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Artificial intelligence in cancer target identification and drug
discovery
Yujie You1, Xin Lai 2, Yi Pan3, Huiru Zheng4, Julio Vera2, Suran Liu1, Senyi Deng5✉ and Le Zhang 1,6,7✉

Artificial intelligence is an advanced method to identify novel anticancer targets and discover novel drugs from biology networks
because the networks can effectively preserve and quantify the interaction between components of cell systems underlying
human diseases such as cancer. Here, we review and discuss how to employ artificial intelligence approaches to identify novel
anticancer targets and discover drugs. First, we describe the scope of artificial intelligence biology analysis for novel anticancer
target investigations. Second, we review and discuss the basic principles and theory of commonly used network-based and
machine learning-based artificial intelligence algorithms. Finally, we showcase the applications of artificial intelligence approaches
in cancer target identification and drug discovery. Taken together, the artificial intelligence models have provided us with a
quantitative framework to study the relationship between network characteristics and cancer, thereby leading to the identification
of potential anticancer targets and the discovery of novel drug candidates.
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INTRODUCTION
As one of the cutting-edge cancer treatments, targeted drug
therapy has the advantages of high efficiency, few side effects,
and low drug resistance for patients1. However, there are several
drawbacks to the existing targeted therapies, such as a few
druggable targets2, ineffective coverage of the patient population,
and the lack of alternative responses to drug resistance in
patients1. Therefore, identifying novel therapeutic targets and
evaluating their druggability3,4 becomes the current cancer
research focus of targeted drug therapy.
Since we have difficulty in comprehensively understanding the

pathogenesis of cancer due to the complexity of the disease5,
most of the current targeted drugs are developed based on the
experimentally validated hypothesis that can explain a possible
mechanism underlying carcinogenesis but ignore other facts of
the disease6. As a result, these therapies could have undesired
impacts on normal tissues and even provoke serious side effects
for patients7,8.
To elucidate the molecular mechanisms underlying cancer

genesis, interactome data can be comprised and modelled in
network structures in which components are biological entities
(e.g., genes, proteins, mRNAs, and metabolites) and edges are
associations/interactions between them (e.g., gene co-expression,
signalling transduction, gene regulation, and physical interaction
between proteins9–14). Artificial intelligence biology analysis
algorithms are effective method to process the biological
network data, which build machines or programs to simulate

human intelligence, so as to implement classification, clustering
and prediction tasks in biological network15. Therefore, artificial
intelligence algorithms can effectively tackle the complexity of
cancer that arises from interactions between genes and their
products16,17 in biological network structures, so as to improve
our understanding of carcinogenesis11,12,18–22 and explore novel
anticancer targets23–29.
Over the past few decades, we have seen a fast development

of artificial intelligence biology analysis algorithms. To make
this study easy to understand, we not only divide these
artificial intelligence algorithms into network-based biology
analysis algorithm and machine learning-based (ML-based)
biology analysis algorithm according to the data of biological
network structure, but also employ Fig. 1 to describe the
historical milestone for these artificial intelligence biology
analysis algorithms.
On the one hand, network-based biology analysis algorithms

provide a variety of alternative network approaches to identify
cancer targets. More importantly, various network-based biology
analysis algorithms can investigate network data from different
perspectives, therefore they can compensate each other to
provide accurate biological explanations30.
On the other hand, ML-based biology analysis31–33 not only can

efficiently handle high throughput, heterogeneous, and complex
molecular data, but also can mine the feature or relationship in the
biological networks. Thus, we should develop more ML-based
biology analysis algorithms to provide such advanced biology
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analyses that can allow precise target identification and drug
discovery for cancer.
Although artificial intelligence biology analysis has been widely

used to improve our understanding of carcinogenesis, to the best
of our knowledge, there is no systematic review that introduces
the scope of related research and explains the network-based and
the ML-based biology analysis algorithms to identify novel
anticancer targets and discover drugs. Therefore, in the next
section, we will describe the scope of artificial intelligence biology
analysis for novel anticancer targets investigation. In the third
section, we will introduce the basic principles and theory of
commonly used artificial intelligence biology analysis algorithms.
Then, we will briefly review and discuss studies that utilize
network-based and ML-based biology analysis for cancer target
identification and drug discovery. Finally, we will summarize the
content of the article, discuss the limitations and challenges faced
by the community, and point out the potential of artificial
intelligence biology analysis to identify the therapeutic targets
and discover drugs for cancer.

THE SCOPE OF ARTIFICIAL INTELLIGENCE BIOLOGY ANALYSIS
FOR NOVEL ANTICANCER TARGET INVESTIGATIONS
Recently, the rapid development of cancer-related multiomics
technologies34–36 has been one of the most important factors for
artificial intelligence biology analysis to explore novel anticancer
targets37–39. Figure 2 classifies these technologies into five
aspects: epigenetics, genomics, proteomics, metabolomics, and
multiomics integration analysis. Furthermore, Table 1 lists the
related major diseases, drug targets, genomics, and network
databases commonly used in multiomics integration analysis for
these five aspects. Next, we will detail these five aspects.
Epigenetics analyses the reversal modifications of DNA or DNA-

related proteins54. These modifications affect gene expression
without changing the DNA sequence54. Investigating epigenetic
data through artificial intelligence is not only important for
elucidating fundamental mechanisms of cancer but also necessary
for the design of targeted therapeutics. For example, Wilson
et al.55 took advantage of information-rich transcriptomic and
epigenetic data to study regulatory networks surrounding histone
lysine demethylation and highlighted the importance of epige-
netic regulators in mitogenic control and their potential as
therapeutic targets, which showed that epigenetic regulators such
as KDM1A, KDM3A, EZH2, and DOT1L56 are critical in oncogenesis
and drug resistance.

Genomics aims to characterize the function of every genomic
element of an organism by using genome-scale assays such as
genome sequencing57. Applications of genomics include finding
associations between genotype and phenotype58, discovering
biomarkers for patient stratification59, predicting the function of
genes60 and charting biochemically active genomic regions such
as transcriptional enhancers49. Recent developments in network-
based biology analysis methods, such as sequence-similarity
networks, genome networks, and gene family networks, have
significantly improved the usability of molecular datasets in
comparative genomics analysis61. These network methods collect
expression and interaction data in the beginning and then
transform them into interpretable biological processes62,63, lead-
ing to the identification of tumour subtypes and the discovery of
drug targets64.
For example, Medi et al.65 integrated gene expression profiles

into genome-scale molecular networks to identify novel ther-
apeutic targets for cervical cancer, including receptors, microRNAs
(miRNAs), transcription factors (TFs), proteins (e.g., CRYAB, CDK1,
PARP1, WNK1, GSK3B, and KAT2B), and metabolites (arachidonic
acids). Laura et al.66 developed a network-based biology analysis
workflow that integrates different layers of genomic information,
including transcription factor cotargeting, miRNA cotargeting,
protein–protein interaction and gene coexpression, into a
biological network. Then, the authors applied a consensus
clustering algorithm (An ML-based biology analysis algorithm
that divide the network into sub-modules with different
functions)67–73 on identified network communities to discover
cancer driver genes, which demonstrated that F11R, HDGF, PRCC,
ATF3, BTG2, and CD46 could be oncogenes and promising
markers for pancreatic cancer.
For proteomics, proteomic experiments are performed for

annotation and correlation of genome sequences, quantitation
of protein abundance, detection of posttranslational modifica-
tions, and identification of protein-protein interactions (PPIs)74.
PPIs not only play fundamental roles in structuring and mediating
biological processes but also have been widely used for
proteomics data analysis75. For example, Vinayagam et al.37

analysed the human PPI interaction network to identify indis-
pensable proteins that affect the controllability of the network
with control theory76, which shows that if a system can be driven
from any initial state to any desired final state in finite time with a
suitable choice of inputs, the system is controllable. By changing
the number of driver nodes in the network upon removal of that
protein, the hub can be classified as “indispensable” “neutral” or

Fig. 1 The historical milestones of network-based and ML-based biology analysis. (Created with BioRender.com)
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“dispensable”, which correlates with increasing, no effect, or
decreasing the number of driver nodes in the network upon
removal of the key protein. The evidence shows that these
indispensable proteins are primary targets of disease-causing
mutations, viruses, and drugs.
Furthermore, analysing data from 1,547 cancer patients

revealed 56 indispensable genes in nine cancers. 46 of these
genes were associated with cancer for the first time, demonstrat-
ing the ability of intelligent network controllability analysis to
identify novel disease genes and potential drug targets77. More-
over, Valle et al.78 developed a network-based biology analysis
framework to compute the proximity between polyphenol targets
and disease proteins. The calculated results indicated that the
diseases whose proteins are proximal to polyphenol targets have
significant gene expression changes, while the diseases whose
proteins are distal to polyphenol targets have no such change. The
network relationship between disease proteins and polyphenol
targets provides not only a computing method to reveal the effect
of polyphenols on diseases but also a basis to identify novel
anticancer targets.
Metabolomics is routinely applied for biomarker discovery by

profiling metabolites in biofluids, cells and tissues34. Because of

the inherent sensitivity of biotechnology, subtle alterations in
metabolic pathways can be detected to provide insights into the
mechanisms that underlie various physiological conditions and
cancer processing34. Owing to innovative developments in
network biology, researchers employ biological networks to
perform metabolomic analyses and provide us with a systems-
level understanding of the role that metabolites play in cancer.
For example, Basler et al.79 proposed an effective network-

based biology analysis framework for the systematic study of
flow control and identification of driver reactions in large-scale
metabolic networks. They found that the driver reactions were
under complex cellular regulation in Escherichia coli, suggesting
their preeminent role in facilitating cellular control. Correlation
statistics indicate that the driven response plays an important
role in inhibiting tumour growth and represents a potential
therapeutic target.
For multiomics integration analysis, addressing the complexity

of tumour-host interactions requires an approach to handle
integrative omics data80. Compared to single omics studies,
multiomics data provide researchers with various and intercon-
nected molecular profiles to study carcinogenesis80. Thus,
integrated multiomics datasets in a network structure to artificial

Fig. 2 Artificial intelligence to integrate multiomics data (e.g., epigenetics, genomics, proteomics, and metabolomics) for cancer therapeutic
targets identification. (Created with BioRender.com)

Artificial intelligence in cancer target identification and drug discovery
You et al.

