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Spatial autocorrelation signatures 
of ecological determinants on plant 
community characteristics in high 
Andean wetlands
Adriana Lozada & Angéline Bertin*

Understanding how biological communities are shaped is a central tenet of community ecology. 
Recent evidence highlights the potential of decoupling diversity spatial autocorrelation into its 
positive and negative components to reveal community assembly processes that would otherwise 
remain undetected, as well as to improve understanding of their impacts on different facets of 
diversity. Yet, such approaches have only been implemented to investigate the effects of a few 
assembly drivers on a small number of diversity components. Here, we used high Andean wetland 
plant communities over a strong latitudinal gradient to investigate the effects of various ecological 
factors on spatial autocorrelation patterns of nine community metrics with different informative 
values, including measures of richness, dominance, evenness and beta-diversity. By combining 
Moran’s Eigenvector Maps, partial least squares structural equation modeling, and regression 
analyses, we revealed two groups of community parameters presenting contrasting spatial patterns 
due to specific sensitivities to ecological factors. While environmental variation and wetland 
connectivity increased positive spatial autocorrelation in richness and dominance-related parameters, 
species co-occurrence promoted negative spatial autocorrelation in evenness-related parameters. 
These results offer new insights regarding both how ecological processes affect species assembly, as 
well as the information captured by classical taxonomic parameters.

Understanding how biological communities are shaped is necessary for biodiversity conservation1–3, safeguarding 
ecosystem functions and services4, and predicting responses to global change5. A large component of current 
research in community ecology is thus devoted to disentangling processes involved in community assembly. 
However, gathering direct empirical evidence of the ecological processes at play is almost impossible under natu-
ral conditions6. As a result, they are usually assessed indirectly through pattern-process relationship approaches7,8, 
which rely on the premise that assembly mechanisms leave particular signatures on communities, and that 
ecologists are able to unequivocally identify these footprints.

Among the approaches for disentangling mechanisms underpinning community diversity9–12 that have gained 
popularity in recent years is the investigation of diversity patterns across multiple spatial scales. This strategy 
rests on the fact that assembly processes generate nonrandom spatial structures, leaving footprints at different 
spatial scales12–15. Two major groups of ecological processes can be distinguished in this respect: those with 
broad-scale consequences for species distribution and diversity and those with fine/local scale effects. The for-
mer group corresponds to processes generating positive spatial autocorrelations in community diversity, which 
refers to situations in which diversity levels at nearby locations are more similar than expected by chance16. Such 
processes include contagious processes16,17, such as dispersal, that generate influences from surrounding sites 
on community composition, and environmental filtering driven by broad-scale gradients, which similarly leads 
to commonalities among sites in close geographic proximity due to their high environmental similarity16. The 
latter group incorporates mechanisms such as biotic interactions with little or no effect beyond the local scale. 
Because such mechanisms can create singular patterns locally, they are assumed to drive dissimilarities among 
nearby sites, that is negative spatial autocorrelations13.

Recently, Biswas et al.14 proposed a conceptual framework that capitalizes on these characteristics to identify 
assembly processes operating at various spatial scales and analyze their spatial pattern effects on different diversity 
components. The approach relies on the decoupling of diversity spatial autocorrelation into its positive (S+(x)) and 
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negative components (S−(x)). It has the potential to reveal impacts that would remain undetected without such 
partitioning. For instance, it revealed that environmental disturbance enhances negative spatial autocorrelation in 
community diversity14,15,18 without necessarily affecting overall spatial autocorrelation15,18. In addition, it showed 
that disturbance provokes stronger responses in evenness than in richness14. These examples demonstrate that 
the autocorrelation decomposition framework of Biswas et al.14 can both offer novel insights into how assembly 
processes affect community assembly and shed light on the ecological signals that different diversity indices are 
able to capture. Yet, it has so far only been applied to a few community characteristics and assembly drivers.

