7.4 with tris-hydroxy-
methylaminomethane (Tris-base). The internal pipette
solution for the recording of miniature inhibitory postsy-
naptic current (mIPSC) had the following ionic composi-
tion (in mM): 110 CsCl, 30 TEA-Cl, 5 EGTA, 5 Mg-ATP,
0.4 Na-GTP, and 10 HEPES. The pH was adjusted to 7.2
with Tris base. To isolate spontaneous mIPSCs, external
solutions routinely contained 300 nM TTX, 1 μM CNQX,
and 10 μM AP-5 to block voltage-dependent Na+ channels
and glutamatergic excitatory synaptic currents.

Statistical analysis
Spontaneous mIPSCs were analyzed using the MiniAna-
lysis program (Synaptosoft Inc., Leonia, NJ, USA).
Kaleida Graph software (Synergy Software, Reading, PA,
USA) was used for curve fitting. Spontaneous events
were initially detected automatically using an amplitude
threshold of 5 pA (for mIPSC) and then visually
accepted or rejected on the basis of their rise and decay
times. Events with brief rise times (0.5-1.5 ms) and
decay times that were fitted by a single-exponential
function were selected for fast current detection. Aver-
aged current frequency and amplitude were normalized
to the control conditions and were provided as means ±
S.E.M. Differences in current amplitude and frequency
between each single neuron were tested with Student’s
paired two-tailed t-test using absolute values. Fisher’s
Exact test was performed to see if there was a contin-
gency between the two kinds of classification. Difference
in amplitude distributions of miniature currents
obtained from a single neuron were examined by con-
structing all-point cumulative probability distributions
and compared using the Kolmogorov-Smirnov (K-S)

Hahm et al. BMC Neuroscience 2011, 12:41
http://www.biomedcentral.com/1471-2202/12/41

Page 7 of 9



test. Values of P < 0.05 were considered significant. The
mIPSC kinetics were fitted by two exponential functions
for further detailed analysis and were described as their
decay phases with time constants and area under the
current. The weighted mean decay time constant (τm)
was calculated as τm = (Afast×τfast + Aslow×τslow)/(Afast

+Aslow), where τfast and τslow are the respective time con-
stants, and Afast and Aslow are the current amplitude
constants. Each parameter was compared using Stu-
dent’s paired two-tailed t-test. Values of P < 0.05 were
considered significant.

Acknowledgements
This work was supported by a Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korea government (MEST) (No.20100028330).

Author details
1Department of Physiology, Biomedical Science Institute, Kyung Hee
University School of Medicine, Seoul 130-701, South Korea. 2Department of
Physiology and Biophysics, University of Colorado Denver, Anschutz Medical
Campus, Aurora, CO 80045, USA. 3Department of Dental Pharmacology,
School of Dentistry, Kyungpook National University, Daegu 700-412, South
Korea.

Authors’ contributions
ETH, YK, and YWC designed the experiments. ETH, YK, and JJL made the
neuropathic pain animal model, performed the experiments and analyzed
the data. ETH and YWC wrote the manuscript. All authors read and
approved the final manuscript.

Received: 1 March 2011 Accepted: 12 May 2011 Published: 12 May 2011

References
1. Baron R: Mechanisms of disease: neuropathic pain–a clinical perspective.

Nat Clin Pract Neurol 2006, 2:95-106.
2. Baron R, Binder A, Wasner G: Neuropathic pain: diagnosis,

pathophysiological mechanisms, and treatment. Lancet Neurol 2010,
9:807-819.

3. Guan Y, Johanek LM, Hartke TV, Shim B, Tao YX, Ringkamp M, Meyer RA,
Raja SN: Peripherally acting mu-opioid receptor agonist attenuates
neuropathic pain in rats after L5 spinal nerve injury. Pain 2008,
138:318-329.

4. Zhao M, Wang JY, Jia H, Tang JS: mu- but not delta- and kappa-opioid
receptors in the ventrolateral orbital cortex mediate opioid-induced
antiallodynia in a rat neuropathic pain model. Brain Res 2006, 1076:68-77.

5. Eisenberg E, McNicol ED, Carr DB: Efficacy of mu-opioid agonists in the
treatment of evoked neuropathic pain: Systematic review of randomized
controlled trials. Eur J Pain 2006, 10:667-676.

6. Chen YP, Chen SR, Pan HL: Effect of morphine on deep dorsal horn
projection neurons depends on spinal GABAergic and glycinergic tone:
implications for reduced opioid effect in neuropathic pain. J Pharmacol
Exp Ther 2005, 315:696-703.

7. Erichsen HK, Hao JX, Xu XJ, Blackburn-Munro G: Comparative actions of
the opioid analgesics morphine, methadone and codeine in rat models
of peripheral and central neuropathic pain. Pain 2005, 116:347-358.

8. Basbaum AI: Opioid regulation of nociceptive and neuropathic pain. Clin
Neuropharmacol 1992, 15(Suppl 1 Pt A):372A.

9. Pertovaara A, Wei H: A dissociative change in the efficacy of supraspinal
versus spinal morphine in the neuropathic rat. Pain 2003, 101:237-250.