3

Signal Transduction and Targeted Therapy           (2022) 7:156 



intelligence biology analysis has emerged as a powerful tool to
fully appreciate the complex interlayer regulatory interactions in
cancer progression. Such an approach allows us to benefit from
prior information that can be summarized and presented in
networks, thereby providing us with insights into carcinogenesis
from an overall perspective81.
For example, Gov et al.82 first performed comparative analyses of

transcriptome data, and then identified common and tissue-
specific reporter biomolecules such as genes, receptors, membrane
proteins, TFs, and miRNAs. Second, they used the interactions
among receptors, TFs, miRNAs, and their targeted DEGs to
reconstruct a tissue-specific network for ovarian cancer and used
network-based biology methods to identify interaction hubs.
Finally, GATA2 and miR-124-3p were identified as hub nodes,
suggesting that they are potential biomarkers for ovarian cancer.

THE PRINCIPLES AND THEORIES FOR COMMONLY USED
ARTIFICIAL INTELLIGENCE BIOLOGY ANALYSIS ALGORITHMS
This study divides these commonly used artificial intelligence
biology analysis algorithms into two categories. One is network-
based biology analysis algorithm, including shortest path83,

module detection84, and network centrality85; the other is ML-
based biology analysis algorithm including decision tree86–88 and
deep learning models89–91.

The principles and theory of network-based biology analysis
algorithms
Biological networks are efficient in integrating complicated
biological data, because they can capture the property of
biological entities and their relationships92. Mathematically, a
network can be represented as a graph G= (V, E) where V and E
are a set of nodes (vertices) and edges, respectively. Nodes in
biological networks can represent proteins, genes, diseases, and
drugs and edges in the network represent various biochemical
physical or functional interactions between nodes. Therefore,
network-based biology analysis algorithms focuses on identifying
therapeutic targets and discovery of novel drugs for cancer from
molecular networks such as protein-protein interaction net-
works75, gene regulatory networks93, metabolic networks94, and
drug-drug interaction networks95.
Computational biologists have developed several network-

based biology analysis algorithms to effectively process and

Table 1. Commonly used repositories related to human diseases, drug targets, genomics, and biological networks

Database name Description Web link Ref

Disease

Online Mendelian Inheritance in
Man (OMIM)

A comprehensive, authoritative, and timely knowledgebase
of human genes and genetic disorders

http://www.omim.org/ 40

Pathologisch Anatomisch Landelijk
Geautomatiseerd Archief (PALGA)

A database of histopathology and cytopathology was
stored.

https://www.palga.nl 41

Drug Target

DrugBank DrugBank is a web-enabled database containing
comprehensive molecular information about drugs, their
mechanisms, their interactions, and their targets.

https://www.drugbank.ca/ 42

Therapeutic Targets Database (TTD) A database to provide information about the known and
explored therapeutic protein and nucleic acid targets, the
targeted disease, etc.

http://db.idrblab.net/ttd/ 43

PubChem PubChem is an open repository for chemical structures and
their biological test results.

http://pubchem.ncbi.nlm.nih.gov 44

ChEMBL ChEMBL is an open data database containing binding,
functional and ADMET information for many drug-like
bioactive compounds.

https://www.ebi.ac.uk/chembldb 45

Genomics Data

Gene Expression Omnibus (GEO) GEO is a public functional genomics data repository. Array-
and sequence-based data are accepted.

https://www.ncbi.nlm.nih.gov/geo/ 46

The Cancer Genome Atlas (TCGA) TCGA contains clinical data of various human cancers,
genomic mutations, mRNA expression, miRNA expression,
methylation, etc.

https://www.cancer.gov/about-nci/
organization/ccg/research/structural-
genomics/tcga

47

Cancer Cell Line Encyclopedia (CCLE) A compilation of gene expression, chromosomal copy
number and massively parallel sequencing data from 947
human cancer cell lines.

https://sites.broadinstitute.org/ccle 48

ENCyclopedia Of DNA Elements
(ENCODE)

ENCODE has systematically mapped regions of
transcription, transcription factor association, chromatin
structure, and histone modification.

https://www.encodeproject.org/ 49

Catalogue Of Somatic Mutations In
Cancer (COSMIC)

COSMIC curates comprehensive information on somatic
mutations in human cancer.

http://www.sanger.ac.uk/cosmic 50

Biological Network

Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING)

A database of known and predicted protein interactions http://string-db.org/ 51

Gene Ontology (GO) The world’s largest source of information on the functions
of genes.

http://www.geneontology.org/ 52

Kyoto Encyclopedia of Genes and
Genomes (KEGG)

A collection of databases dealing with genomes, biological
pathways, diseases, drugs, and chemical substances

http://www.genome.jp/kegg/ 53
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analyze non-ordered or non-Euclidean data in biological networks,
which can perform tasks such as link prediction96, node ranking85,
network propagation97, network modularization98, and network
control99. Here, we briefly review and discuss the shortest path
algorithm, module detection algorithm, and node prioritization
methods using node centrality in identifying cancer therapeutic
targets and discovering drugs.

Tthe shortest path algorithm. The shortest path algorithm, one of
network link algorithm, is used to intelligently identify the shortest
connection between two genes or proteins in a graphical model
that represents a cellular network100,101. The algorithm is
illustrated in Fig. 3 and Algorithm 1. The shortest distance for a
given network is calculated by Eq. (1):

dðS; TÞ ¼ min
K2V

dðS; KÞ þ dK ;T (1)

Here, S and T stand for the source and target node, respectively. d
(S,T) is the length of the shortest path from node S to T. V is a set of
network nodes. K stands for a node in the network, and dK,T
represents the lengths of possible paths connecting nodes K and T.

Algorithm 1. The shortest path algorithm102

1: Input: Network G, Source S, Target T, Nodes

2: create an empty set P and a set Q contains all nodes

3: for each vertex V in Network:

4: d(S,V)← infinity

5: d(S,S)← 0

6: do:

7: U← vertex in Q with minimal d(S,U)

8: remove U from Q

9: for each vertex V in Q that is connected with U:

10: alt ← d(S,U)+ dU,V
11: if alt < d(S,V):

12: d(S,V)← alt

13: add U to the set P

14: until Q is empty

15: Output: the shortest path from S to T

Fig. 3 The flow chart of the shortest path algorithm. The red paths in the bottom network are the identified shortest path from node S to T
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The shortest path algorithm has been widely used to determine
regulatory paths in cancer networks103,104 and then discover the
key targets on the paths105. For example, Li et al.106 first identified
a set of six genes that can distinguish colorectal tumours from
normal adjacent tissues using the maximum relevance minimum
redundancy approach107. The method ranks genes according to
their relevance to the class of samples concerned while
considering the redundancy of genes. Those genes that had the
best trade-off between the maximum relevance to the sample
class and the minimum redundancy were considered “good”
biomarkers. Then, the authors applied the shortest path algorithm
among the six genes in a PPI network underlying cancer and
identified 15 shortest paths between any two genes of the gene
set. Last, they found 35 genes on the identified shortest paths and
ranked them according to their betweenness108. The results
showed that androgen receptor (AR), a ligand-dependent
transcription factor, is ranked as the top gene, suggesting its
involvement in colon carcinogenesis through regulating the
proliferation and differentiation of tumour cells109.
Additionally, Chen et al.105 used a network-based biology

analysis method, SAM (Significance Analysis of Microarrays)110, to
analyse omics data and identified 153 differentially methylated

CpG sites and differentially expressed molecules, including 42
miRNAs and 1,373 protein-coding genes. The authors first used
the differentially expressed genes from the STRING database111 to
construct a PPI network. Then, they searched all the shortest
paths connecting dysfunctional genes to identify potential cancer
driver genes. Next, they ranked the genes by a permutation test
and their network properties, such as betweenness and interac-
tion scores. The top-ranking genes at different levels (i.e.,
methylation level, miRNA level, mutation level, and mRNA level)
were regarded as driver genes of lung adenocarcinoma. Among
these cancer driver genes, some appeared to be top candidates at
different levels, suggesting their multifaceted contribution to
lung carcinogenesis.
Above all, the shortest path algorithms100,101 can help us

efficiently identify regulatory paths in networks, allowing us to
identify potential genes that are proximate to known cancer
genes and thereby important for tumorigenesis. However, due to
the complexity of the disease, potential cancer genes are not
always on the identified shortest paths106, revealing the limita-
tions of such algorithms. To resolve this issue, Lu et al.112

proposed a random walk with restart algorithm method and
identified 298 potential CRC-associated genes, which is more

Fig. 4 The flow chart of the module detection algorithm
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effective and accurate than the shortest path algorithm proposed
by Li et al.106. In particular, the computing efficacy of the shortest
path algorithm could be compromised by large networks and
their search strategies112.