Here, we used the autocorrelation decomposition approach to characterize the impacts of a range of ecological 
factors on spatial patterns of taxonomic community parameters and identify which they alter the most. To do so, 
we analyzed plant communities from high Andean wetlands in the Norte Chico region in Chile, which offer an 
excellent model for the purpose of our study. Since these ecosystems are insular formations distributed across a 
marked aridity gradient, various processes are expected to leave imprints at a range of spatial scales. These include 
dispersal restriction and environmental filtering, two potentially important assembly mechanisms with predicted 
broad-scale imprints (Table 1), and ecological drift and plant-plant interactions with projected influences at the 
local scale (i.e., individual wetlands, Table 1). The effects of dispersal on S+(x) is suggested by the patchy and 
highly isolated nature of these habitats, which likely allows migration only between wetlands in relatively close 
geographic proximity, and may thus precipitate stronger similarities in community composition19 and diversity 
among closest sites20. The broad-scale impacts of environmental filtering are anticipated due to the pronounced 
latitudinal climate gradient in the region, which gradually transitions from Mediterranean in the south to arid 
in the north21,22. The importance of drift, the random changes in species relative abundances8, is substantiated 
by theory and empirical evidence suggesting that it is a major driver of diversity in island-type habitats20,23,24. 
Its actual importance may depend on landscape factors influencing population size within communities and 
thereby risks of demographic stochasticity25. As for plant-plant interactions, they are well established key driv-
ers of alpine vegetation26,27. At high elevations, where assemblages are subjected to harsh climatic conditions, 
positive interactions in particular are expected to assume high importance28. They are promoted by facilitator 
organisms, such as cushion plants, that act as foundation species29,30, stabilizing and improving local abiotic 

Table 1.   Expected spatial signatures of community assembly processes on different community characteristics. 
S+(x): positive spatial autocorrelation, S−(x): negative spatial autocorrelation.

Assembly process Expected spatial signature Effects on community characteristics Most prominent expected pattern

Dispersal
Driver of S+(x). Dispersal is a contagious 
process, generating similarities among 
nearby communities

Dispersal is expected to increase alpha-
diversity in general. The theory of Island 
Biogeography54 postulates a major effect 
of dispersal on richness. Analyses of plant, 
invertebrate and macroinvertebrate com-
munities suggest a direct effect of migration 
on species richness44

Dispersal is also a main driver of commu-
nity assembly increasing similarity among 
connected communities. Empirical studies 
indicate a major role of dispersal on com-
munity uniqueness92–94

Driver of S+(x) in richness and local contri-
bution to beta-diversity

Environmental filtering

Driver of S+(x) essentially. Environmental 
filtering can provoke similarities among 
nearby communities through induced 
spatial dependence due to the non-random 
distribution of the environmental variables 
acting as filters. Such effects are expected to 
be important along environmental gradients
Occasional driver of S−(x)
When sharp environmental variations 
occur (i.e., as expected in high mountains), 
environmental filtering can drive dissimi-
larities among nearby communities

According to empirical evidence, environ-
mental filtering more strongly influences 
species richness than evenness14,41

Environmental heterogeneity is also a com-
mon driver of community divergence95–98. 
A major role of environmental variation 
on community uniqueness is commonly 
reported99–101

Driver of S+(x) in richness and LCBD

Species interactions (competition / facilita-
tion)

Potential driver of S−(x). Species interac-
tion is a community assembly driver with 
no expected effects beyond the local scale. 
It can thus lead to dissimilarities among 
nearby communities

Both competition and facilitation alter 
species number and relative abundance57. 
However, theoretical and empirical 
evidence indicates that they have a more 
direct44 and stronger impact14,102 on even-
ness than on richness. Considering that 
competition is expected to alter dominance 
patterns in communities, strong effects can 
be expected on diversity metrics emphasiz-
ing dominance
While species interactions can increase 
differences among ecological communities, 
their effects on ecological uniqueness are 
not established

Driver of S−(x) in evenness- and domi-
nance-related indices

Ecological drift
Driver of S-(x). Process with no expected 
effects beyond the local scale. It can thus 
lead to dissimilarities among nearby com-
munities

Ecological drift provokes random fluctua-
tions in species abundances, lowers diver-
sity within communities and increases dif-
ferences among ecological communities23. 
The specific sensitivity of richness and 
abundance-related indices to drift is not 
well established

Driver of S−(x) in LCBD and alpha diversity 
parameters
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conditions (e.g. soil nutrient content), supporting the growth of other plants, affecting species recruitment, and 
enhancing alpine plant diversity29–32.

