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ABSTRACT
The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first
identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are
continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different
drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host
immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using
drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds
were screened, and potential hits were identified based on the docking score and interactions with the
key residues. The top six hits were subjected to molecular dynamics simulation and Free energy
calculations and repeated three times each. The per-residue energy decomposition analysis reported
that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47,
Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues. Here, we
also used ADPr as a positive control to compare our results. Our results suggest that our identified hits
by using such a complicated computational pipeline could inhibit the SARs-CoV-2 by targeting the
macrodomain-1. We strongly recommend the experimental testing of these compounds, which could
rescue the host immune system and could help to contain the disease caused by SARs-CoV-2.
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Introduction

At the end of 2019, the emergence of the new coronavirus
infection in Wuhan, China, has rapidly spread across the
world and has affected many countries very severely. This
virus causes a disease named as COVID-19 (Coronavirus
Disease), and the virology nomenclature committee has
named it SARs-CoV-2 (Wu et al., 2020). The virus belongs to
the beta coronaviruses and is believed to be transferred
from bat through pangolin. This virus has been reported to
highly contagious and can transfer from human-to-human
through different mediums. The SARS-CoV-2 virus-like SARS-
CoV and MERS-CoV, a beta-coronavirus and all of them
evolved from bats, are considered to be capable of causing
unprecedented health, economic and societal repercussions
(Lu et al., 2020). The world health organization (WHO)
declared this virus a global pandemic and constituted a

Public Health Emergency of International Concern. The epi-
demic has dramatically evolved, with more than 180 coun-
tries worldwide reporting laboratory-confirmed SARS-CoV-2
cases (Raoult et al., 2020).

Like the other coronaviruses, specifically the beta corona-
viruses, this SARs-CoV-2 also possess similar cellular machin-
ery. The SARs-CoV-2 owns a single standþ RNA with a total
of sixteen nonstructural proteins (nsp) (Chan et al., 2020).
These proteins are responsible for different cellular functions,
from self-replication to infection and host immune invasion.
Among the total 16 nonstructural proteins, nsp3 is one
among those with an important role such as viral life cycle,
interaction with host proteins and involved in anchoring the
coronavirus replication/transcription complex (RTC) to modi-
fied membranous structures originating from the endoplas-
mic reticulum (ER) (Angeletti et al., 2020). The sixteen
different domains of nsp3 perform these various functions.
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Among the 16 different domains, macrodomain-1 or SARS-
unique domain is an essential domain with host immune
evasion function (Fehr et al., 2018). The macrodomain-I or X-
domain has been reported to be indispensable for SARs
coronaviruses RNA replication (Angeletti et al., 2020; Kusov
et al., 2015). The ADP-ribose polymerases (PARPs) are primar-
ily attached to this domain to perform its function. PARPs
regulate important cellular processes such as cell-cycle pro-
gression, cell division, host–virus interaction, DNA damage
repair, genome maintenance, transcription regulation, protein
degradation, ageing and cell death (Putics et al., 2005). In
SARs-CoVs, the binding of ADPR to the macrodomain of
nsp3 is important (Fehr & Perlman, 2015). This binding ini-
tiates the signaling of RNA replication and virulence.
Interferon (IFN) regulates the anti-viral function of PARPs,
and thus, evolutionary this domain (macrodomain) neutral-
izes the host immune response upon infection (Eriksson
et al., 2008; Fehr et al., 2016). Accordingly, macrodomain by
removing ADP-ribosylation from modified host proteins, pre-
vent host responses to viral infection (Egloff et al., 2006).