The module detection algorithm. Cancers usually result from
disruption of interactions of key regulatory genes with their
partners81,113. Module detection algorithms114, one of network
propagation algorithm, identify communities of cancer genes in
complex networks115 by analysing their topological structures
(Fig. 4 and Algorithm 2). Here, we explain and illustrate the
commonly used modularity maximization algorithm116, which
identifies network modules with the maximum modularity
coefficients by Eq. 2.

Q ¼ 1
2M

X

i;j 2 V

½Aij � Pij � � δCi ;Cj (2)

where Q represents the modularity coefficient of an identified
module, M is the total number of edges in the network, Aij is the
adjacency matrix, and Pij represents the expected number of edges
between nodes i and j. Ci or Cj represents the module to which
node i or node j belongs. If i and j belong to the same module,
δCi ;Cj ¼ 1; otherwise, δCi ;Cj ¼ 0. The identified modules are a group
of genes that are supposed to have a similar biological function,
such as promoting or inhibiting tumourigenesis.

Algorithm 2. Module detection algorithm.

1: Input: Network G

2: M← the total number of edges in the Network

3: for each vertex i in Network:

4: i← a single module

5: ki← degree of vertex i

6: ai← ki/2 M

7: for each edge in Network:

8: if vertex i connects j:

9: ei.j← 1/2 M

10: else:

11: ei.j← 0

12: do:

13: ΔQ← ei.j+ ej,i-2aiaj
14: consolidate related communities

15: direction ← the greatest increase (or smallest decrease) in Q

16: until the entire network becomes a module

17: Output: the module with a local maximum Q

Currently, many researchers employ module detection algo-
rithms to intelligently identify potential therapeutic targets

for cancer117–119. For example, Ghiassian et al.120 used the
DIseAse MOdule Detection (DIAMOnD) method121 to identify
the local modules within the interconnected map of molecular
components. They found that disease-related genes were
significantly enriched in highly overlapping modules, which
indicated that the predicted modules may help identify new
anticancer targets. Of note, since the results of module
detection algorithms depend mainly on network structures,
the identified modules may vary for the same disease network
with slightly different topology85,117.
Since potential drug targets may exist in different network

modules, we can make use of the correlation between modules
to identify reliable cancer treatment targets81. Therefore, Wang
et al.122 proposed the seed connector algorithm (adding a few
extra hidden nodes as much as possible to link disease
proteins) by considering the interactions among cancer-
associated proteins. First, this algorithm starts with known
seed proteins and induces a loosely connected subnetwork
consisting of only seed proteins. Second, Wang et al. sequen-
tially select such proteins as seed connectors that maximally
increase the size of the largest connected component of the
subnetwork until there is no additional protein that can be
selected as a seed connector. Finally, the cancer modules are
pinpointed.
While these aforementioned algorithms122–124 can intelli-

gently identify meaningful functional modules from network
topologies, it may be difficult to capture disease modules125.
One possible reason is that disease proteins do not constitute
particularly densely connected subgraphs but agglomerate in
specific large regions of the network. For this reason, Tripathi
et al.126 considered analysing the patterns of connectivity in a
disease module to be an effective way to understand the
properties of disease modules.

The node centrality. Node centrality measures the importance of
nodes and is suitable to intelligently locate key nodes with
important biological functions for network biology127.
Usually, we listed four types of node centrality as follows: (1)

As the simplest form of network centrality, degree centrality is
the number of nodes directly connected to the network127,128;
(2) Coreness centrality considers both the degree of nodes and
their positions in a network129; (3) Betweenness centrality of a
node is the probability for the shortest path between two
randomly chosen nodes to go through that node, and it
determines the actor that controls information among other
nodes by connecting paths130; (4) Eigenvector centrality131 not
only considers the number of edges and the position of
nodes but also the impact of adjacent nodes on the interactive
network.
Table 2 shows the formulas for node centrality computing.

Figure 5(a–d) illustrates the above four types of node centrality,
and Algorithm 3 presents the pseudocode to compute four
types of node centrality.

Table 2. The formula to compute degree centrality, coreness centrality, betweenness centrality and eigenvector centrality

Node centrality Formula Description Eq.

Degree centrality CDðiÞ ¼ di di is the degree of vertex i. (3)

Coreness centrality CCðiÞ ¼
P

j2NðiÞ ksðjÞ Vertex j belongs to the neighbours of vertex i, ks(j) is the k-shell index of vertex j. (4)

Betweenness centrality CBðiÞ ¼
P

j<k gj;kðiÞ=gj;k gj,k is the number of all shortest paths between j and k, gj,k(i) is the number of shortest
paths between j and k containing i.

(5)

Eigenvector centrality CEðiÞ ¼ 1
λ

P
j2G ai;jxj if vertex i is linked to vertex j, ai,j = 1, xj is the degree of vertex j, λ is a constant. (6)
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Algorithm 3. The algorithm of degree centrality, coreness
centrality, betweenness centrality and eigenvector centrality.

1: function1 Degree centrality:

2: Input: Network G

3: for each vertex i in Network:

4: di← the number of ties that vertex i has

5: CD(i)=di
6: Output: CD(i)

7: function2 Coreness centrality:

8: Input: Network G

9: for each vertex i in Network:

10: N(i) ← the set of the neighbours adjacent to vertex i

11: for each vertex j in N(i):

12: ks(j) ← the k-shell index of vertex j

13: CC(i) ← CC(i) + ks(j)

14: Output: CC(i)

15: function3 Betweenness centrality:

16: Input: Network G

17: for each vertex i in Network:

18: for each vertex j in Network:

19: for each vertex k in Network:

20: if j < k:

21: gj,k← number of all shortest paths between j and k

22: gj,k(i)← number of shortest paths between j and k containing i

23: CB(i) ← CB(i) + gj,k(i)/gj,k
24: Output: CB(i)

25: function4 Eigenvector centrality:

26: Input: Network G

27: for each vertex i in Network:

28: for each vertex j in Network:

29: if vertex i is linked to vertex j:

30: ai,j=1

31: else:

32: ai,j=0

33: xj← the degree of vertex j

34: CE(i) ← CE(i)+ 1/λ ∙ ai,jxj
35: Output: CE(i)

As described in Fig. 5(a) and Eq. 3, the degree centrality of node
2 is 3 (CD (2) = 3) because node 2 interacts with nodes 0, 1, and 3.
We demonstrated that highly connected nodes or hubs are more
likely to be essential127. Because the more direct connections a
node has, the greater the impact that the node can exert on the
network132, we can utilize the degree centrality of nodes to
identify cancer therapeutic targets.
For example, Zhang et al.133 predicted that hypoxia inducible

factor-1α (HIF-1α) and prolyl 4-hydroxylase beta polypeptide
(P4HB) may be considered potential biomarkers of gastric
cancer by constructing a PPI network. Nevertheless, not only
Jalili et al.130 suggested that high connectivity does not
necessarily imply its essentiality, but also Kitsak et al.129 argued
that the location of nodes is more significant than the
immediate neighbours to evaluate its spreading influence
because degree centrality considers only direct interactions of
a node but not its impact on other nodes, resulting in low
accuracy for target prediction compared to other methods such
as coreness centrality134.
As shown in Fig. 5(b) and Eq. 4, the coreness centrality of

node 3 is 8 (CC (3) = 8) because the neighbours adjacent to the
labelled vertex (3) are vertex (1), vertex (2), vertex (4) and vertex
(5), and these four nodes belong to a 2-shell. Coreness centrality
is an advanced form of node centrality because it considers

both the degree of nodes and their positions in a network to
quantify the importance of nodes in a network129. A node with
a greater coreness means that the node is located in a more
central place and is much more influential in network
propagation than the nodes with high-degree but less
coreness129. Among them, the most classic method to calculate
the coreness centrality of network nodes is the k-core
decomposition method135, which decomposes the network
iteratively according to the remaining degree of the nodes.
For instance, Li et al.136 employed the k-core decomposition

method to obtain the coreness of the PPI network. Subsequently,
the targets were screened for topological importance. Then, the
major hubs in the hub interaction network were determined, and
a total of 62 major hubs were identified, including 11 indirubin
(EGFR, JAK2, ERBB2, CHUK, CDK5, KIF11, DRD2, CDK3, HTR1A,
JAK3 and TYK2) and derivative targets and 51 differentially
expressed genes (DEGs) for imatinib resistance. These 11 major
hubs were closely related to DEGs that were resistant to imatinib.
Indirubin and its derivatives may inhibit imatinib resistance
through the regulation of these genes to treat chronic myeloid
leukaemia (CML).
Described by Fig. 5(c) and Eq. 5, the betweenness centrality of

node 1 is 3.5 (CB (1) = 3.5) because there are four node pairs
contributing to node one (g0,2(1)/g0,2(1) = 1, g0,3(1)/g0,3 = 1,
g0,4(1) / g0,4 = 1, and g2,3(1)/g2,3 =0.5). Betweenness centrality is
based upon the frequency with which a node lies between the
shortest path of all other possible pairs of nodes within a
network and identifies the gatekeepers that control commu-
nication of nodes in the network130.
For example, Taylor et al.137 used betweenness centrality