To investigate the spatial footprints of these processes on high Andean plant diversity, we analyzed how 
associated ecological factors (wetland connectivity for dispersal33, environmental variation for environmental 
filtering, wetland size for drift, and species co-occurrence for species interactions23,25,34 influence spatial patterns 
in community characteristics. Since assembly processes can alter different aspects of the communities (Table 1), 
we explored ecological factor effects on various alpha-diversity measures (see Supplementary Table S1 online), 
including measures of richness, dominance (Shannon entropy, Shannon diversity and Simpson diversity), even-
ness (Pielou’s evenness, Shannon evenness and Simpson evenness), as well as on a beta-diversity parameter (i.e., 
local contribution to beta-diversity, LCBD35). We postulate that ecological factors associated with broad-scale 
processes (wetland connectivity and environmental variation)36 will drive S+(x)13,16 and have stronger effects 
on richness-related parameters37,38 and LCBD (Table 1). In addition, we expect ecological factors associated 
with fine-scale processes (wetland size and species co-occurrence) to generate S−(x) in LCBD, evenness and 
dominance-related parameters14,15 (Table 1). To test these predictions, we analyzed positive and negative auto-
correlation patterns of each of the community metrics using Moran Eigenvector Maps. Then, we used partial 
least squares structural equation modeling (PLS-SEM) to estimate the influence of the ecological factors (abi-
otic environmental variation, species co-occurrence, wetland connectivity, and size) on each plant community 
parameters. Finally, we investigated whether the influence of ecological factors drove negative or positive spatial 
autocorrelation in community parameters by investigating the effects of the PLS-SEM path coefficients after 
excluding potential confounding effects due to the relatedness of the community parameters.

Results
Spatial structure of the diversity parameters.  All diversity indices displayed higher levels of S+(x) 
than S−(x) (Fig. 1). Substantial variation was revealed for both autocorrelation components, however, as indi-
cated by coefficients of variation (CVs) of 50% and 38.5% for S+ and S−(x), respectively. Two groups of alpha-
diversity indices stood out based on their spatial patterns. The first, comprising N0, N1, H and N2, displayed the 
highest and only significant levels of S+(x), but were characterized by the lowest levels of S−(x), while the second, 
comprising E10, E20, J and TB, demonstrated the opposite. Autocorrelation patterns of LCBD were intermediate 
between the two groups of alpha-diversity metrics. Overall, the community metrics displaying the highest S+(x) 
tended to be associated with low levels of S−(x), and vice versa, as indicated by the strong negative relationship 
between the two autocorrelation components (Pearson correlation: r =  − 0.90, likelihood ratio test of a mixed 
model of S+(x) in relation to S−(x) including the correlation matrix of community metrics as a random effect: 
LR = 16.62, df = 1, P < 0.001). Neither the levels of S+(x) nor those of S−(x) were influenced by the covariance of 
the community metrics (see Supplementary Table S2 online).

Figure 1.   Levels of positive and negative spatial autocorrelation for the plant community parameters. Asterisks 
indicate significant autocorrelation (P < 0.05). N0: Richness; H: Shannon entropy; N1: Shannon diversity; N2: 
Simpson diversity; E10: Shannon evenness; E20: Simpson evenness; J: Pielou’s evenness, TB: Total biomass and 
LCBD: Local Contribution to Beta-Diversity.
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Influence of local ecological factors on high Andean plant community characteristics.  Among 
the four ecological factors, only wetland connectivity and size had consistent effects on diversity indices (Table 2). 
Connectivity increased all community metrics, and significantly so in the case of N1 and N0. In contrast, the 
estimated effects of wetland size were negative, indicating that increases in wetland size tended to produce a 
decrease in the community parameters and significantly so in N0. The impacts of environmental variation and 
species co-occurrence were inconsistent, with path coefficients ranging from negative to positive and character-
ized by very large CVs (i.e., 243 and 833% respectively, Table 2). Environmental effects were negative except for 
N0, N1 and N2 (Table 2, Fig. 2b). Species co-occurrence effects were positive for richness and dominance-influ-
enced parameters (i.e., H and N1), but negative for evenness metrics (E10 and E20). Overall, wetland connec-
tivity and environmental variation had the strongest effects on the community parameters with mean absolute 
effects being at least three times higher than those of species co-occurrence and wetland size (e.g., mean of path 
coefficient absolute values in Table 2).

