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Summary
Background COVID-19 is a multi-system disorder with high variability in clinical outcomes among patients who are 
admitted to hospital. Although some cytokines such as interleukin (IL)-6 are believed to be associated with severity, 
there are no early biomarkers that can reliably predict patients who are more likely to have adverse outcomes. Thus, 
it is crucial to discover predictive markers of serious complications.

Methods In this retrospective cohort study, we analysed samples from 455 participants with COVID-19 who had had 
a positive SARS-CoV-2 RT-PCR result between April 14, 2020, and Dec 1, 2020 and who had visited one of three Mayo 
Clinic sites in the USA (Minnesota, Arizona, or Florida) in the same period. These participants were assigned to three 
subgroups depending on disease severity as defined by the WHO ordinal scale of clinical improvement (outpatient, 
severe, or critical). Our control cohort comprised of 182 anonymised age-matched and sex-matched plasma samples 
that were available from the Mayo Clinic Biorepository and banked before the COVID-19 pandemic. We did a deep 
profiling of circulatory cytokines and other proteins, lipids, and metabolites from both cohorts. Most patient samples 
were collected before, or around the time of, hospital admission, representing ideal samples for predictive biomarker 
discovery. We used proximity extension assays to quantify cytokines and circulatory proteins and tandem mass 
spectrometry to measure lipids and metabolites. Biomarker discovery was done by applying an AutoGluon-tabular 
classifier to a multiomics dataset, producing a stacked ensemble of cutting-edge machine learning algorithms. Global 
proteomics and glycoproteomics on a subset of patient samples with matched pre-COVID-19 plasma samples was 
also done. 

Findings We quantified 1463 cytokines and circulatory proteins, along with 902 lipids and 1018 metabolites. By 
developing a machine-learning-based prediction model, a set of 102 biomarkers, which predicted severe and clinical 
COVID-19 outcomes better than the traditional set of cytokines, were discovered. These predictive biomarkers 
included several novel cytokines and other proteins, lipids, and metabolites. For example, altered amounts of C-type 
lectin domain family 6 member A (CLEC6A),  ether phosphatidylethanolamine (P-18:1/18:1), and 2-hydroxydecanoate, 
as reported here, have not previously been associated with severity in COVID-19. Patient samples with matched pre-
COVID-19 plasma samples showed similar trends in muti-omics signatures along with differences in glycoproteomics 
profile. 

Interpretation A multiomic molecular signature in the plasma of patients with COVID-19 before being admitted to 
hospital can be exploited to predict a more severe course of disease. Machine learning approaches can be applied to 
highly complex and multidimensional profiling data to reveal novel signatures of clinical use. The absence of 
validation in an independent cohort remains a major limitation of the study. 

Funding Eric and Wendy Schmidt.

Copyright © 2022. The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction
The ongoing COVID-19 pandemic is a public health 
emergency that would benefit from a systematic 
investigation of molecular alterations in patients to 
predict outcomes for improving clinical care. Currently, 
no conclusive cytokine-based treatments exist, although 
there are indications that targeted therapy could improve 

outcomes. Although interleukin (IL)-6 elevation has been 
associated with severe disease, its predictive capacity for 
clinical outcomes is poor. IL-6 receptor blockers such as 
tocilizumab have shown conflicting results in clinical 
trials,1–3 and have suggested substantial benefits of IL-6 
blockade in select patients; however, we have no ability to 
identify these patients clinically. Similarly, IL-1 blockade 
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with high-dose anakinra in patients with COVID-19 has 
shown inconsistent results.4 Tumour necrosis factor 
(TNF) inhibitors have been associated with less severe 
clinical phenotypes but clinical trial data are sparse.5 
Lenzilumab has shown promise as a granulocyte-macro-
phage colony-stimulating factor (GM-CSF) inhibitor, 
whereas otilimab failed to show similar benefit.6 
Ultimately, all of these results point to diverse inflamm-
atory phenotypes that need to be better understood to 
individualise therapy. 

We sought to combine concentrations of specific 
cytokines with other omics data for an individualised 
approach to predict outcomes in patients with COVID-19. 
Several studies have investigated cytokine, proteomic, 
metabolomic, and lipidomic changes.7–11 However, only a 
few have combined a multiomics approach with machine 
learning for an integrated analysis.10,11 Notably, although 
some potential markers for COVID-19 have been 
suggested, they suffer from several limitations: small 
sample sizes (<100 participants in most studies); plasma 
samples that have been collected after hospital admission 
or after occurrence of serious clinical outcomes; group 
comparisons without adequate controls or without mild 
COVID-19 cases; disparate definitions of severity; and 
participants without matched samples before COVID-19 
infection. In this study, we aim to develop a machine 
learning-based prediction model to discover a signature 
predictive of severe disease in patients with COVID-19.  

Methods 
Study design and participants 
This was a retrospective cohort study of 455 participants 
with COVID-19 who had tested positive for SARS-CoV-2 

by RT-PCR between April 14, 2020, and Dec 1, 2020 and 
who had visited one of three Mayo Clinic sites in the USA 
(Minnesota, Arizona, or Florida) in the same time period. 
Blood samples were obtained from each of these patients. 
Additionally, we used 182 anonymised age-matched and 
sex-matched control plasma samples that were available 
from the Mayo Clinic Biorepository and banked before 
the COVID-19 pandemic.12 As the control cohort is 
comprised of patients who have medical appointments at 
Mayo Clinic, they have the typical comorbidities of 
patients in the population that presents to Mayo Clinic. 
Four patient subgroups were defined using the WHO 
ordinal scale of clinical improvement (OSCI): 182 control 
cases (WHO OSCI=0), 183 outpatients with COVID-19 
(WHO OSCI=1–2), 139 patients with severe COVID-19 
(WHO OSCI=3–4), and 133 patients with critical 
COVID-19 (WHO OSCI=5–8). All plasma samples used 
in the study were obtained with informed consent from 
each subject.  This study was approved by the institutional 
review board (IRB protocol 20–005760) of Mayo Clinic in 
accordance with the Declaration of Helsinki. 