analysis to identify intermodular hub proteins and intramodular
hub proteins in the breast cancer network. The identified
proteins may serve as an indicator of breast cancer prognosis.
Moreover, Raman et al.138 computed degree, betweenness, and
closeness indices in PPI networks for 20 organisms and showed
that the degree and betweenness centralities of nodes correlate
with their lethality in many organisms.
As described in Fig. 5(d) and Eq. 6, the eigenvector centrality

of node 1 is 3 (CE (1) = 3) because node 1 is connected to nodes
0, 2 and 3 (a1,0, a1,2 and a1,3 equal 1, respectively), and the
degree of x0, x2 and x3 equals 1, respectively. Eigenvector
centrality considers not only the number of edges and the
position of nodes but also the impact of adjacent nodes on a
network.
For example, Mallik et al.139 first identified differentially

expressed and methylated genes in uterine leiomyoma tumours
and then found TFs and miRNAs that regulate the expression of
these genes. Subsequently, they reconstructed a network that
comprised the genes, TFs, and miRNAs and then used
eigenvector centrality to identify potential biomarkers. They
specified that PTGS2 and TACSTD2 are potential novel biomar-
kers, since both genes are downregulated and hypermethylated
in the tumour.
Moreover, several researchers have attempted to integrate

more than one centrality index to increase the efficiency of
the node centrality algorithm. For instance, Chen et al.140 used
the differentially expressed proteins of prostate cancer (PC) to
construct a PPI network. Then, they integrated the connectivity
degree, betweenness centrality, and closeness centrality of
nodes to evaluate critical nodes to identify the core module of
the PPI network. Finally, they identified SLC2A4 and TUBB2C as
important proteins regulating the pathogenesis of cancer,
suggesting the proteins involved in biological processes and
pathways as potential targets for PC diagnosis and treatment. In
addition, Aamri et al.141 constructed a gene-gene-interaction
network for the entire human genome and then applied
betweenness, closeness, eigenvector, and degree centrality
metrics to rank the central genes of the network to identify
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possible cancer-related genes. The results showed that the
average precision for identifying breast, prostate, and lung
cancer genes varied between 80–100%.
Although highly connected nodes in the network architecture

are essential, recent studies point out that integrating the prior
knowledge of cancer into centrality indices can accurately
identify anticancer targets130. For this reason, Jiang et al.142

developed a network-based biology analysis method, named
NEST, which predicts essential proteins according to the
expression levels of their interacting partners in a network.
Additionally, the results showed that NEST significantly out-
performed the classic centralities on gene essentiality prediction
and functional screen result enhancement.

Machine learning-based biology analysis algorithms
Machine learning (ML) algorithm is a subset of AI algorithms that
can learn from data, therefore removing the need for explicit
instructions on how to do certain tasks15. The key to identify
therapeutic targets and discover drugs using ML-based biology
analysis is to make use of network features in biological networks.
The network features include the topological features (such as

node centrality, interaction, local structure, subgraph, network
propagation results, and network-based structure similarities) and
the biological information that is embedded in network nodes
(such as the gene expression profile, gene mutation frequency,
and gene functional annotation).
Here, we introduce two classical ML-based algorithms: one is

the decision tree algorithm, which selects significant topologi-
cal features for cancer; the other is deep learning, which uses
the network features to identify cancer targets and discover
drugs.

The decision tree algorithm. A decision tree is a supervised
classification algorithm143 with three steps: feature selection,
decision tree generation, and decision tree pruning86–88. Figure 6
shows how to classify a set of samples into two groups using the
decision tree algorithm.
In the network-based biology analysis, network topology

features88 are usually integrated into a decision tree to classify
gene-phenotype associations for cancers144–146 to select signifi-
cant topological features for cancer.
For instance, Ramadan et al.147 extracted thirteen network

topological features (Table 3) from a publicly available gene co-
expression network and a PPI network of breast cancer. Then, to
assess the significance of topological measurements associated
with breast cancer, they used Decision Tree Bagger156 to classify
breast cancer gene-phenotype associations. The importance of
each topological measure was then evaluated using a score that
combines the accuracy of breast cancer classification and the Gini
index148 (Table 3). The computed scores of the top five identified
features (i.e., structural holes, node degree, node coreness, k-Step
Markov and subgraph) outperformed the others, and they were
selected as key features for the classification of breast cancer
phenotype-gene associations.
Although the decision tree algorithm can help us select key

network features, it usually has the overfitting problem when too
many features exist in the network157, which significantly decreases
the classification and prediction on independent testing157.

Fig. 5 Four types of node centralities of biological networks. (a) Degree centrality; (b) Coreness centrality; (c) Betweenness centrality; (d)
Eigenvector centrality

Fig. 6 An illustration of a simple decision tree model
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At present, there are two commonly used methods to resolve
overfitting caused by the decision tree algorithm. One method is
using dimension reduction157 and pruning strategy86 to improve the
classification accuracy by feature reduction; the other is employing
the random forest algorithm158, an ensemble algorithm with
multiple decision trees. The random forest algorithm adopts a
bagging strategy, which has higher accuracy and reliability than the
classical decision tree algorithm159.
For example, Toth et al.160 used the random forest algorithm to

predict the aggressive behaviour of prostate cancer. Their
methylation-based classifier demonstrated excellent performance
in discriminating prognosis subgroups of the test set (Kaplan-Meier
survival analyses with log-rank p value < 0.0001) with an AUC value
of 0.95161 for the sensitivity analysis. Finally, the experimental
verification showed that the loss of ZIC2 protein expression was

associated with poor prognosis and correlated with a significantly
shorter time to biochemical recurrence.
In addition to the overfitting problem, it is difficult for decision

trees to visualize the complicated classification procedure146.
Recently, the alternating decision tree (ADTree)162 has made the
classification procedure intuitive and easy to understand by adding
an intuitive graphical model, and the algorithm builds decision trees
over a user-defined number of iterations using confidence-rated
boosting, so it returns both a class label and a score that measures
confidence in the classification, as shown in Fig. 7 and Algorithm 4.
For example, Carson et al.146 used ADTree to classify proteins in a

breast cancer network. As indicated in Fig. 7, the most effective
attributes to distinguish disease and non-disease proteins are node
degree, disease neighbour ratio, eccentricity, and neighbourhood
connectivity, which was proven by Hao et al.163 and Zhang et al.164.

Table 3. Thirteen network topological features for decision tree classification147. The score is a combination of the classification accuracy and the
Gini index148

Topological measures Concept Score

Structural holes149 Rank nodes by their connectivity and lack of redundancy 13.37

Node degree The number of connections of a node 13.36

Node coreness Considers both the degree of nodes and their positions in a network 12.05

k-Step Markov150 The probability that a random walk of length k makes the system reach a certain vertex 10.47

Subgraph151 The number of times a given vertex participates in different connected subgraphs of a network 10.36

Within–module z-score152 Measure how nodes are related. 8.88

Katz status index153 Rank a vertex as highly important if many nodes are connected to it. 8.64

Closeness The average length of the shortest path between nodes 8.18

Proximity prestige The average shortest path length of a node 8.12

Eigenvector centrality The influence of directly adjacent nodes on central node 8.09

Betweenness A node acts as a bridge along the shortest path between two other nodes 7.93

Bary centre score154 Rank the nodes by the total shortest path of the vertex 5.70

Clustering coefficient155 Measure the degree of cohesiveness 0.15

Fig. 7 An example of an ADTree model. The root nodes indicate the ratio between positive and negative class examples. The numbers in
parentheses within each decision node (rectangles) indicate the order in which the rule was found. The amount of node conservation
between each of the trees is indicated by the colour of the box. Ovals (prediction nodes) contain the value for the weighted vote. The
numbers next to the arrows correspond to the threshold for the prediction
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Algorithm 4. The algorithm of ADTree model165

1: Input: labelled dataset

2: root node ← the bias in the dataset

3: for each decision node in the tree:

4: ai← attribute value

5: ti← threshold

6: for each decision node in the tree

7: if (the decision node has a parent node):

8: if ai ≥ ti:

9: return the score of the prediction node for the left path

10: else:

11: return the score of the prediction node for the right path

12: else:

13: return 0

14: s ← the sum of all scores acquired

15: if s > 0:

16: Output: the positive class

17: else:

18: Output: the negative class

Although the decision tree, random forest and ADTree86–88,158

demonstrate the tendency to identify such proteins that are well
annotated and studied for cancer, these methods are subject to
producing local optimal solutions. Therefore, Chen et al.143

proposed using the decision tree classifier based on particle
swarm optimization166 to avoid falling into the trap of local
minima by adding randomness to optimize the number of
features and detection accuracy of cancer treatment targets.
Furthermore, the gradient boosting decision tree167 is a very
flexible and scalable method to classify network nodes for
future study.

The deep learning algorithms. Deep learning is a subfield of
machine learning, and the origin of neural networks sets the stage
for the emergence of deep learning models168. Deep learning
model is a neural network composed of complex structures and
nonlinear transformations90,91 that attempts to model high-level
abstractions of data using multilayer neurons. Through training
and iteratively updating its hyperparameters (Eq. 7), the initial low-
level feature representation (such as topological features and
biological information) of samples is transformed into the high-
level representation that shows the distinction between samples.
The strength of deep learning is its ability to detect complex

patterns in data, making it suitable to interrogate the biological
networks that consist of complex, interdependent relationships
among genes.