Effects of local ecological factors on positive and negative spatial autocorrelation components 
of diversity indices.  Three of the four ecological factors increased spatial autocorrelation. Significant rela-
tionships between the ecological factor effects (i.e., PLS-SEM path coefficients) and levels of autocorrelation of 
the community parameters were actually revealed for wetland connectivity, environmental variation and species 
co-occurrence (Table 3). S+(x) levels showed a significant relationship with environmental variation and wet-
land connectivity effects, and the S−(x) levels with effects of species co-occurrence. Wetland connectivity and 
environmental variation both increased S+(x) of the community indices that they positively influenced (Table 3, 
Fig. 2a,b), and particularly N0, N1, N2 and H (Fig. 2a,b,d). S−(x) levels increased in response to negative effects 
of species occurrence on community indices, leading to increased levels of S-(x) in E10, E20 and J (Fig. 2a,c).

Discussion
By investigating the effects of ecological determinants on the spatial autocorrelation components of different 
diversity indices, we were able to reveal spatial footprints of assembly drivers and identify groups of diversity 
metrics presenting specific responses. These results thus provide new insights both on how ecological processes 
affect species assembly as well as the information captured by classical taxonomic diversity indices.

Here, we identified a range of drivers of S+(x) and S−(x) in high Andean plant communities. Environmental 
variation and wetland connectivity were two factors anticipated to promote similarity in community diversity 
among wetlands in close geographic proximity19,39. The fact that these factors had the strongest detected effects 
on community parameters is consistent with previous evidence that suggests they each play a key role in spatial 
patterns of high Andean wetland communities and diversity19,20,39,40. Their impacts on S+(x) in community met-
rics is also in line with literature associating dispersal restriction and environmental filtering with broad spatial 
scales14,41 when dispersal is a limiting factor in structuring communities42 and in the presence of environmental 
gradients16, as was the case here. Our results demonstrate that not all diversity components were equally influ-
enced by these factors, however. Environmental variation and wetland connectivity increased similarity among 
wetlands in close geographic proximity in species richness and dominance-related indices (N0, N2, N1 and H), 
but not in evenness. This adds to the mounting body of evidence showing that richness and evenness respond 
differently to a wide range of factors and mechanisms14,37,41,43–50. As predicted by theoretical literature and ear-
lier empirical results14,15,17,41, we found that habitat connectivity increased species richness and S+(x) levels in 

Table 2.   Influence of wetland connectivity and size, species co-occurrence and environmental variability 
on each plant community parameter estimated by partial least squares structural equation modeling. The 
confidence intervals and significance of path coefficients of each ecological factor were evaluated based on 
10,000 bootstrapping iterations. Significant path coefficients are in bold. Models were carried out separately 
for each community metric. N0: Richness; H: Shannon entropy; N1: Shannon diversity; N2: Simpson diversity; 
E10: Shannon evenness; E20: Simpson evenness; J: Pielou’s evenness, TB: Total biomass and LCBD: Local 
contribution to beta-diversity.