Procedures 
WHO OSCI was assigned by attending physicians before 
the study on the basis of the patient’s highest WHO 
OSCI score during COVID-19 illness (table 1; appendix 1 
p 7). 190 (70%) of 272 samples were obtained from case 
participants within 3 days of hospitalisation or before 
hospitalisation. Details on plasma collection are provided 
in appendix 1 (p 2). The time of baseline plasma sample 
collection of participants with severe and critical 
COVID-19 is shown in appendix 1 (p 7). 24 (5%) of 
455 patients had matched pre-COVID-19 plasma samples 

Research in context

Evidence before this study 
Cytokine storm has been shown to be associated with severe 
COVID-19, and proinflammatory cytokines have been 
suggested as markers. We searched PubMed and Google Scholar 
for articles published from Jan 1, 2020, to Jan 31, 2022, without 
any language restrictions. We used keywords including 
“COVID-19”, “SARS-CoV-2”, “multi-omics”, “cytokines”, 
“lipidomics”, “metabolomics”, “proteomics”, “predictive 
biomarker”, and “machine learning”. Many articles reported 
proinflammatory cytokines of the innate immune response, 
such as interleukin(IL)-1, IL-6, and tumour necrosis factor, 
among cytokines and chemokines measured in plasma or 
serum as early markers of unfavourable outcomes. At least 
six recent studies focused on measuring the concentrations of 
hundreds of circulatory proteins, and six studies profiled lipids 
or metabolites in smaller cohorts (n<100). Only three studies 
included an integrated multiomics analysis of proteins, lipids, 
and metabolites across samples, although they had an 
inadequate number of controls, sampled patients at different 
stages of hospitalisation, and did not include severity criteria.

Added value of this study
To our knowledge, this study of 637 individuals, including 
455 samples from patients positive for COVID-19 at different 
levels of severity as defined by the WHO ordinal scores of clinical 
improvements, represents the largest profiling of plasma 
samples from such a population. Coupling multiomics analysis 
with a machine-learning-based stratification revealed an early 
signature of COVID-19 severity that was validated in a held-out 
dataset. Our study led to the discovery of multiomic signatures 
in the early course of disease that are better predictors of 
adverse outcomes than the classic cytokine storm panel of 
cytokines.

Implications of all the available evidence
Availability of deep, unbiased profiling data using multiomic 
platforms is crucial for the discovery of predictors of disease 
severity. Along with existing markers, these novel markers 
could lead to better management of patients and reduce 
mortality of COVID-19. 

See Online for appendix 1
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available in the Mayo Clinic Biorepository (12 outpatients, 
six patients with severe COVID-19, and six patients with 
critical COVID-19; appendix 1 p 7).

We used Olink Explore 1536 panel assay (Olink 
Proteomics [Uppsala, Sweden]), which uses proximity 

extension assay technology coupled to a readout 
methodology based on next generation sequencing 
(Illumina NovaSeq 6000, NextSeq 550, and NextSeq 2000; 
all manufactured by Illumina [San Diego, USA]; 
appendix 1 p 2), to quantify protein targets. Metabolon 

 Control group 
(n=182)

Outpatients 
(n=183)

Patients with severe 
COVID-19 (n=139)

Patients with critical 
COVID-19 (n=133)

p value

Age, years ·· ·· ·· ·· <0·0001

Median 58·8 (46·0–71·8) 47·9 (31·2–60·6) 62·1 (49·0–73·9) 63·1 (52·3–74·0) ··

Range 21·0–98·0 18·5–80·9 18·2–101·9 24·6–96·4 ··

Sex ·· ·· ·· ·· 0·0019*

Female 98 (54%) 111 (61%) 69 (50%) 52 (39%) ··

Male 84 (46%) 72 (39%) 70 (50%) 81 (61%) ··

Body-mass index ·· ·· ·· ·· 0·31†

Number of participants with available data 69 (38%) 120 (66%) 88 (63%) 79 (59%) ··

Median 24·8 (22·2–31·3) 26·8 (23·0–30·4) 27·1 (23·5–30·8) 27·2 (24·1–32·1) ··

Range 18·4–51·2 17·4–45·9 14·3–46·7 19·8–46·3 ··

Race ·· ·· ·· ·· <0·0001*

Number of participants with available data 168 (92%) 160 (87%) 134 (96%) 125 (94%) ··

Native American or Pacific Islander 0 (0%) 1 (1%) 3 (2%) 6 (5%) ··

Asian 1 (1%) 5 (3%) 2 (1%) 9 (7%) ··

Black or African American 2 (1%) 11 (6%) 27 (19%) 12 (9%) ··

White 165 (91%) 143 (78%) 102 (73%) 98 (74%) ··

Ethnicity ·· ·· ·· ·· <0·0001*

Number of participants with available data 176 (97%) 171 (93%) 138 (99%) 128 (96%) ··

Hispanic or Latino 5 (3%) 12 (7%) 12 (9%) 23 (17%) ··

Not Hispanic or Latino 171 (94%) 159 (87%) 126 (91%) 105 (79%) ··

Charlson comorbidity total score ·· ·· ·· ·· <0·0001†

Number of participants with available data 163 (90%) 150 (82%) 130 (94%) 119 (89%) ··