Wk ! Wkþ1 ¼ Wk � η
∂C
∂Wk

(7)

W, k, and C are the weight, iteration, learning rate, and loss
function, respectively.
Currently, there are many neural network models and complex

functions for ML-based biology analysis. In this paper, we only
present several commonly used neural networks (Table 4).
Benefiting from the strong ability of neural networks in mining
complex information on links or nodes, deep learning is a suitable
method to identify potential cancer targets and discover drugs for
cancer treatment in complex biological networks175. For example,
Selvaraj et al.176 searched for therapeutic targets for lung
adenocarcinoma in a network of protein-protein and protein-
drug interactions and employed a neural network to identify
candidate drugs, where phosphothreonine is predicted via
molecular dynamics simulations to target the hub node MAPK1
in the network.
Currently, artificial intelligence biology analysis has bene-

fited from the utilization of graph-based neural networks
instead of commonly used non-graph neural networks
such as CNN170 or DNN169, because graph-based neural
networks can take the biological network structure as the
input directly, learn an embedding that contains information
about the neighbourhood of a target node in a graph, and
analyse the biological network with neural networks technol-
ogy. Figure 8 illustrates the basic flowchart of graph-based
neural networks for the investigation of different properties of
biological networks.
There are two advantages in using graph-based neural

networks to identify cancer targets or discover drugs from
biological networks.

1. Feature representation. Graph embedding177 is the core
method to extract features in graph-based neural networks,
which represent network nodes as a low-dimensional vector
representation, preserving both network topology and node
content information178. For example, Li et al174 proposed a
similarity-based miRNA-disease prediction method that
used DeepWalk, a graph embedding algorithm, to compute
the topological similarities between two diseases nodes. The
model extracts the disease node features in the disease-
disease network based on the random walk algorithm, and
significantly enhances the prediction performance by
utilizing global network association information. For dis-
eases nodes with similar features, if one of the diseases is

Table 4. Commonly used neural networks in ML-based biology analysis

Model Characteristic Application scenarios

Non-graph Neural Network

DNN Deep neural network (DNN), also called multi-layer perceptron, is a neural network with multi-layer hidden layer. 169

CNN Convolutional neural network (CNN) obtains local information between input data by convolution. 170

Graph-based Neural Network

GCN Graph convolutional network (GCN) applied cconvolution in networks to obtain local information between nodes
and neighbour nodes.

171

GAE Graph autoencoder (GAE) uses autoencoder to extract the embedded features of the network. 172

GAN Graph attention network (GAN) uses attention mechanism instead of convolution to obtain local or global
information between nodes.

173

DeepWalk DeepWalk is a network embedding model, which can represent the attributes of graph nodes as low dimensional
and dense eigenvectors.

174
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associated with miRNA, the other is predicted to be
associated with the miRNA.
In addition, Zheng et al.179 proposed an attention-based

graph neural networks (attention mechanism assigns
different weight parameters to different targets through
learning, so as to consider the importance of key targets
locally and globally180) to learn the graph embedding
feature (association scores) from piRNA-disease association
network. The results showed that the predicted scores of
piRNA-disease associations are positively correlated with the
association probability between a piRNA and a disease,
suggesting that piRNAs with closer distances to tumour
genes in the network are more likely to be therapeutic
targets of cancer.

2. Feature integration, which integrates the heterogeneous,
noisy, nonlinear-related biological network information
(such as node similarity, node interactions, upstream and
downstream relationships) multi-views (such as drug
molecular structures and drugs’ indications)181. For example,
Ma et al.172 proposed a novel graph autoencoders model
(GAE) to learn accurate and interpretable drug similarity
measures from multiple types of drug properties. The GAE
uses attention mechanism180 to integrate multi-view (multi-
ple types of drug properties) from drug-drug interactions
network and determines the weights for each view
with respect to the similarity measure tasks for better
explaining the contribution of drug properties to drug
similarity. Due to the ability to integrate network data from

multi-views and autoencoder structures, GAE can resist the
noise interference in the data. Thus, graph-based neural
networks are more robust and reliable in most application
scenarios182.

Overall, deep learning can comprehensively explore features
such as node degree, edge length, and module in biological
networks83–85,183 to provide an accurate prediction for drug
targets of cancer through artificial intelligence of multiomics data
in complex biology networks184. However, there are still two key
issues to be addressed. One is the interpretability of the models,
which is critical for clinical adoption185. The other is how to
demonstrate the generalizability of the approach185 and validate
these approaches in the context of multi-institutional datasets.
Therefore, these issues are actively being tackled from model
interpretation, extraction of biological insights186 and model
reproducibility187.

THE ARTIFICIAL INTELLIGENCE BIOLOGY ANALYSIS FOR
BIOMEDICAL APPLICATIONS
Because the wide and easy accessibility of high-throughput data
in oncology has provided the basis for developing novel artificial
intelligence methods and validating their capability to identify
therapeutic targets, this section will focus on reviewing the
biomedical applications from four perspectives. First, we present
the artificial intelligence applications to identify novel anticancer
targets. Second, we present the artificial intelligence applications

Fig. 8 The illustration of graph-based neural networks for ML-based biology analysis. The graph-based neural networks take the topology
of the biological networks data (such as gene-gene networks, protein-protein networks and drug-target networks) as input data. And then,
the graph-based neural network realizes the functions of link prediction, classification and clustering by analyzing the biological information
in the network topology. (Created with BioRender.com)
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to evaluate the druggability of potential target genes. Third, we
show the artificial intelligence applications for drug discovery.
Fourth, we show the artificial intelligence applications for drug
property prediction.

Identification of novel anticancer targets
Artificial intelligence biology analysis applications188 usually use
omics data to build networks and identify co-expression modules
of genes, proteins, metabolites, critical pathways between
molecules, and key molecules in biological networks189. This
study will introduce these applications from two perspectives: one
is network-based biology analysis applications, and the other is
ML-based biology analysis applications.

Network-based artificial intelligence for identifying novel anticancer
targets. Network-based biology analysis applications firstly
reconstruct networks by computing differential expressions of
molecules and their correlations190–193. Then, gene set enrichment
analysis are performed to identify network modules with different
biological functions194. Finally, the identified network modules are

used to discover key genes that are potential therapeutic targets
(or biomarkers) for cancer. Here, we show the key target
identification procedure by network-based biology analysis
applications as follows.
WGCNA195 is a commonly used network-based biology analysis

application that uses various gene expression matrices as input.
Then, WGCNA outputs different gene network modules and the
core genes in the biological network. For example, Zhou et al.196

used WGCNA to analyse colorectal cancer data from TCGA (Fig. 9),
which demonstrated that 11 hub genes and 5 hub miRNAs have
predictive power for the prognosis of colorectal cancer patients by
the following steps.
In Step 1, the correlation between all pairs of genes and miRNAs

by differential gene expression analysis was calculated, and two
similarity matrices were constructed. In Step 2, the adjacency
matrix, which comes from similarity matrices, is transformed into a
topological overlap matrix (TOM) by using TOM similarity, and
then the coexpressed gene and miRNA modules are identified by
using dynamic tree cutting197. In Step 3, after module preservation
analysis, six gene modules were found to have strong stability,

Fig. 9 The workflow to identify novel anticancer targets by network-based. (Created with BioRender.com)
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and one miRNA module was found to have low stability. In Step 4,
they performed module-trait relationship analysis to further
validate the module–clinical trait relationships, and two patholo-
gical stage-related gene modules and one pathological stage-
related miRNA module were identified. In Step 5, hub genes and
hub miRNAs were identified by calculating the module member-
ship and gene significance.
Though network-based biology analysis methods are useful in

identifying anticancer targets, they have some limitations, such as
they cannot effectively handle multiomics data, leading to high
false-positive rates of identified targets42. Developing compre-
hensive network-based biology analysis applications may resolve
the problems and increase the precision for predicting cancer
biomarkers198.
For example, Lai et al.199 deployed an integrated approach that

combined network-based algorithms and RNA sequencing data to
delineate miRNA-based strategies that enhanced DC (dendritic cell)-
elicited immune responses. First, the authors performed RNA
sequencing to obtain the protein-coding genes and miRNAs in
relation to standard DCs. Then, they analysed miRNA-gene
interactions at the pathway level and reconstructed regulatory
networks underlying the immunological functions of DCs. Finally,
they performed network-based prioritization of miRNAs by combin-
ing their expression profiles and strength of association with other
protein-coding genes. Their analysis identified dozens of promising
miRNA candidates, of which miR-15a and miR-16 are the most
promising ones for increasing the immunogenic potency of DCs and
therefore improving DC-based immunotherapy against cancer.
In summary, we consider that an increasing number of network-

based biology analysis applications will be developed for novel
anticancer targets identification in the distant future.