Index

Wetland connectivity Wetland size Species co-occurrence Environmental variability

Standardized path 
coefficient ± SE CI

Standardized path 
coefficient ± SE CI

Standardized path 
coefficient ± SE CI

Standardized path 
coefficient ± SE CI

N0 0.53 ± 0.32 [0.16, 1.50]  − 0.23 ± 0.13 [− 0.52, − 0.04] 0.18 ± 0.14 [− 0.55, 0.0002] 0.34 ± 0.54 [− 0.27, 1.53]

H 0.50 ± 0.34 [− 0.06 1.53]  − 0.13 ± 0.11 [− 0.37, 0.08] 0.13 ± 0.24 [− 0.58, 0.33]  − 0.35 ± 0.53 [− 1.53, 0.22]

N1 0.60 ± 0.33 [0.12, 1.70]  − 0.07 ± 0.11 [− 0.32, 0.14] 0.11 ± 0.16 [− 0.44, 0.19] 0.28 ± 0.50 [− 0.29, 1.43]

N2 0.34 ± 0.32 [− 0.32, 1.03]  − 0.07 ± 0.10 [− 0.26, 0.16]  − 0.01 ± 0.16 [− 0.29, 0.35] 0.58 ± 0.66 [0.10, 2.14]

E10 0.19 ± 0.32 [− 0.36, 0.93]  − 0.02 ± 0.23 [− 0.35, 0.52]  − 0.16 ± 0.21 [− 0.16, 0.67]  − 0.43 ± 0.66 [− 1.89, 0.23]

E20 0.13 ± 0.31 [− 0.45, 0.81]  − 0.06 ± 0.23 [− 0.43, 0.47]  − 0.23 ± 0.21 [− 0.05, 0.77]  − 0.50 ± 0.70 [− 2.13, 0.08]

J 0.26 ± 0.31 [− 0.30, 1.00]  − 0.11 ± 0.19 [− 0.48, 0.28]  − 0.08 ± 0.25 [− 0.33, 0.63]  − 0.50 ± 0.59 [− 1.89, 0.07]

TB 0.23 ± 0.36 [− 0.20, 1.04]  − 0.06 ± 0.15 [− 0.38, 0.24] 0.001 ± 0.14 [− 0.28, 0.32]  − 0.48 ± 0.60 [− 1.85, − 0.04]

LCBD 0.38 ± 0.28 [− 0.04, 1.09] 0.02 ± 0.10 [− 0.20, 0.19]  − 0.09 ± 0.12 [− 0.10, 0.39]  − 0.61 ± 0.65 [− 2.10, − 0.23]

Mean of path coeff. 
absolute values 0.35 0.09 0.11 0.45

Path coefficient CV 46.68% 76.00% 832.69% 243.29%
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this diversity component. High levels of connectivity also reduced community dominance (i.e., in N1), which 
is consistent with theoretical expectations that dominance increases with low migration rates, and vice versa51.

A noteworthy finding was that environmental effects promoted different spatial patterns on the community 
parameters depending on their specific impacts. They increased S+(x) in the community metrics that they posi-
tively influenced (i.e., richness and dominance-related parameters), which corroborates our expectations that 
environmental filtering acts at large spatial scale in our study system. However, and contrary to this expectation, 
no spatial signatures of environmental effect were revealed on biomass and LCBD, while both were significantly 
decreased by some abiotic variation. This highlights the existence of non-spatially structured physical varia-
tions of importance for the development and composition of high Andean wetland plant communities. High 
Andean landscapes are highly topographically heterogeneous displaying abrupt changes in local edaphic and 
microclimatic conditions52,53, which may lack clear spatial patterns at the resolution and scale of our study. Slope 

Figure 2.   Relationships between the effects of ecological factors on community characteristics and the 
levels of spatial autocorrelation displayed by the latter. (a, b, c) Biplots for significant relationships of the 
autocorrelation levels of the community metrics by the amplitude of ecological factor’s path coefficients. Dots 
indicate the position of each community parameter. (d) Representation of the ecological factor effects. Bar sizes 
are proportional to detected effects. The colors indicate whether increases in autocorrelation are mediated by 
positive or negative effects of ecological factors on diversity indices. Positive effects are shown in red, negative 
in blue, and null in white. For instance, both wetland connectivity and environmental variation increased S+(x) 
of diversity indices that they positively influenced (i.e., N0, N1, N2 and H). S+(x) and S-(x) refer to positive and 
negative spatial autocorrelations, respectively. N0: Richness; H: Shannon entropy; N1: Shannon diversity; N2: 
Simpson diversity; E10: Shannon evenness; E20: Simpson evenness; J: Pielou’s evenness, TB: Total biomass and 
LCBD: Local Contribution to Beta-Diversity.
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and mean annual wind speed, both ecological variables used in this study, are often associated with large local 
fluctuations and could thus alter plant community characteristics without leaving a specific spatial footprint.