Median 1·0 (0·0–1·0) 0·0 (0·0–1·0) 1·0 (0·0–2·0) 1·0 (0·0–2·0) ··

Range 0·0–4·0 0·0–3·0 0·00–5·0 0·0–5·0 ··

Charlson comorbidity index

Myocardial infarction 3 (2%) 0 (0%) 2 (1%) 2 (2%) 0·45*

Congestive heart failure 9 (5%) 1 (1%) 12 (9%) 15 (11%) 0·0060* 

Peripheral vascular disease 7 (4%) 6 (3%) 11 (8%) 8 (6%) 0·32*

Cerebrovascular disease 8 (4%) 2 (1%) 7 (5%) 8 (6%) 0·16*

Dementia 1 (1%) 0 (0%) 5 (4%) 1 (1%) 0·021*

Chronic pulmonary disease 23 (13%) 16 (9%) 18 (13%) 16 (12%) 0·80*

Rheumatic disease 7 (4%) 4 (2%) 4 (3%) 3 (2%) 0·81*

Peptic ulcer disease 1 (1%) 1 (1%) 2 (1%) 1 (1%) 0·84*

Mild liver disease 7 (4%) 3 (2%) 6 (4%) 2 (2%) 0·38*

Diabetes without chronic complications 14 (8%) 11 (6%) 26 (19%) 22 (17%) 0·0012*

Diabetes with chronic complications 4 (2%) 2 (1%) 9 (6%) 9 (7%) 0·020*

Hemiplegia or paraplegia 0 (0%) 0 (0%) 3 (2%) 0 (0%) 0·018*

Renal disease 12 (7%) 6 (3%) 19 (14%) 19 (14%) 0·0017*

Cancer 38 (21%) 11 (6%) 19 (14%) 20 (15%) 0·0016*

Moderate or severe liver disease 0 (0%) 1 (1%) 2 (1%) 0 (0%) 0·26*

Metastatic solid tumour 6 (3%) 0 (0%) 4 (3%) 1 (1%) 0·068*

AIDS or HIV 2 (1%) 0 (0%) 1 (1%) 1 (1%) 0·63*

APACHE II ·· ·· ·· ·· <0·0001†

Number of participants with available data 0 0 131 129 ··

Median ·· ·· 4·4 (3·8–6·7) 7·6 (5·8–21·0) ··

Range ·· ·· [2·9–26·2] [2·9–73·3] ··

(Table 1 continues on next page)
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(Morrisville, NC, USA) did lipidomics using Sciex 
SelexION-5500 QTRAP and metabolomics using liquid 
chromatography-tandem mass spectrometry (LC-MS-MS; 
Thermo Fisher Scientific [Waltham, MA, USA]; appendix 1 
pp 2–3). Pathway and network analysis was done using 
Ingenuity Pathway Analysis (Qiagen [Hilden, Germany]; 
appendix 1 p 3).

We developed a stacked ensemble model using a 
machine learning approach with AutoGluon-Tabular 
classifier (version 0.1.1b20210326). Input variables were 
preprocessed molecular markers, and data were stratified 
into train (80%) or test (20%) groups. 10-fold stratified 
cross-validation within our training set was used for 
model selection.  The final model was evaluated on the 
test set. Additional details of data preprocessing and 
machine learning analysis are in appendix 1 (pp 3–4).

Proteomics and glycoproteomics using LC-MS-MS 
were done on 21 (89%) of 24 patients who had samples 
available from both before and after SAR-CoV-2 infection 
(appendix 1 pp 4–5). Publicly available single-cell RNA 
sequencing data were analysed from three COVID-19 
studies using the in-house platform at nference 
(Cambridge, MA, USA; appendix 1 p 5). 

Statistical analysis
To discover predictive markers of COVID-19 severity, we 
tested the statistical significance of individual molecules 
from the patients with severe and critical COVID-19 
against those from outpatients, instead of uninfected 
controls (as this study focused on identifying biomarkers 
that would differentiate outpatients from the patients 
with more severe outcomes including hospital 
admission), using Student’s t test. Adjusted p values 
were calculated by the Benjamini-Hochberg method. 
Additional details on the statistical analyses and model 
performances are in appendix 1 (p 5). We used a 
significance level of 0·05 to identify feature importance 
scores that performed well as predictors of COVID-19 
severity outcomes.

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. 

Results
Of the 455 patients who tested positive with COVID-19 
between April 14, 2020, and Dec 1, 2020, 272 (60%)  were 
admitted to hospital and 183 (40%) were outpatients 
(table 1). 182 age-matched and sex-matched un infected 
individuals from the Mayo Clinic Biorepository were 
used as controls.12 Plasma samples from COVID-19 
outpatients were obtained between 0 and 48 days (median 
33 days [IQR 8–33]) after their first positive PCR test. For 
patients with severe COVID-19, plasma samples were 
collected between 0 and 18 days (median 2 days [0–5]), 
and for patients with critical COVID-19, between 0 and 
47 days (median 3 days [1–7]). The median length of 
hospital stay was 5 days (IQR 3–7) for the patients with 
severe COVID-19 and 11 days for those with critical 
COVID-19 (IQR 8–25). A total of 1463 unique proteins, 
902 lipids, and 1018 metabolites were analysed 
(appendix 1 pp 6, 8; appendix 2). Network analysis 
revealed enriched biological pathways and processes 
associated with severity and the results are summarised 
in appendix 1 (pp 6, 9–10, 17–18). 

Using AutoGluon’s tabular prediction algorithm, we 
generated a signature of 102 markers (53 proteins, 
12 lipids, and 37 metabolites; table 2; appendix 1 p 15). 
Two baseline models were built for comparison; one 
using only IL-6 and the other using the cytokine storm 
panel of cytokines. A model built using all markers 
(protein, lipid, and metabolite markers) outperformed 
the baseline models in the held-out test dataset (ie, IL-6 
and cytokine storm panel; p<0·0010), showing the 
superiority of the additional molecules profiled in this 
multiomics analysis over other established cytokines for 
predicting severity (appendix 1 pp 7, 16). A list of cytokine 
storm cytokines are shown in figure 1A and details on 

 Control group 
(n=182)

Outpatients 
(n=183)

Patients with severe 
COVID-19 (n=139)

Patients with critical 
COVID-19 (n=133)

p value

(Continued from previous page)

SARS-CoV-2 treatment ·· ·· ·· ·· ··

Number of participants with available data 0 0 131 129 ··

IL-6 Inhibitor ·· ·· 4 (3%) 29 (22%) <0·0001*

ACE inhibitor or ARB ·· ·· 32 (23%) 32 (24%) 1·0*

Systemic corticosteroid ·· ·· 69 (50%) 98 (74%) <0·0002*

Remdesivir ·· ·· 63 (45%) 82 (62%) 0·017*

ECMO ·· ·· 0 (0%) 5 (4%) 0·068*

Azithromycin ·· ·· 55 (40%) 83 (62%) <0·0005*

Convalescent plasma ·· ·· 10 (7%) 6 (5%) 0·46*

Data are median (IQR), range, or n (%). APACHEII=Acute Physiology and Chronic Health Evaluation II. IL-6=interleukin-6. ACE=angiotensin-converting enzyme. 
ARB=angiotensin II receptor blockers. ECMO=extracorporeal membrane oxygenation. *χ² test was applied to calculate p value. †F statistic was applied to calculate p value.