ML-based artificial intelligence for identifying novel anticancer
targets. ML-based biology network analysis applications are
applied to interrogate the large, complex data and thus iden
tifying reliable potential novel targets as effective treatments of
human diseases200. These ML-based biology analysis applications
for novel anticancer targets identification consist of classifica-
tion201, clustering202, neural networks203,204, and so on205. Here,
due to the limit space of the review, we only focus on the ML-
based biology network analysis applications for classifications and
graph-based neural networks.
ML-based biology network analysis applications for classifications

identify key targets by determining the key factors of classifica-
tions206. It considers specific biomarkers (such as gene or protein
nodes) of the defined classes as key targets206. Recently, the
classification-based applications and molecular profiling207, use
genome-wide gene transcription profiles, protein expression profiles
and/or mutational landscapes to make a more accurate classification
of tumor subtypes and identify biomarkers for specific tumor types.
For example, Sinkala et al,208 applied classification analysis on

networks to reveal subtypes of pancreatic cancer and their
molecular characteristics. Firstly, the authors employed K-means
clustering to the reverse phase protein array (RPPA), determined
proteomics data with 45 high-purity pancreatic cancer samples, and
then identified two clusters of samples.
Secondly, they compared their clustering results to other

subtypes that have been reported in the literature for various
other molecular data types (such as DNA methylation status,
protein expression levels and expression levels of mRNAs and
miRNAs), and then applied the similarity network fusion (SNF) to
identify two-cluster and three-cluster solutions comprised 25 and
20 tumors. The SNF method solves the disparate clustering problem
by constructing similarity networks of samples for each available
molecular data type and then efficiently fuses these into one
network that represents clustering based on all the underlying data.
Thirdly, they applied proteomics-based signaling pathway

analysis to distinguish disease subtypes and found that, for tumors

of the two major pancreatic cancer subtypes, oncogenesis may be
primarily driven by perturbation in either SMAD4 or mTOR signaling
pathways. Furthermore, they performed gene set enrichment
analysis using the Gene Ontology database52 and found that
pancreatic cancer subtypes classified by mRNA expression levels
and DNA methylation statuses show differences in molecular
functions in terms of mRNA.
Finally, given that different types of molecular data yield different

patterns of tumor clustering, they attempted to identify a list of
biomarkers that can differentiate the two tumor subtypes. Using
neighborhood component analysis, they identified biomarker sets
comprising 50 mRNAs, 49 methylated genes, 14 proteins, and 20
miRNAs. Subsequently, they separately applied hierarchical cluster-
ing using each type of the molecular data and successfully
reproduced the two pancreatic cancer subtypes.
For graph-based neural networks, they take advantage of not

only making use of the correlation among samples described by
similar networks, but also message passing between targets and
neighbors to improve the accuracy of targets identification209.
For example, to the best of our knowledge, the MOGONET

proposed by Wang et al.203 is the first to make use of both graph
convolution networks (GCNs) and cross-omics relationships in the
label space for effective multiomics integration in biomedical data
classification tasks. The specific process is as follows:
Firstly, they constructed a weighted sample similarity network for

each type of omics data using cosine similarity. Taking both the
omics features and the corresponding similarity network as the input,
a GCN is trained for each type of omics data to predict class labels.
Secondly, the predictions generated by each omics data-

specific GCN are further utilized to construct a new tensor,
named cross-omics discovery tensor, which can reflect the cross-
omics label correlations.
Finally, the cross-omics discovery tensor is forwarded to VCDN

(view correlation discovery network) to explore the latent
correlations across different omics data for final label prediction.
Because the importance of a feature to the classification task can
be measured by the performance decrease after removing
individual features. Therefore, they used this method on the test
data set to quantify and rank the contribution of each feature of
different omics data to the prediction. Using the method, they
identified top-ranking features as biomarkers for breast cancer.
In addition, Xuan et al.204 proposed a novel method based on

the graph convolutional network and convolutional neural
network (GCNLDA) to infer disease-related lncRNA candidates.
First, they developed a network that is comprised of lncRNA,
disease, and miRNA nodes. Then, they developed an embedding
matrix of lncRNA-disease node pairs with respect to the
biological premises. Then, they employed a convolutional neural
network to explore various connections related to lncRNA-
disease on node pair embedding. Finally, they learned the local
network representations of lncRNA-disease pairs by deeply
integrating the graph convolution autoencoder into topological
lncRNA-disease-miRNA heterogeneous networks. Cross-
validation confirmed that GCNLDA outperforms other state-of-
the-art methods in terms of both AUC and AUPR161. Case
studies204 on stomach cancer, osteosarcoma and lung cancer
confirmed that GCNLDA effectively discovered potential lncRNA-
disease associations. Therefore, GCNLDA is becoming an
effective tool to screen reliable candidates for lncRNA-disease
association validation with the help of biological experiments.
In summary, we consider that an increasing number of ML-

based biology analysis applications will be developed to identify
novel anticancer targets with the development of deep learning
in the future.

Evaluation of the druggability of potential targets
Druggability is a concept that assesses whether a drug can bind
to a protein to alter its activity3,4. The human proteome has
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approximately 6,000 to 8,000 potential pharmacological targets,
but only a small fraction can be targeted by drugs7,210.
Therefore, it is important for us to evaluate druggability after
finding novel anticancer targets. This study will introduce these
applications from two perspectives: one is network-based
biology analysis applications, and the other is ML-based biology
analysis applications.

Network-based artificial intelligence for evaluating the druggability
of potential targets. The druggability evaluating approach
requires a long development cycle and high financial cost for
the 3D structures of protein analysis211, while network-based
biology analysis application provides an alternative methods to
accelerate the evaluation procedure for the druggability of
potential targets212.
Described by Fig. 10, PockDrug is a novel web server that is

employed to predict pocket druggability on proteins and queried
for a protein or a set of proteins213. For example, Yang et al.214

constructed a protein–protein interaction network for thyroid
cancer and identified three key targets, HEY2, TNIK, and LRP4.
Then, they used PockDrug to predict whether HEY2, TNIK, or LRP4
have targetable pockets for drugs in the following three steps.
In Step 1, they inputted the potential target and located

pocket estimation methods. In Step 2, they predicted the
druggability of the pockets by computing the physicochemical
properties of the target pockets. In Step 3, they screened three
hub genes, HEY2, TNIK, and LRP4. Based on the predictions, TNIK,
which has 8 out of 538 residues, has an average druggability
probability greater than 0.5 and thus was considered a
druggable pocket for thyroid cancer.
In short, with the in-depth study of protein pocket, an

increasing number of network-based biology analysis applica-
tions are developed to accurately evaluate the druggability of
anticancer targets, providing reliable druggable targets for
cancer treatment.

ML-based artificial intelligence for evaluating the druggability of
potential targets. These ML-based biology analysis applications
for evaluating the druggability of potential targets consist of
protein structure modeling and drug-target affinity analysis.
Previously, traditional analysis of protein structure modeling
required considerable time and financial cost211, which greatly
limited the traditional application of PockDrug since it is heavily
dependent on an accurate 3D protein structure. Recent ML-based
biology analysis applications have focused on developing
methods to predict the 3D structure of a protein from its genetic
sequence, also known as the protein folding problem. The cutting-
edge ML-based modelling method215–217 can generate 3D protein
structures with high accuracy and efficiency, which makes it
possible for PockDrug to be widely used.
For example, Yang et al.218 developed the trRosetta algorithm,

which fast and accurately predicts protein structures based on
energy minimizations with restrained trRosetta. They employ a
deep residual neural network to predict the restrained trRosetta,
which consists of inter-residue distance and orientation distribu-
tions. Since trRosetta outperforms all previously protein modelling
methods in benchmark tests on CASP13-219 and CAMEO-220

derived sets, it turns out that trRosetta can accurately predict
protein structure. Furthermore, Senior et al.221 developed Alpha-
fold to predict protein structures from amino acid sequences. First,
Alphafold predicts the distances between pairs of residues by
training a neural network to analyse the covariation of homo-
logous sequences. Then, Alphafold constructs a potential mean
force that accurately describes the shape of a protein. Finally,
Alphafold optimizes the protein structure by a gradient descent
algorithm. Because AlphaFold can predict protein structure with
high accuracy even for such sequences with fewer homologous
sequences, we consider that AlphaFold makes great progress in
protein-structure prediction.
ML-based biology analysis applications for drug-target affinity

(DTA) analysis application estimates the interaction strength of

Fig. 10 The workflow to evaluate the druggability of potential target proteins. (Created with BioRender.com)
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novel drug–target pairs based on previous studies to evaluate the
druggability of targets222.
Compared with other methods, such as molecular docking223

and collaborative filtering224, graph-based neural networks are
more effective in DTA prediction, because graph-based models
facilitate the learning by considering both drug structure and
drug-target interaction information instead of representing the
drugs as string, as string sequences may lose the structural
information of the molecule and may impair the predictive power
of models225.
For example, Nguyen et al.225 is the first to use GNN for

predicting DTA. The authors proposed GraphDTA, a new neural
network model for regression tasks, which takes the drug-target
pair as the input and outputs the continuous measurement of the
binding affinity of the pair.
In detail, for the input drug-target pair, the protein targets are

represented as sequence information instead of the molecular
diagram of tertiary structure. While the drug compounds are
represented as network graphs of atomic interaction, where each
node is an eigenvector that represents five kinds of information: the
atom symbol, the number of adjacent atoms, the number of adjacent
hydrogens, the implicit value of the atom, and whether the atom is in
an aromatic structure. For the output, GraphDTA combined the drug-
target pair feature information to predict the continuous measure-
ment of the binding affinity of the drug-target pair.
Through a multivariable statistical analysis of GraphDTA’s output

data from hidden layers, the authors have two conclusions. One is to
identify the correlations between hidden node activations and
domain-specific drug annotations, such as the number of aliphatic
hydroxyl groups, which suggests that the graph neural network can
automatically assign importance to well-defined chemical features
without any prior knowledge. The other is that the model makes it
easier to extract features from drugs with obvious molecular
structure patterns to achieve high-precision predictions. Especially,
drugs that do not have an obvious molecular structure pattern are
more difficult to predict.
In short, with the development of deep learning, an increasing

number of ML-based biology analysis applications can quickly and
accurately evaluate the druggability of anticancer targets, providing
reliable druggable targets for cancer treatment and reducing the
time and financial costs of experiments.