Species co-occurrence was the only factor promoting S−(x) in plant community characteristics. Contrary to 
our expectations, wetland size had no such effect. The negative relationship between wetland size and richness 
in fact strongly differs from the premise that larger habitats hold a larger number of species as a consequence of 
higher levels of habitat diversity and propensity to support species from the regional pool54,55. Since our results 
contrast strongly with these expectations, it is suggested that vegetation extent, used here to assess wetland size, 
is not an adequate proxy for wetland capacity to support different species. The negative effect on richness instead 
suggests that it reflects the development of competitively superior species. Regarding the effects of species co-
occurrence on S-(x), they were found to promote dissimilarities among geographically close wetlands in evenness 
indices (E20, J and E10). While species co-occurrences do not provide unequivocal proof of biotic interactions56, 
the detected effects are consistent with empirical evidence that species interactions affect evenness14,37,44,57, gen-
erate fine-scale patterns in diversity15,58 and play an important role in alpine plant community assembly29,59.

A striking finding of our study is the clear separation of two groups of alpha-diversity parameters presenting 
contrasting spatial patterns due to their specific sensitivities to ecological factors. Since our analyses discarded 
any confounding effects of the non-independency of the indices, this result cannot be considered as a simple 
mathematical artefact of their relationships, and thus demonstrates that assembly mechanisms tend to influence 
specific aspects of diversity. Understanding the informative value of diversity metrics is a longstanding issue 
in ecology60–67, and debate is ongoing regarding which measures are optimal65,67–69, as well as whether a single 
index could be universally applied for comparative purposes69,70. The fact that two groups of diversity metrics 
bore different spatial footprints demonstrates that each group is sensitive to different assembly processes, and 
encourages their combined use to aid in a better and more thorough understanding of the ecological processes 
that sustain community assembly. In addition, it shows that each diversity index holds specific potential for 
conservation and restoration purposes by motivating for either local or landscape-scale actions. While emerging 
trends from this and previous studies suggest that evenness tends to be particularly sensitive to local/fine-scale 
processes and richness to broader scale mechanisms, our understanding of how assembly factors generate and 
alter spatial patterns of different diversity facets is still limited to a few studies14,15,18,71. More empirical evidence 
from a wider range of ecosystems, including non-patchy habitats, is therefore required to establish the generality 
of these patterns. This will be essential to determining the specific potential of diversity parameters to decipher 
processes shaping communities.

Methods
Data collection and production.  Sampling and processing of high Andean wetland plant communi-
ties.  We used plant data of Bertin et al.20 and Pfeiffer et al.40 collected in 21 high Andean wetlands along a 
600 km latitudinal range (between 26°S and 32°S) in north-central Chile between altitudes of 2852 and 4307 m 
a.s.l. (See Fig. 2 in Bertin et al.20). High Andean wetlands are permanent features formed by groundwater up-
welling and occur in the low Alpine and sub-Alpine belts of the Central Andes72, fed by glacial streams, snow-
melt, and rainfall72. These insular features contrast markedly from the arid grassland matrix in which they are 
found73. In the Norte Chico region of Chile, the location of this study, they occur along a latitudinal climatic 
gradient that varies from hyper-arid in the north to Mediterranean in the south, with mean annual precipitation 
extremes ranging from 35 to 200 mm, respectively. They support a wide variety plants and animals, including a 
number of endemic and rare species72,74.