Table 1: Baseline characteristics of the study cohort

See Online for appendix 2
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Category Importance 
score

Linoleamide Metabolite 0·0793

Leukotriene A4 hydrolase Cytokine 0·0500

Oleamide Metabolite 0·0440

Keratin, type I cytoskeletal 19 KRT19 Cytokine 0·0360

C-C motif chemokine 7 Cytokine 0·0273

Heme Metabolite 0·0227

V-set and immunoglobulin domain-
containing protein 4 VSIG4

Cytokine 0·0213

5-methyluridine Metabolite 0·0167

Interleukin-15 Cytokine 0·0160

Galectin-4 Cytokine 0·0133

Lactate Metabolite 0·012

Prostaglandin-H2 D-isomerase Cytokine 0·0093

C-X-C motif chemokine 9 Cytokine 0·0087

Integrin alpha-V Cytokine 0·008

Leucylglycine Metabolite 0·008

Odorant-binding protein 2b Cytokine 0·008

Prolow-density lipoprotein receptor-related 
protein 1

Cytokine 0·0073

2,6-dihydroxy-benzoic acid Metabolite 0·0073

Phosphatidylcholine (16:0/20:1) Lipid 0·0067

Eicosanedioate Metabolite 0·006

Docosadienoate Metabolite 0·006

Bilirubin (E,Z or Z,E) Metabolite 0·0060

Keratin, type I cytoskeletal 18 Cytokine 0·006

γ-glutamylisoleucine Metabolite 0·006

Dipeptidase 1 Cytokine 0·006

Insulin-like growth factor-binding protein 6 Cytokine 0·006

4-aminophenol sulfate Metabolite 0·006

Phosphatidylethanolamine (P-18:1/18:1) Lipid 0·0053

Chymotrypsin-C Cytokine 0·0053

Membrane primary amine oxidase Cytokine 0·0053

γ-glutamylthreonine Metabolite 0·0053

Integrin beta-6 Cytokine 0·0053

Glucose Metabolite 0·0053

Kallikrein-10 Cytokine 0·0053

PE(O-16:0/18:1) Lipid 0·0047

Acetoacetate Metabolite 0·0047

Cathepsin B Cytokine 0·0047

Diacylglycerol (18:1/18:2) Lipid 0·0047

Ectonucleotide pyrophosphatase/
phosphodiesterase family member 5

Cytokine 0·0047

Carcinoembryonic antigen-related cell 
adhesion molecule 5 

Cytokine 0·0047

ICOS ligand Cytokine 0·0047

4-hydroxychlorothalonil Metabolite 0·0047

Centrosomal protein of 85 kDa Cytokine 0·0047

Serpin B5 Cytokine 0·0047

T-cell surface glycoprotein CD1c Cytokine 0·0047

Heneicosapentaenoate Metabolite 0·0047

Glycoprotein hormones alpha chain Cytokine 0·0047

Neurotrophin-4 Cytokine 0·0047

(Table 2 continues in next column)

Category Importance 
score

(Continued from previous column)

Ras-related protein Rab-6A Cytokine 0·0047

Epithelial cell adhesion molecule Cytokine 0·0040

Dipeptidyl peptidase 2 Cytokine 0·0040

Eicosapentaenoate Metabolite 0·0040

Leukocyte immunoglobulin-like receptor 
subfamily A member 5

Cytokine 0·0040

Calcineurin subunit B type 1 Cytokine 0·0040

Androstenediol (3α, 17α) monosulfate Metabolite 0·0040

Arachidonate Metabolite 0·0040

δ-carboxyethyl hydroxychroman o Metabolite 0·0040

Cortolone glucuronide Metabolite 0·0040

Carnitine of C10H14O2 Metabolite 0·0040

C-type lectin domain family 6 member A Cytokine 0·0040

Theobromine Metabolite 0·0040

Cysteine Metabolite 0·0040

2-hydroxydecanoate Metabolite 0·0033

Lysophosphatidylethanolamine (18:1) Lipid 0·0033

Triacylglycerol 55:7-fatty acid 20:3 Lipid 0·0033

Integrin beta-1 Cytokine 0·0033

PE(O-16:0/22:6) Lipid 0·0033

Dual oxidase 2 Cytokine 0·0033

Retbindin Cytokine 0·0033

Alpha-L-iduronidase Cytokine 0·0033

N-methylpipecolate Metabolite 0·0033

4-hydroxyphenylpyruvate Metabolite 0·0033

Hemoglobin subunit theta-1 Cytokine 0·0033

Phosphatidylinositol (18:0/20:3) Lipid 0·0033

Phenylacetylcarnitine Metabolite 0·0033

Alpha-amylase 2B Cytokine 0·0033

Cadherin-6 Cytokine 0·0033

Ursodeoxycholate Metabolite 0·0033

Phospholipase A2 group XV Cytokine 0·0027

Protein GOLM2 Cytokine 0·0027

Pentadecanoate Metabolite 0·0027

Retinoic acid receptor responder protein 2 Cytokine 0·0027

Angiopoietin-2 Cytokine 0·0027

C-X-C motif chemokine 11 Cytokine 0·0027

Pancreatic alpha-amylase Cytokine 0·0027

Carbonic anhydrase 1 Cytokine 0·0027

Neuropilin-1 Cytokine 0·002

Inositol 1,4,5-triphosphate receptor 
associated 2

Cytokine 0·002

Nucleoside diphosphate kinase 3 Cytokine 0·002

Arabinose Metabolite 0·002

Diacylglycerol (16:1/20:4) Lipid 0·002

3-methyl catechol sulfate Metabolite 0·002

TBC1 domain family member 5 Cytokine 0·002

TAG56:6-FA18:3 Lipid 0·002

Dihydroceramide (18:1) Lipid 0·002

Sebacate Metabolite 0·002

(Table 2 continues in next column)
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how the model can be used for new data is described in 
appendix 1 (p 6).