Drug discovery
After evaluating the druggability of potential targets, it is essential
to discover the drugs that interact with the potential therapeutic
targets. As complex or concomitant diseases may usually require
treatment with multiple drugs, but the use of multiple drugs will
increase the risk of side effects200, it is very essential for drug
discovery to predict the interactions between drug-target and
drug-drug.
This study will introduce these applications from two perspec-

tives as the above section: one is network-based biology analysis
applications, and the other is ML-based biology analysis
applications.

Network-based artificial intelligence for drug discovery. These
network-based analysis applications for drug discovery consist of
drug screening and drug repurposing. Drug screening is a process
that potential drugs are identified and optimized before selecting
a candidate drug to progress to clinical trials226. Since screening
drugs through biological experiment is quite laborious, expensive,
and time-consuming226, network-based biology analysis applica-
tion becomes an alternative way for efficiently drugs screening.
Identifying drug-target interactions (DTIs) is crucial for drug

screening. Especially, novel DTIs can be employed to look for the
novel anticancer drugs with known targets227.
The network-based biology analysis applications for DTI

prediction are usually based on guilt-by-association principle that

a protein may be a target for a drug if many of the protein’s
neighbors in the interaction network are targets of the drug228.
Based on this principle, we classify the network-based biology
analysis applications for predicting DTI into two categories.
One is ‘top-down’, which is from observable characteristics, such

as side-effects or the diseases treated by a drug, to the interaction.
For example, Campillos et al.229 used the physiological effect
information from side effect similarity networks between entities
for DTI prediction to predict whether two molecules could
interact.
The other is ‘bottom-up’, which is from molecular features, such

as protein structure, to interactions. For example, Feng et al.230

and Lee et al.231 predicted DTI based on the proteins in protein-
protein interaction networks with similar property features that
may interact with the same drug.
Drug repurposing, also known as drug repositioning, is another

drug discovery application. It refers to a method that identifies
new indications for approved drugs or drug candidates which
have failed in the development phase232. Compared to the drug
screening process, since drug repurposing can significantly reduce
the drug development period and costs233, it is a better
application to discover anticancer drugs.
The network-based biology analysis applications are efficient to

carry out drug repurposing analysis, because the constructed drug
similarity networks contain the similarity, interaction or linkages
between drugs, diseases, and targets. Here, we introduce four
major network-based biology analysis applications of drug
repurposing234–241 as follows.
The first network-based biology analysis application of drug

repurposing quantifies the similarities or relationships for known
drug-disease associations, and then uses regression models or
statistical models to predict novel drug-disease associations234,235.
For example, Cheng et al.242 presented a network-based drug
repurposing tool, which can accurately predicts drug responses in
cancer cell lines by integrating human protein-protein inter-
actome with transcriptome profiles, whole-exome sequencing,
drug-target interactions and drug-induced microarray data.
The second network-based biology analysis application of drug

repurposing infers new indications of drugs through analyzing
information flow or performing random walks on drug-disease
association networks236–238. For example, Luo et al.243 proposed a
novel random walk method to measure the similarity of drugs and
diseases respectively by the drugs properties and diseases
properties, so as to predict potential indications of drugs.
The third network-based biology analysis application of drug

repurposing, named individualized Network-based Co-Mutation,
quantifies putative genetic interactions in cancer and it can be
used to identify candidate therapeutic pathways for cancer239. For
example, Cheng et al.244 used the approach to identify potential
targets or new indications of existing cancer drugs that directly
target significantly mutated genes or their neighbor genes in the
human PPI interaction network.
The fourth network-based biology analysis application of drug

repurposing can be realized directly through calculating the
adjacency matrix of drug and disease network240,241. Based on this
method, Luo et al.245 utilized the matrix completion algorithm to
fills out the unknown entries in the drug–disease matrix by
constructing a low-rank matrix approximation. New drug–disease
associations will be screened by the predicted fill value.
Taken together, the network-based drug screening and

repurposing applications provide researchers a lot of alternative
approaches for quickly anticancer drugs discovery.

ML-based artificial intelligence for drug discovery. Currently, ML-
based biology analysis applications have been employed to carry
out drug screening and drug repurposing. For drug screening,
previous studies have shown that network-based biology analysis
applications can only screen the neighbour proteins of known
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targets, while drug-protein interactions may dysregulate the
targets’ interacting neighbours227 resulting in high false positive
prediction results. ML-based biology analysis applications, such as
graph-based neural network, have the advantage of integrated
features that combine both ‘bottom-up’229 and ‘top-down’230

approaches to reduce the high false positive prediction results.
For example, Hinnerichs et al.227 developed the DTI-Voodoo

that combines molecular features and phenotypes information
with an interaction network using graph neural networks to
predict drug-protein interactions (Fig. 11).
Firstly, the model takes the two features, phenotypes features

and molecular features, as input. To extracted phenotypes
features, they utilized DL2Vec246 to obtain ontology-based
representations. DL2vec constructs a PPI network by introducing
nodes for each ontology class and edges for ontology axioms,
followed by random walks starting from each node in the graph to
generate representations that enable encoding drug effects or
protein functions while preserving their semantic neighborhood
within that graph. To extract molecular features, they utilized
SmilesTransformer247 to capture the molecular organization of
each drug from molecular structures of drugs and utilized

DeepGOPlus248 to capture protein molecular features from protein
amino acid sequences.
Secondly, they used two learnable feature transformer models

to investigate the latent relationship between phenotypes
features and molecular features. According to relationship
information, the transformer model, which input the phenotypes
features, will output the protein embedding for PPI networks (the
top-down approach), and the other transformer model, which
input the molecular features, will output drug embedding (the
bottom-up approach).
Finally, a DNN was used to extract similar information related to

protein from drug embedding, while a GCN is used to update the
nodes embedding in PPI networks. Then both protein features and
both drugs’ features are combined to calculate the similarity by
cosine similarity. Since DTI-Voodoo performs well, it demonstrated
that graph-based neural networks are good at identifying novel
drug-protein interactions.
For drug repurposing, graph-based neural networks take the

advantage of feature representation, which can not only utilize the
drug-drug links information, but also the features between drug-
cancer pairs.

Fig. 11 The graph-based neural network for DTI prediction by combining both bottom-up and top-down biology analysis approaches.
(Created with BioRender.com)
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For example, Cui et al.249 proposed GraphRepur, a model for
drug repurposing prediction based on graph neural networks.
Firstly, the authors collected the drug-induced gene expression
data from the LINCS project250 as well as the drug-drug links
information from the STITCH database251. Secondly, to obtain the
signature of drugs, they identified differentially expressed genes
for breast cancer and used the drug-induced genes from LINCS as
drug signatures. Thirdly, based on the drug-drug links information
from the STITCH database and drug signatures, they constructed a
drug-drug links graph with drug signatures as node features.
Fourthly, they input drug signatures and drug-drug links informa-
tion into GraphRepur, and then the model computes scores for
drugs that can be repurposed for treating breast cancer. Finally,
the authors validated some predictive drugs for breast cancer
using experimental data from the literature and showed that the
model has significantly better performances than others, such as
GCN, DNN, and random forest, in drug repurposing. using
published studies.
Furthermore, the authors summarize three conclusions. The

first conclusion is that the drug-drug links information plays an
important role in studying drug repurposing. The second
conclusion is that if such a network with fewer isolated nodes
can provide a lot of network topology information, it will
significantly improve the prediction performance of graph
neural networks. The third is that the drug-induced genetic
feature help to improve the DTI prediction accuracy of graph
neural network.
Taken together, with the development of graph-based neural

networks, an increasing number of ML-based drug screening
and repurposing applications can quickly and accurately
discover anticancer drugs, reducing the time and financial
costs of experiments.

Drug properties prediction
ADMET properties prediction. As discussed in section 4.3 (drug
discovery step), after we have a list of drug molecules showing
high affinity with the therapeutic target, it is necessary to
investigate the properties of these candidates’ drugs252–255. Since
the prediction of drug properties usually adopts the ML-based
methods, this study mainly reviews the ML-based biology analysis
applications for drug properties prediction such as the absorption,
distribution, metabolism, excretion, and toxicity (ADMET) proper-
ties of chemical compounds256. Table 5 briefly described the
ADMET properties.
ADMET properties prediction can be considered as a classifica-

tion or regression problem. Because of the strong ability of feature
representation177, graph-based neural networks can capture the
drug descriptors (the physicochemical properties, molecular
representations, and drug-like properties of molecules) from the
drug fingerprints (the substructure features of a molecule)257, so
as to predict ADMET properties by classification or regression
algorithm (Fig. 12)258.
For example, Duvenaud et al.259 proposed a graph convolution

network to learn drug molecular fingerprints, which shows better
performance than the state-of-the-art circular fingerprint method

for ADMET properties prediction. After that, more and more
scientists have used graph-based neural networks to predict the
ADMET properties of drug molecules.
For example, Liu et al.171 proposed Chemi-Net, which utilizes

GCN for ADMET properties prediction. They set the characteriza-
tion of the atoms of the drug molecule and the relationship
between atoms as the input of the Chemi-Net, while the output of
Chemi-Net is the ADMET properties prediction of drug molecules.
The predictive process of Chemi-Net is as follows.
Firstly, the model projects the assembling of the atoms and

atom pair descriptors (features between atomic pairs)257 onto a 3D
space to obtain a drug molecule-shaped graph structure.
Secondly, Chemi-Net carries out a series of graph convolution
operations to output a single fixed-sized molecule embedding.
Finally, they obtain accurate ADMET properties predictions of
drugs after passing the molecule embedding representation
through fully connected layers.
In summary, we consider that more artificial intelligence models

for drug properties prediction will be developed in the distant
future.