Plant assemblages were characterized for each wetland from five 30 × 30 cm vegetation quadrats20. The biomass 
(g/m2) of each species was estimated by summing dried biomass of all individuals present within a quadrat after 
complete drying of the plant samples at 70 °C. A total of 52 species belonging to 21 families were identified. The 
plant database can be found as Supplementary Table S3 online.

Community parameters.  Nine community metrics (see Supplementary Table S1 online) were estimated after 
pooling data from the five vegetation quadrats. They included total biomass estimated as biomass (dry weight 
in gr/m2) of all species present in the community samples, richness, three dominance-related metrics (Shannon 
entropy, Shannon diversity; Simpson diversity) and three evenness-related metrics (Shannon evenness, Simpson 

Table 3.   Effects of ecological factors on autocorrelation levels of plant community parameters according 
to an exhaustive model selection approach based on the Akaike information criterion corrected for small 
sample size. Ecological factor effects were tested separately for the positive (S+(x)) and negative (S−(x)) spatial 
autocorrelation components of the community parameters. The models used the autocorrelation levels of each 
community parameter as the dependent variable and the PLS-SEM path coefficients measuring the direct 
effects of the ecological factors on each community characteristic as predictors.

Spatial autocorrelation 
component Adjusted R2 F dfnum,den P Ecological factor β ± sd t P

S+(x) 0.87 27.49 2.6  < 0.001
Wetland connectivity 0.064 ± 0.017 3.757 0.009

Environmental variation 0.060 ± 0.017 3.566 0.012

S−(x) 0.63 14.34 1.7 0.006 Species co-occurrence 0.028 ± 0.007 3.786 0.007
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evenness, Pielou’s evenness) and the local contribution to beta-diversity calculated from the Hellinger trans-
formed community data using the function beta.div in the adespatial package35.

Ecological variables.  We assessed characteristics likely linked to environmental filtering, dispersal rates, drift, 
and species interactions. For environmental filtering effects, we used a subset of landform and climate related 
variables derived from the original datasets used by Bertin et al.19 and Pfeiffer et al.40, and which can be found in 
Supplementary Table S5 online. Only non-redundant variables with apparent influence on the diversity param-
eters were considered. These were identified by performing partial least square (PLS) regressions on the differ-
ent diversity metrics. Only environmental variables that contributed strongly to the retained PLS components 
(defined using a leave-one out cross-validation procedure and by identifying the first local minimum of the 
root-mean-squared error75) were then retained for subsequent analyses. They included altitude, slope, mean 
annual wind speed (MAWS), mean annual number of snow days (SnowNDays), mean productivity (NDVI), and 
productivity variation (δNDVI).

We used graph-based connectivity metrics as variables related to dispersal rates. These were quantified for 
each of the wetlands in this study using GRAPHAB 1.076, by considering all other wetlands occurring within a 
20 km radius from the focal wetland according to the wetland map generated by Bertin et al.20. The connectivity 
measures calculated were node degree (Dg, the number of patches close to the focal patch77), closeness central-
ity (CCe, the mean distance from the focal patch to all other patches of its component78), eccentricity (Ec, the 
maximum distance from the focal patch to another patch of its component79), and betweenness centrality (BC, the 
sum of the shortest paths through the focal patch76,80). We used wetland size and species co-occurrence as proxies 
for drift risk and plant species interactions, respectively. Wetland size was assessed based on remotely-sensed 
NDVI derived from LandSat 8 OLI satellite imagery (see Bertin et al.20). Species co-occurrences were analyzed 
by calculating an average C-score for each wetland from the five plots. The C-score metric measures the level of 
segregation of all species pairs, which increases as average co-occurrences between all of the species pairs in the 
matrix decrease81. Thus, to allow an intuitive interpretation, the effects that we report for species co-occurrence 
are the additive opposite of the C-score effects. The C-score values were calculated with the R-package EcoSimR81.