Machine learning and individual statistical analysis 
identified several proteins that were significantly 
different between the severity groups. Cytokines 
associated with cytokine storm and macrophage 
activation syndromes showed an expected association 
with disease severity; concentrations of IL-6, IL-8, C-C 
motif chemokine 2 (CCL2), vascular endothelial growth 
factor A (VEGFA), TNF, and interferon (IFN)-γ were 
positively associated with disease severity (figure 1A, 1B). 
IL-10 and IL-1β did not show such an association. Several 
other cytokines and chemokines were positively 
associated with severity, including C-C motif chemokine 
7 (CCL7), C-X-C motif chemokines 9, 10 and 11 (CXCL9, 
CXCL10, CXCL11), IL-15, azurocidin (AZU1) and midkine 
(MDK; figure 1A, 1C). Markers of apoptosis, including 
caspase-1 (CASP1) and TNF receptor superfamily 
member 10A (TNFRSF10A), were higher in patients with 
greater severity of disease (figure 1C). There were 
decreased concentrations of TNF ligand superfamily 
member 10 (TNFSF10), TNF ligand superfamily member 
11 (TNFSF11), and ICOS ligand (ICOSLG) in patients 
with greater severity of disease (figure 1A, 1C). Increased 
concentrations of apoptotic marker prolow-density 
lipoprotein receptor-related protein 1 (LRP1) and V-set 
and immunoglobulin domain-containing protein 4 
(VSIG4), which are involved in the complement pathway, 
were both associated with greater severity (appendix 1 
p 11). The concentrations of haematopoietic mediators 
including macrophage colony-stimulating factor (CSF1), 
and interleukin-5 receptor subunit alpha (IL-5Rα) were 
also higher in patients with greater disease severity 
(figure 1C). Concentrations of glycan-binding molecules 
C-type lectin domain family 6 member A (CLEC6A), 
sialic acid-binding Ig-like lectin 5 (SIGLEC5), and 
galectin-9 (LGALS9) were positively associated with 
severity, and N-acetylgalactos aminyl transferase 7 
(GALNT7) were negatively associated with severity 
(figure 1A, 1C; appendix 1 p 11). Increased concen trations 
of heparan sulfate glucosamine 3-O-sulfo transferase 3B1 
(HS3ST3B1) and syndecan-1 (SDC1), both related to 

proteoglycans, were associated with greater severity 
(appendix 1 p 11). Among cell surface receptors, T-cell 
surface glycoprotein CD1c (CD1C) and integrin alpha-V 
(ITGAV) were negatively associated with severity, and 
leukocyte immunoglobulin-like receptor subfamily A 
member 5 (LILRA5), lymphocyte activation gene 3 
protein (LAG3) and macrophage-capping protein (CAPG) 
were positively associated (figure 1A, 1C; appendix 1 p 11). 
Increased levels of keratin, type I cytoskeletal 19 (KRT19) 
was associated with greater severity, but cartilage 
oligomeric matrix protein (COMP) and cartilage acidic 
protein 1 (CRTAC1) were down regulated with increasing 
disease severity (figure 1C; appendix 1 p 11). 
Concentrations of leukotriene A-4 hydrolase (LTA4H), 
and matrilysin (MMP7) were higher in the severe and 
critical cohorts than in outpatients, and kallikrein-13 
(KLK13) was lower in the severe and critical cohorts than 
in outpatients. Prokineticin-1 (PROK1), angio poietin-
related protein 1 (ANGPTL1), and ephrin type-B 
receptor 4 (EPHB4), which are associated with vascular 
remodelling, were positively associated (figure 1A; 
appendix 1 p 11). Calcitonin (CALCA) and SPARC-related 
modular calcium-binding protein 1 (SMOC1) were higher 
in the severe and critical cohorts than in outpatients, 
whereas cadherin-6 (CDH6) and neuropeptide Y (NPY) 
were lower in the severe and critical cohorts than in 
outpatients (figure 1C; appendix 1 p 11). 

An overview of the relative abundance of 14 classes of 
lipids across disease severity categories is shown in 
appendix 1 (p 12). Although the abundance of classes such 
as diglycerides remained unchanged across the groups, 
lyso phosphatidylcholine, phosphatidylcholine, ether 
phosphatidylethanolamine, and phosphatidylinositol were 
lower in the hospitalised patients than in the out patients  
(figure 2A). Among the 102 predictive biomarkers of 
COVID-19 severity, 12 were lipids. Individual statistical 
analysis identified several species of phos pholipids that 
were attenuated in hospitalised participants including 
lysophos pha tidylcholine (18:0), phosphat idylcholine 
(14:0/20:3), phos phatidylcholine (16:0/20:1), ether phos-
phatidyl ethanolamine (P-18:1/18:2), ether phosphatidyl-
ethano lamine (P-18:1/18:1), ether phos pha tidyl  ethanolamine 
(O-16:0/22:6), phos phatidyl inositol (18:0/20:3), and 
phosphatidylinositol (18:1/18:1). In contrast to a general 
decrease in phospholipids with increasing levels of disease 
severity, concentrations of select species of ceramides, 
including ceramides (16:0) and ceramides (18:0), were 
increased in hospitalised participants (figure 2B). 

Individual statistical analysis uncovered metabolites 
that showed significant elevation in hospitalised patients 
compared with outpatients including heme, N,N,N-
trimethyl-alanylproline betaine (TMAP), 3-ureido-
propionate, 3-hydroxykynurenine, and polyamine 
metabolites N(‘1)-acetylspermidine and N¹,N¹²-diacetyl-
spermine. Several metabolites related to the host gut 
micro biome were also significantly associated with 
disease severity; hospitalised patients were associated 

Category Importance 
score

(Continued from previous column)

EF-hand calcium-binding domain-
containing protein 4B

Cytokine 0·002

Hydroxyacylglutathione hydrolase, 
mitochondrial

Cytokine 0·002

Cysteinyl-glycine, oxidize Metabolite 0·002

Trizma acetate Metabolite 0·002

Phosphatidylethanolamine (16:0/20:4) Lipid 0·002

Cysteinylglycine disulfide Metabolite 0·002

Table 2: Predictive signature of COVID-19 severity
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with decreased concentrations of ursodeoxycholate and 
2-hydroxyodecanoate (a medium-chain fatty acid), and 
increased concentrations of a histidine-derived metab-
olite, imidazole propionate (figure 2C). 