The drug properties application in clinical trial. Since there have
been a large number of applications based on artificial intelligence
to study the properties of drugs, it still takes on average 10–15
years and 1.5–2.0 billion to bring a new drug to market260. One of
the main stumbling blocks is the high failure rate of clinical trials.
Therefore, some research are committed to the application of
artificial intelligence for clinical trial design.
For example, Shah et al261 construct an artificial intelligence

system that made use of the ‘self-learning’ deep reinforcement
learning technology to looks at treatment regimens currently in
use, and iteratively adjusts the doses. Therefore, the system can
determine the fewest, smallest doses that could still shrink brain
tumors, reduce toxicity and eventually find an optimal treatment
plan with the lowest possible potency and frequency of doses that
should still reduce tumor sizes to a degree comparable to that of
traditional regimens. In simulated trials of 50 patients, the system
designed treatment cycles that reduced the potency to less than a
half of all the doses while maintaining the same tumor-shrinking
potential.
In conclusion, we believe that with the development of artificial

intelligence applications for drug property prediction, these
applications will provide better help for clinical trial.

DISCUSSION AND CONCLUSIONS
Modelling of cellular networks underlying cancer has provided us
with a quantitative framework to investigate the link between
network properties and the disease by artificial intelligence
biology analysis, thereby leading to the discovery of potential
novel anticancer targets and drugs23–29. However, there is no
systematic review that introduces artificial intelligence biology
analysis in cancer target identification and drug discovery. For this
reason, this study briefly reviewed the scope of artificial
intelligence biology analysis to explore new anticancer

Table 5. The brief description of the ADMET properties256

Property Description

Absorption The ability of a drug that cross membranes of many cell to reach its site of action, when drug is administered via oral ingestion.

Distribution After absorption or systemic administration into the bloodstream, a drug is distributed to its site of action through the circulatory
systems.

Metabolism The process of chemically converting a drug to a metabolite is called metabolism or biotransformation.

Excretion The collective term used for irreversibly removing a drug from the body

Toxicity The extent to which a drug damages an entire organism, an organism’s substructure, or an organ.
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targets34,54,57,74,80, the principles and theory of commonly used
artificial intelligence biology analysis algorithms83–91, and the
artificial intelligence applications for artificial intelligence biology
analysis42,195,213.
The scope of artificial intelligence analysis to explore novel

anticancer targets consists of epigenetics54, genomics57, proteo-
mics74, metabolomics34, etc. Since it is not accurate to have
anticancer targets by single omics studies, we have to employ
artificial intelligence biology analysis to effectively integrate
multiple omics data and tackle the complexity of cancer that
arises from interactions between genes and their products16,17

and improve our understanding of carcinogenesis23–29. Therefore,
how to employ artificial intelligence biology analysis algorithms to
integrate multiomics data and identify novel anticancer targets
will be an important future study direction.
Next, we introduced two categories of commonly used artificial

intelligence algorithms. One is network-based biology analysis
algorithms and the other is ML-based biology analysis algorithms.
We here discuss their limitations and advantages.
The network-based biology analysis algorithms usually are

comprised of shortest path83, module detection84 and network
centrality85, which have three major advantages: First, they
provide a variety of alternative approaches to identify cancer
targets, and different algorithms can compensate each other to
identify targets from various perspectives, therefore providing
new biological explanations30; Second, since they are not limited
by the scale of the network, they are good at dealing with the case
of small sample network; Third, prior biological knowledge and
experience could be conveniently integrated into network-based
biology analysis algorithms to make them interpretable.
However, previous studies also show two major shortcomings

for the network-based algorithms: First, the current biological
network data are biased toward much-studied targets262. Since
previous studies have paid much attention to these targets, the
network-based algorithms will more likely identify these well-
studied targets than others due to the data bias262. Second, most
algorithms only use the topological information of the biological
network, but neglect the association between cell function or
phenotypes and topological features (such as centrality-based
algorithms that are discussed in Section 3.1.2).
ML-based biology analysis algorithms are usually comprised

of decision trees86–88 and deep learning89–91, which have two
major advantages.
One is feature learning and detection177,181, which employ

sophisticated neural network architectures to link up features of
biological networks and characterize their relationships. Subsequently,
they iteratively train the model to detect such features that are hard
to be detected by network-based biology analysis algorithms.
The other is their ability to effectively integrate large and

diverse data. It is possible for ML-based networks biology analysis
algorithms to integrate multiomics biological network data and
identify novel targets263, because of the fast development of deep

learning models and the easy access to high-throughput
biological.
Although employing ML-based algorithms greatly benefits the

target identification and drug discovery for cancer treatment174,
we still have three major challenges to overcome.
The first challenge is the lack of consistent data for validation33.

Although the recent advances in biotechnologies have enabled
the fast generation of massive biomedical data, such data often
suffer from inconsistency in production and information missing
in annotation, resulting in the lack of reliable and consistent data
for validating deep learning models264.
The second challenge is the integration of heterogeneous

information103. Although deep learning models facilitate the
integration of multimodal biological data, it is still difficult to
build up a universal deep learning model due to the lack of
biological domain knowledge200.
The third challenge is hard to provide interpretability of deep

learning models185. However, a recent study sheds a light to
resolve the issue through a combination of a disease network with
a neural network to characterize the mechanism of melanoma263.
In addition, graphs-based neural networks can improve the
interpretability of deep learning models265.
In the last section of the study, we have reviewed the

applications of artificial intelligence biology analysis for cancer
therapy from four perspectives: novel anticancer targets identifi-
cation189, evaluating the druggability of potential targets3,4, drug
discovery200, and drug properties prediction252–255.
First, we presented several widely used applications to identify

novel anticancer targets. However, exemplified by WGCNA195,
these network-based biology analysis applications not only
requires high computing costs to reconstruct gene co-
expression networks42 but also has difficulty in accurately locating
effective network nodes. Although ML-based biology analysis
applications employ collaborative modelling by neighbourhood
nodes information to reduce the computational cost and improve
the predictive accuracy for anticancer targets, biological networks
still have data bias262, resulting in most of the identified targets by
current applications already have been reported in previous
studies. Therefore, how to develop such an efficient feature
selection application that can solve the data bias problem will be
appealing for novel therapeutic anticancer target identification266–
268 in the distant future.
Second, we introduce several widely used applications to

evaluate the druggability of potential targets. For example,
PockDrug is usually used to predict druggable pockets on
proteins213. Although trRosetta218 and Alphafold221 offer oppor-
tunities for Pockdrug to evaluate the pharmaceuticals of potential
targets, Pockdrug neither accurately predicts druggability due to
the complexity of protein structure269–271 nor costs low efforts to
validate through biological experiments272,273. Nevertheless, since
DTA prediction can quickly provide reliable druggable targets for
cancer care with low financial costs211, it is potential to develop

Fig. 12 The graph-based neural network capture the features related to drug properties from drug molecular structure to predict ADMET
properties of drugs. (Created with BioRender.com)
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the related efficient artificial intelligence biology analysis applica-
tions for DTA prediction in the distant future.
Third, we investigated several widely used applications for drug

discovery, which consists of drug screening and drug repurposing.
For drug screening, identifying drug-target interactions (DTIs) is

a crucial step. Since network-based biology analysis applications
for DTI prediction are usually based on the guilt-by-association
principle228, it can only predict the interacting neighbors of known
cancer targets. Currently, ML-based biology analysis applications
can extend the predictions to downstream consequences227,
thereby screening out more possible anticancer drugs.
For drug repurposing232, there are four commonly used network-

based biology analysis applications234–241 that integrate the
similarities among various drugs but ignore prior knowledge.
However, ML-based biology analysis applications not only can take
advantage of the similarity among drugs, but also can integrate
drug properties to improve the accuracy of drug repurposing.
Fourth, we introduce widely used applications for drug properties

prediction. For example, graph convolution networks, which have a
strong ability of feature representation177, can capture the features
related to ADMET properties of drugs from their molecular
structures. Therefore, it is becoming a popular method to predict
drug properties by integrating drug molecular structures and drug
clinical phenotype for drug properties prediction through graph
convolution networks274. Here, we wish once more and more
artificial intelligence biology analysis models are developed to
capture the features related to ADMET properties from the drug
molecular structure, to improve the success rate of clinical trials.
In summary, although we have reviewed and discussed many

artificial intelligence algorithms and corresponding applications
for novel anticancer target identification and drug discovery, this
review is still too brief to cover the entire research area. However,
because artificial intelligence algorithms are effective in exploring
new anticancer targets and discovering drugs, we wish this review
could offer valuable enlightenments for interested researchers to
develop an understanding of the principles behind artificial
intelligence biology analysis in cancer target identification and
drug discovery. Moreover, we wish that our perspective on
artificial intelligence and related applications will provide the
pathway for further advancement in the field.
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