Statistical analyses.  Spatial structure analyses of the plant community parameters.  We estimated spatial 
autocorrelation components of the community parameters using Moran’s Eigenvector Maps58 as implemented 
in the R packages spdep82 and adespatial83. This framework allows producing spatial predictors, the MEMs, 
which model autocorrelation patterns at different spatial scales. They are obtained by eigen-decomposition of a 
spatial weighting matrix coding for connections between sites (i.e. wetlands in this instance), which produces 
orthogonal eigenvectors maximizing the spatial autocorrelation computed by Moran’s I84. When associated with 
positive eigenvalues, the MEMs represent positive autocorrelation and vice versa13. The spatial weighting matrix 
that we used to generate the MEMs considered connections among all wetlands for which strength was inversely 
proportional to their Euclidean distance. To estimate S+(x) and S−(x) of community indices, we followed the pro-
cedure described in Biswas et al.14,15, which involved summing the squared correlations between each diversity 
parameter and the positive and negative MEMs weighted by their associated eigenvalue.

Influence of ecological factors on plant community parameters.  We investigated the influence of each ecologi-
cal factor (wetland connectivity and size, species co-occurrence, and environmental variability) on community 
indices by carrying out PLS-SEM85. This is a comprehensive technique based on the use of a variable covariance 
matrix that identifies relationships and causality between variables86 with minimum requirements regarding 
measurement scales, sample sizes, and residual distributions85. The measurement model (i.e. the outer model, see 
Supplementary Figure S1 online) served to define latent variables representing the four ecological factors (wet-
land size, wetland connectivity, environmental variability, species co-occurrence) from the 12 measured ecologi-
cal variables87. Environmental variability, wetland size, and connectivity were defined according to a formative 
mode and species co-occurrence using a reflective mode (see Supplementary Figure  S1 online). Inspections 
of the loadings of the ecological variables on the latent variables indicated that the latent variables for wetland 
size and connectivity increased as wetland size and connectivity increased, respectively. The inner or structural 
model was constructed to estimate the effects of each of the four ecological factors on plant community char-
acteristics (see Supplementary Figure S1 online). Eight separate PLS-SEM models were run to investigate these 
effects on each of the community metrics. Confidence intervals and significance of path coefficients were evalu-
ated based on 10,000 bootstrapping iterations. These analyses were performed using the semPLS R-packages85.

Effects of assembly driving factors on positive and negative spatial autocorrelation components of community indi-
ces.  To investigate whether the assembly driving factors influenced autocorrelation patterns of the commu-
nity indices, we tested the relationship between the effects of the ecological factors (as estimated by their path 
coefficients) and the autocorrelation levels of the diversity parameters. To account for relatedness between the 
community parameters, we first analyzed the effects of their covariation on S+(x) and S−(x) levels. The pairwise 
Pearson’s correlation matrix of the plant indices was transformed through principal coordinate decomposition 
(PCoA16,88) using the ecodist R package89. Then, we analyzed the effects of the PCoA eigenvectors so-produced 
on S+(x) and S−(x) separately by carrying out generalized linear models using the R leaps package90. In these 
analyses, the autocorrelation levels of each community parameter were used as the dependent variables and the 
eigenvectors as the predictors. We ran the regsubset function, which performs an automatic selection procedure 
to look for the subset of eigenvectors that best explained the autocorrelation variation of the community indices. 
The best-fitting model, identified through a performance analysis performed with the AICcmodavg package91 
and using the Akaike´s Information Criterion corrected for small sample size (AICc), was then tested for sig-
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nificance. Since these analyses did not reveal any impact of the relatedness between the community indices on 
their autocorrelation levels (see Supplementary Table S2 online), influences of the plant community parameters 
on S+(x) and S−(x) were analyzed through multiple linear regressions. The dependent variable of these analyses 
were the autocorrelation levels of each community parameter and the predictors the PLS-SEM path coefficients 
measuring the direct effects of the ecological factors on each community characteristic. For these analyses, we 
also performed an exhaustive model selection to search for the subset of ecological factors that best explained 
the autocorrelation levels using, as above, the regsubset function and based on the AICc criteria. Normality of 
the residuals was verified using Shapiro tests.

Data availability
All the data used in the analyses are provided in Supplementary Tables S3, S4 and S5 of the Supplementary 
Information file.
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