To analyse cellular mRNA expression of predictive 
cytokine markers, we identified three publicly-available 

studies in which cells isolated from patients with 
COVID-19, who had disease ranging from mild to severe, 
were profiled by RNA sequencing.13–15 We observed a 
similar upregulation on the basis of single-cell RNA-
sequencing data in the severe group for 17 proteins that 
were identified from our cytokine analysis (figure 3; 

Figure 1: Relative levels of 
known cytokine storm panel 
and other proteins in plasma 
among the study 
participants (A). Distribution 
of plasma levels (relative 
abundance; log2 values) 
across the patient subgroups 
for select cytokine storm 
cytokines (B) and other 
protein markers (C). 
IL=interleukin. VEGFA=vascular 
endothelial growth factor A. 
CCL=C-C motif chemokine. 
TNF=tumour necrosis factor. 
CXCL=C-X-C motif chemokines. 
CSF1=macrophage colony-
stimulating factor 1. 
NRP1=neuropilin-1. 
TNFSF=tumour necrosis factor 
ligand superfamily member. 
PROK1=prokineticin-1. 
DEFA1=neutrophil defensin 1. 
CPB1=carboxypeptidase B. 
OLR1=oxidized low-density 
lipoprotein receptor 1. 
AZU1=azurocidin. 
LTA4H=leukotriene A-4 
hydrolase. CASP1=caspase-1. 
CAPG=macrophage-capping 
protein. CLEC6A=c-type lectin 
domain family 6 member. 
BTN3A2=butyrophilin 
subfamily 3 member A2. 
ANGPTL1=angiopoietin-
related protein 1. NS=no 
significance. SIGLEC5=sialic 
acid-binding Ig-like lectin 5. 
MDK=midkine. 
RNASE3=eosinophil cationic 
protein. PTN=pleiotrophin. 
TNFRSF=tumour necrosis 
factor receptor superfamily 
member. ICOSLG=ICOS ligand. 
CD1C=t-cell surface 
glycoprotein CD1c. 
ITGAV=integrin alpha-V. 
LILRA5=leukocyte 
immunoglobulin-like receptor 
subfamily A member 5. 
KRT19=keratin, type I 
cytoskeletal 19. 
CDH6=cadherin-6. *Adjusted 
p≤0·05. †Adjusted p≤0·01. 
‡Adjusted p≤0·001. 
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Figure 2: (A) Heatmap of 
selective classes of 

phospholipids showing 
decreased changes in severe 

and critical cases of 
COVID-19 in which each 

rectangle represents a 
participant. Distribution of 

(B) lipids and (C) metabolites 
showing significant changes 

across participant groups 
NS=no significance. *Adjusted 

p≤0·05. †Adjusted p≤0·01. 
‡Adjusted p≤0·001.
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appendix 1 pp 12–13). Details of upregulated genes are in 
appendix 1 (p 6). 

Details of the 21 patients whose pre-COVID-19 plasma 
samples were available and used for proteomics and 
glycoproteomics analysis are in appendix 1 (p 14). 
472 proteins and 732 glycopeptides were quantified in all 
21 patients (figure 4A). The abundance values of the 
glycopeptides were used to calculate the ratio of post-
COVID-19 glycopeptides to pre-COVID-19 glycopeptides 
for each patient. These ratios were then compared 
between the three groups (outpatients, patients with 
severe COVID-19, and patients with critical COVID-19) 
and one-way ANOVA was done, which identified 
114 glycopeptides (derived from 62 glycosylation sites of 
47 glycoproteins; p<0·05) that were significantly 
different between the groups (figure 4B). Glycosylation 
was found to be decreased on Asn¹⁵²³, Asn³⁴⁶⁵, and 
Asn³⁸⁹⁵ of apolipoprotein B-100 and on Asn⁴⁰² of afamin 
(figure 4B). Overall, protein concentrations of these 
molecules were reduced in post-COVID-19 samples 
when compared with pre-COVID-19 samples in patients 
with severe and critical disease but not in outpatients. 
Additionally, one glycopeptide of haptoglobin (Asn²¹¹) 
with a composition of Hex9HexNAc7NeuAc3 was not 
altered in outpatients but elevated in patients with severe 
disease and in patients with critical disease (figure 4C). 
The distribution of total haptoglobin and its glyco-
peptides (Asn²⁰⁷ and Asn²⁴¹) is shown in figure 4C 
and appendix 1 (p 14). Sialylated complex-type 
glycan containing glycopeptides derived from β-2-glyco-
protein 1 (APOH; figure 4D) and kininogen-1 (appendix 
1 p 14) were significantly decreased in patients with 
critical COVID-19 and kininogen-1 Asn⁷² was increased 
(appendix 1 p 14). Protein concen trations of α-1-acid 
glycoprotein 1 (ORM1) were significantly elevated in 
patients who were admitted to hospital. 

We used 24 paired samples to do an expanded 
multiomics profiling and this paired analysis allowed us 
to examine how various molecules were altered in these 
individuals following infection. Notably, most molecules 
followed the patterns observed in the design described 
above, including IL-6, TNF, and LTA4H (ie, in patients 
with severe and critical COVID-19, these molecules were 
found in higher concentrations in the post-COVID-19 
cohorts than in the pre-COVID-19 cohorts; figure 5A). 
Following COVID-19, CRTAC1 was significantly decreased 
in patients with critical disease, and non-significantly 
decreased in patients with severe disease. Reduced 
concentrations of lysophosphatidylcholine, phosphatidyl-
choline, phos phatidylinositol, and ether phosphatidyl-
ethanolamine species were observed in hospitalised 
patients following COVID-19, supporting the association 
of these lipids with severe and critical COVID-19 outcomes 
(figure 5B). Metabolites including heme, ursodeoxycholate, 
3-ureido propionate, and TMAP across the matched 
samples also showed a similar trend of changes as 
observed in the cross-sectional analysis (figure 5C). 