10. Rowbotham MC, Twilling L, Davies PS, Reisner L, Taylor K, Mohr D: Oral
opioid therapy for chronic peripheral and central neuropathic pain. N
Engl J Med 2003, 348:1223-1232.

11. Hervera A, Negrete R, Leanez S, Martin-Campos J, Pol O: The role of nitric
oxide in the local antiallodynic and antihyperalgesic effects and
expression of delta-opioid and cannabinoid-2 receptors during
neuropathic pain in mice. J Pharmacol Exp Ther 2010, 334:887-896.

12. Holdridge SV, Cahill CM: Spinal administration of a delta opioid receptor
agonist attenuates hyperalgesia and allodynia in a rat model of
neuropathic pain. Eur J Pain 2007, 11:685-693.

13. Kabli N, Cahill CM: Anti-allodynic effects of peripheral delta opioid
receptors in neuropathic pain. Pain 2007, 127:84-93.

14. Nadal X, Banos JE, Kieffer BL, Maldonado R: Neuropathic pain is enhanced
in delta-opioid receptor knockout mice. Eur J Neurosci 2006, 23:830-834.

15. Arner S, Meyerson BA: Lack of analgesic effect of opioids on neuropathic
and idiopathic forms of pain. Pain 1988, 33:11-23.

16. Niikura K, Narita M, Butelman ER, Kreek MJ, Suzuki T: Neuropathic and
chronic pain stimuli downregulate central mu-opioid and dopaminergic
transmission. Trends Pharmacol Sci 2010, 31:299-305.

17. Obara I, Parkitna JR, Korostynski M, Makuch W, Kaminska D, Przewlocka B,
Przewlocki R: Local peripheral opioid effects and expression of opioid
genes in the spinal cord and dorsal root ganglia in neuropathic and
inflammatory pain. Pain 2009, 141:283-291.

18. Ossipov MH, Lopez Y, Nichols ML, Bian D, Porreca F: The loss of
antinociceptive efficacy of spinal morphine in rats with nerve ligation
injury is prevented by reducing spinal afferent drive. Neurosci Lett 1995,
199:87-90.

19. Basbaum AI, Fields HL: Endogenous pain control systems: brainstem
spinal pathways and endorphin circuitry. Annu Rev Neurosci 1984,
7:309-338.

20. Behbehani MM, Jiang M, Chandler SD: The effect of [Met]enkephalin on
the periaqueductal gray neurons of the rat: an in vitro study.
Neuroscience 1990, 38:373-380.

21. Lipp J: Possible mechanisms of morphine analgesia. Clin Neuropharmacol
1991, 14:131-147.

22. Chiou LC, Huang LY: Mechanism underlying increased neuronal activity
in the rat ventrolateral periaqueductal grey by a mu-opioid. J Physiol
1999, 518(Pt 2):551-559.

23. Kalyuzhny AE, Wessendorf MW: Relationship of mu- and delta-opioid
receptors to GABAergic neurons in the central nervous system,
including antinociceptive brainstem circuits. J Comp Neurol 1998,
392:528-547.

24. Vaughan CW, Christie MJ: Presynaptic inhibitory action of opioids on
synaptic transmission in the rat periaqueductal grey in vitro. J Physiol
1997, 498(Pt 2):463-472.

25. Vaughan CW, Ingram SL, Connor MA, Christie MJ: How opioids inhibit
GABA-mediated neurotransmission. Nature 1997, 390:611-614.

26. Hahm ET, Lee JJ, Min BI, Cho YW: Opioid inhibition of GABAergic
neurotransmission in mechanically isolated rat periaqueductal gray
neurons. Neurosci Res 2004, 50:343-354.

27. Kitamura A, Sato R, Marszalec W, Yeh JZ, Ogawa R, Narahashi T: Halothane
and propofol modulation of gamma-aminobutyric acidA receptor single-
channel currents. Anesth Analg 2004, 99:409-15, table.

28. Mathers DA: The GABAA receptor: new insights from single-channel
recording. Synapse 1987, 1:96-101.

29. Kovelowski CJ, Ossipov MH, Sun H, Lai J, Malan TP, Porreca F: Supraspinal
cholecystokinin may drive tonic descending facilitation mechanisms to
maintain neuropathic pain in the rat. Pain 2000, 87:265-273.

30. Monhemius R, Green DL, Roberts MH, Azami J: Periaqueductal grey
mediated inhibition of responses to noxious stimulation is dynamically
activated in a rat model of neuropathic pain. Neurosci Lett 2001,
298:70-74.

31. O’Connor AB, Dworkin RH: Treatment of neuropathic pain: an overview of
recent guidelines. Am J Med 2009, 122:S22-S32.

32. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpaa ML,
Kent JL, Krane EJ, LeBel AA, Levy RM, et al: Recommendations for the
pharmacological management of neuropathic pain: an overview and
literature update. Mayo Clin Proc 2010, 85:S3-14.

33. Norrbrink C, Lundeberg T: Tramadol in neuropathic pain after spinal cord
injury: a randomized, double-blind, placebo-controlled trial. Clin J Pain
2009, 25:177-184.

34. Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, Nurmikko T:
EFNS guidelines on the pharmacological treatment of neuropathic pain:
2010 revision. Eur J Neurol 2010, 17:1113-1e88.

35. Zhang X, Bao L, Shi TJ, Ju G, Elde R, Hokfelt T: Down-regulation of mu-
opioid receptors in rat and monkey dorsal root ganglion neurons and
spinal cord after peripheral axotomy. Neuroscience 1998, 82:223-240.

Hahm et al. BMC Neuroscience 2011, 12:41
http://www.biomedcentral.com/1471-2202/12/41

Page 8 of 9

http://www.ncbi.nlm.nih.gov/pubmed/16932531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20650402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20650402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18276075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18276075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16476416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16476416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16476416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16337151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16337151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16337151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16033910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16033910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16033910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15982817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15982817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15982817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1498878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12583866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12583866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12660386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12660386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20498253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20498253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20498253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20498253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17175187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17175187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17175187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16963185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16963185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16487163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16487163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2454440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2454440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20471111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20471111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20471111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19147290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19147290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19147290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8584250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8584250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8584250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6143527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6143527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2263320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2263320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1849794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10381599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10381599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9514515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9514515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9514515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9032693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9032693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9403690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9403690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15488297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15488297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15488297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15271715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15271715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15271715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2905528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2905528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11154838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11154838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11154838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19962493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19962493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19333166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19333166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20402746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20402746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9483516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9483516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9483516?dopt=Abstract


36. Lee BH, Park SH, Won R, Park YG, Sohn JH: Antiallodynic effects produced
by stimulation of the periaqueductal gray matter in a rat model of
neuropathic pain. Neurosci Lett 2000, 291:29-32.

37. Sohn JH, Lee BH, Park SH, Ryu JW, Kim BO, Park YG: Microinjection of
opiates into the periaqueductal gray matter attenuates neuropathic pain
symptoms in rats. Neuroreport 2000, 11:1413-1416.

38. Akaike N, Moorhouse AJ: Techniques: applications of the nerve-bouton
preparation in neuropharmacology. Trends Pharmacol Sci 2003, 24:44-47.

39. Na HS, Han JS, Ko KH, Hong SK: A behavioral model for peripheral
neuropathy produced in rat’s tail by inferior caudal trunk injury. Neurosci
Lett 1994, 177:50-52.

40. Kim YI, Na HS, Yoon YW, Han HC, Ko KH, Hong SK: NMDA receptors are
important for both mechanical and thermal allodynia from peripheral
nerve injury in rats. Neuroreport 1997, 8:2149-2153.

41. Hahm ET, Lee JJ, Min BI, Cho YW: Developmental change of GABAergic
postsynaptic current in rat periaqueductal gray. Neurosci Lett 2005,
380:187-192.

42. Lee JJ, Hahm ET, Lee CH, Cho YW: Serotonergic modulation of GABAergic
and glutamatergic synaptic transmission in mechanically isolated rat
medial preoptic area neurons. Neuropsychopharmacology 2008, 33:340-352.

43. Rhee JS, Ishibashi H, Akaike N: Calcium channels in the GABAergic
presynaptic nerve terminals projecting to meynert neurons of the rat. J
Neurochem 1999, 72:800-807.

44. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-
clamp techniques for high-resolution current recording from cells and
cell-free membrane patches. Pflugers Arch 1981, 391:85-100.

45. Min BI, Kim CJ, Rhee JS, Akaike N: Modulation of glycine-induced chloride
current in acutely dissociated rat periaqueductal gray neurons by μ-
opioid agonist DAGO. Brain Res 1996, 734:72-78.

46. Murase K, Randic M, Shirasaki T, Nakagawa T, Akaike N: Serotonin
suppresses N-methyl-D-aspartate responses in acutely isolated spinal
dorsal horn neurons of the rat. Brain Res 1990, 525:84-91.

doi:10.1186/1471-2202-12-41
Cite this article as: Hahm et al.: GABAergic synaptic response and its
opioidergic modulation in periaqueductal gray neurons of rats with
neuropathic pain. BMC Neuroscience 2011 12:41.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Hahm et al. BMC Neuroscience 2011, 12:41
http://www.biomedcentral.com/1471-2202/12/41

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/10962146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10962146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10962146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10841348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10841348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10841348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12498731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12498731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7824181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7824181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9243601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9243601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9243601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15854775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15854775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9930756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9930756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6270629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6270629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6270629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8896810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8896810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8896810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2147117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2147117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2147117?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	GABAergic mIPSCs in PAG neurons isolated from neuropathic rats
	Effect of MOR activation on GABAergic mIPSCs in neuropathic rats
	Effect of neuropathic pain on presynaptic GABA release
	Effect of neuropathic pain on the kinetics of postsynaptic GABA-activated Cl- channels

	Discussion
	Conclusions
	Methods
	Animals and surgical procedures
	Isolation of single PAG neurons with synaptic boutons
	Electrical measurements
	Drugs and solutions
	Statistical analysis

	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