Discussion 
To our knowledge, this study of 637 individuals, which 
included 455 patients with COVID-19 at different levels 
of severity, represents the largest profiling of COVID-19 
plasma samples using an integrative multiomics 
approach to date, using an integrative multiomics 
approach. Additionally, we present data from a unique 
collection of 24 patients with COVID-19 for whom 
matched pre-COVID-19 plasma samples were available. 
We report predictive biomarkers of severity in COVID-19. 
We saw that several molecules associated with the 
cytokine storm syndrome were associated with severity, 
as expected, including IL-6.10,11 Other markers of systemic 
immune response, including CSF1, IL-5Rα, and IL-15 
showed a similar association. We also identified 
additional plasma protein markers that have been 
implicated in inflammation, apoptosis, and other 
important cellular processes, including several that have 
not previously been described in the context of COVID-19. 
SIGLEC5, which has been hypothesised to be involved in 
the ligation of SARS-CoV-2 glycoprotein with CD33, was 
elevated in patients with severe and critical COVID-19.16 
The elevated concentrations of CLEC6A, CCL7, AZU1, 
CAPG, and LILRA5 in these hospitalised patients are 
suggestive of the innate immune response associated 

Figure 3: Significantly upregulated genes in patients with severe COVID-19 compared with patients with 
mild COVID-19 and control participants in both a single-cell RNA sequencing study15 and the current study
The pink boxes denote genes that are upregulated in the severe cohort as compared with the mild cohort in both 
stem-cell RNA sequencing and plasma proteomics analysis. T cell 1, T cell 2, plasma cells, macrophages, epithelial 
cells, and club cells represent the various clusters of cells described in the single-cell RNA sequencing study. 
TNF=tumour necrosis factor. PFDN2=prefoldin subunit 2. PSME2=proteasome activator complex subunit 2. 
BTN3A2=butyrophilin subfamily 3 member A2. CAPG=macrophage-capping protein. FLT1=vascular endothelial 
growth factor receptor 1. CASP1=caspase-1. DDX58=antiviral innate immune response receptor RIG-I. 
CCL2=C-C motif chemokine 2. IL1B=antiviral innate immune response receptor RIG-I. HMOX1=heme oxygenase 1. 
MMP7=matrilysin. 
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with severity. Elevated CXCL9, CXCL10, and CXCL11, 
which are secreted by chemotactically activated immune 
cells, are indicative of strong interferon-mediated 
responses.17 LAG3 and LGALS9, involved in lymphocyte 
function, were elevated in the severe and critical groups; 
ICOSLG, however, was reduced. Although proin-
flammatory enzyme LTA4H was high in patients with 
severe and critical disease, VSIG4, a phagocytic receptor 
with anti-inflammatory effects, also showed a positive 
association with severity; this is a novel association that 
we report.18 Patients with severe and critical outcomes 

showed elevated concentrations of apoptotic markers 
TNFRSF10A and FAS, but concentrations of TNFSF10 
and TNTFSF11 were reduced in these groups. 
Interestingly, COMP, a known bio marker of osteoarthritis 
and suppressor of apoptosis, was downregulated in 
patients with severe and critical disease.

SDC1, a proteoglycan, known to be involved in 
COVID-19 pathogenesis, was elevated in patients with 
severe and critical COVID-19. MDK, a cytokine and 
growth factor, was also elevated in these groups, along 
with one of its interactors, LRP1. CD1C, a T-cell surface 

Figure 4: LC-MS-MS-based glycoproteomics comparing plasma glycopeptides in patients before and after they contracted COVID-19, (A) waterfall plot showing variation in median fold 
change of each glycopeptide on log2 scale from all patients, (B) heatmap of 34 glycopeptides (p≤0·050) in patients, (C) box plots showing variation in two representative glycopeptides of 
haptoglobin and β-2-glycoprotein 1 and (D) variation in two representative glycopeptides of haptoglobin and β-2-glycoprotein 1 across different patient groups
B is colour coded for WHO OSCI scores; protein names with site of glycosylation are given for each glycopeptide and identical names refer to different glycan chains at the same site of glycosylation. 
LC-MS-MS=liquid chromatography-tandem mass spectrometry. Hex=Hexose. NAc=N-acetylhexosamine. Neu5Ac=N-acetylneuraminic acid. Fuc=Fucose. OSCI=ordinal scale of clinical improvement. 
*Adjusted p≤0·05. †Adjusted p≤0·01. ‡Adjusted p≤0·001.
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Figure 5: Distribution of 
cytokine (A), lipid (B), and 
metabolite markers (C) in a 
specialised subset of patients 
with COVID-19 with 
matched pre-COVID-19 
plasma samples. 
IL=interleukin. TNF=tumour 
necrosis factor. 
LTA4H=leukotriene A-4 
hydrolase. CRTAC1=cartilage 
acidic protein 1. 
NS=no significance. *Adjusted 
p≤0·05. †Adjusted p≤0·01. 
‡Adjusted p≤0·001. 
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glycoprotein, was negatively associated with severity; 
this is consistent with a 2020 report that CD1C+ T cells 
preferentially migrate from blood to lungs in patients 
with severe COVID-19.19 MMP7, which has been  
reported to be elevated in patients with post-acute 
sequelae of SARS-CoV-2 infection who previously 
needed admission to intensive care, was elevated in 
patients with severe and critical COVID-19.20 CRTAC1 
was negatively associated with severity; this might be 
indicative of the poor health status of alveolar type-2 
epithelial cells in patients with severe COVID-19 as has 
been previously described in the context of interstitial 
lung disease.11,21 Angiogenesis-related proteins were 
elevated in patients with severe and critical COVID-19, 
including VEGFA and ANGPTL1, along with EPHB4 
and dimethylarginase-1 (DDAH1; a promoter of nitric 
oxide biosynthesis and angiopoiesis); this is in keeping 
with previous studies that describe vascular angiogenesis 
as an important feature of COVID-19.22 Consistent with 
previous reports of consumption of components of the 
coagulation system,23 KLK13 concentrations were 
downregulated in patients with severe and critical 
COVID-19. 

We found differences in the concentrations of several 
lipid classes between patients with severe and critical 
COVID-19 and outpatients with COVID-19. In contrast to 
our finding of decreased concentrations of lysophos-
phatidylcholine in hospitalised patients, previous studies 
have reported increased lysophos phatidylcholine in 
patients with COVID-19.7,8 Although lysophos-
phatidylcholine has been reported as a proinflammatory 
mediator in the past, a 2020 study questioned whether 
lysophosphatidylcholine exerts anti-inflammatory and 
vasoprotective roles.24 Also, decreased lysophos-
phatidylcholine has been reported in patients with 
pulmonary arterial hypertension.24 Most importantly, 
lysophosphatidylcholine inhibits the release of IL-6; thus, 
decreased lysophosphatidylcholine in hospitalised 
patients corresponds with increased IL-6 in these 
patients.25 In addition to reduction of lysophos-
phatidylcholine, phospha tidylcholine was also found to 
be decreased in hospitalised patients, consistent with 
other studies.7,8 Plasmalogen ether phos phatidyl-
ethanolamine is known to possess antioxidant properties 
and its reduction in hospitalised patients suggests 
increased oxidative stress.26 Phosphatidylinositol acts as 
an antiviral mediator and it has been reported to 
attenuate infection in respiratory syncytial virus.27 As an 
inhibitor of IL-8, phosphatidylinositol suppresses 
infection and viral propagation.27 Decreased phosphatidyl-
inositol is in line with elevated IL-8 in patients with 
SARS-CoV-2. Reduced ether phosphatidylethanolamine 
and phospha tidylino sitol could be suggestive of induced 
oxidative stress and poorly controlled viral propagation in 
hosp italised patients. Select species of ceramides were 
increased in hospitalised patients; elevated ceramide is 
related to pulmonary cell apoptosis and emphysema-like 

disease and reduced ceramide protects against oxidative 
stress.28 Notably, increased serum ceramides have been 
described in patients with severe SARS-CoV-2.7

Several metabolite predictors of COVID-19 severity 
were also discovered. High concentrations of heme in 
patients admitted to hospital is consistent with reports 
that SARS-CoV-2 causes elevation of free heme.29 TMAP, 
a marker of reduced kidney function, showed a positive 
association with increasing severity, which supports 
findings from a 2021 study that reported the same trend 
in patients with severe disease.30 Polyamines facilitate 
virus replication by aiding cellular attachment; the 
increased polyamine concentrations in hospitalised 
patients might indicate increased disease severity.31 We 
discovered accumulation of 3-ureidopropionate, a 
metabolite in pyrimidine metabolism, in the severe and 
critical cohorts. 3-ureidopropionate increases reactive 
oxygen species and inhibits complex V.32 Anosmia has 
been reported by patients with COVID-19 and 
3-ureidopropionate is a precursor of β alanine, which is 
required for the synthesis of carnosine that protects the 
olfactory sensory neurons and sustentacular cells.32 
Olfactory sensory neurons are damaged during infection 
with SARS-CoV-2, causing anosmia; thus, we speculate 
that inhibition of complex V by 3-ureidopropionate might 
be related to damaged neurons and anosmia. Our results 
reflected the alteration of the gut microbiome in patients 
admitted to hospital with COVID-19. 2-hydroxy decanoate 
exerts anti-viral properties and has been known to inhibit 
the viral replications;33 its decrease in hospitalised patients 
corresponds with severe infection. Antioxidant 
ursodeoxycholate, an important bile acid in SARS-CoV-2 
infection due to its antioxidant and antiapoptotic 
properties that can inhibit proinflammatory cytokine 
storm, was decreased with increasing disease severity, 
supporting its negative association with cytokine storm.34  

APOH, known to drive hepatitis virus retention by 
direct interaction and induce endoplasmic reticulum 
stress, was reduced in patients with severe and critical 
disease for whom paired pre-COVID-19 samples were 
analysed.35 Kininogen-1, which plays an important role in 
prekallikrein-kinin axis, was also reduced. ORM1, 
however, was increased; this is the first demonstration in 
the context of COVID-19. The glycosylation levels of 
APOB were reduced in hospitalised patients; 
interestingly, N-glycosylation mutant APOB  in liver has 
been known to lead to endoplasmic reticulum stress and 
insulin resistance, suggesting glycosylation of APOB is 
important for its sustained function.36  

Our study revealed novel molecules including 
cytokines, lipids, and metabolites as predictive bio-
markers of severe and critical outcomes after COVID-19 
infection. Importantly, these markers were found to be 
altered early in the course of the disease, before or 
around the time of hospital admission, suggesting a 
close link between inflammation and adverse outcomes. 
The markers described in this study improved the 
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accuracy of prediction of COVID-19 severity over the 
classic cytokine storm panel of cytokines. For example, 
although previous studies have suggested IL-6 and TNF 
concentrations in plasma as predictors of COVID-19 
severity, our study identified a multiomic signature of 
102 analytes that perform better than them. 

Even though this is a retrospective study, the samples 
were drawn at the baseline when the patients had 
typically not yet reached that worst outcome. Although 
we discovered potentially predictive markers, they do not 
necessarily imply causation. The number of biomarkers 
collected was greater than the size of our cohort, which 
can lead to concerns of overfitting. However, the 
sophisticated AutoGluon modelling approach avoided 
overfitting as evidenced by our high accuracy in the held-
out test set. Without an external dataset, our study could 
not evaluate whether these models would extend to 
cohorts that are not well represented by the Mayo Clinic 
population and this remains a major limitation of the 
study. We are also limited by the changing nature of 
treatments and the disease itself over the course of the 
pandemic, offering a group of confounders that cannot 
be remedied in a retrospective design. 
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