Conversely, in the presence of free ADPRs in the cell
directed by the PARP activity, activates the TRPM2 receptor.
TRPM2, which is Transient Receptor Potential 2 receptor, con-
tributes to different cellular functions such as the production
of cytokines, regulation of calcium signaling, oxidative stress
response, insulin production, cell mortality and death
(Sumoza-Toledo & Penner, 2011). The Severe inflammatory
response, cytokine storms and necrosis in the patient’s lungs
with COVID-19 can explain the activation of the TRPM2 sig-
naling pathway, which can result from the action of the mac-
rodomain or stress conditions that lead to accumulation of
ADPR (Zheng et al., 2020). Macrodomain has been reported
as one of the potential drug targets in coronaviruses,
Chikungunya viruses and also in cancer (Shimizu et al., 2020;
Vijayasri & Hopper, 2017).

The macrodomain possesses a sandwich like a/b/a archi-
tecture. This domain possesses seven beta-sheets and six
helices. Previous studies reported that the binding of ADPr
mainly involves five different stretches, which could vary
from specie to specie (Piotrowski et al., 2009). The Asp21
residue, which corresponds to a different position in different
species, is conserved and fixes the one end of ADP.
Conversely, Asn39 fixes the other end of the ADPr
(Chatterjee et al., 2009). These residues are reported to be
essential in some SARs and MERs viruses for the important
activity of the ADPr. Recently, structure-based drug designing
has dramatically helped to design drugs against different dis-
ease and coronaviruses (Khan, Ali, et al., 2020; M. T. Khan
et al., 2020; Quimque et al., 2020).

The crystallographic structure of SARs-CoV-2 has recently
been resolved in complex with ADPr. In the macrodomain of
SARs-CoV-2, the two important residues which facilitate the
binding of ADPr correspond to Asp22 and Asn40. The over-
structure possesses similar architecture to that of SARs and
MERs macrodomain. Hence, this study uses structure-based
drug designing approaches to design a potential inhibitor to
target the SARs-CoV-2 macrodomain-I. Drug similarity and
virtual screening approaches were combined with molecular

dynamics simulation, and free energy calculation methods
identify high binding inhibitors to target macrodomain. This
study will ease a way of designing potential inhibitors to
fight against the COVID-19.

Material & methods

Protein structure retrieval and preparation

The crystallographic structure of SARs-CoV-2 macrodomain-I
recently reported was retrieved using the PDB ID: 6YWL and
processed to remove extra chains and was analyzed for miss-
ing residues and other structural defects. The structure was
minimized by using YASARA and MolProbity (Chen et al.,
2010; Land & Humble, 2018). Hydrogens were added by
using Hþþ webserver (Anandakrishnan et al., 2012). Water
molecules and other atoms were removed from the struc-
ture. The structure was visualized in PyMOL (DeLano, 2002).

Drug similarity search & databases retrieval

The binding of ADPr to the macrodomain reveals important
information regarding the interacting residues and the ADPr
structural scaffold. Here, the SMILES of ADPr was used as
input and search against ZINC, PDB and Chembl databases
was performed using SwissSimilarity (Zoete et al., 2016). All
the compounds were retrieved and were converted mdb for-
mat. Furthermore, two different databases NANPDB and TCM
(Traditional Chinese Medicine Database) (Chen, 2011) were
also screened against the macrodomain-I. NANPDB database
retrieved from http://african-compounds.org/nanpdb/ was
screened against the Mac-I structure (Ntie-Kang et al., 2017).
Resource from 617 species (146 families of plants, animals,
bacteria and fungi) comprised of 6482 compounds are
included in this database. Conversely, the TCM database pos-
sesses 57,320 compounds from Chinese herbs.

Ligands preparation and virtual screening protocol

The retrieved compounds were subjected to charges correction,
washing and minimization using MMFF94x force field. The data-
base was converted to .mdb format to be used as input for
Molecular Operating Environment (MOE v2016) (Vilar et al.,
2008). Previously, it has been reported that five stretches of
amino acids 20–22, 37–39, 43–49, 45–47 and 124–131 are
reported to be involved in the binding of ADPr (Lei et al., 2018).
So, using the selected residues option, an active site was
defined. With ten conformations, each ligand was screened
against the active site using a triangle matcher as a placement
while London dG as a scoring method. Docking scores and vis-
ual interactions were used as a criterion for selecting the best
hits. ADPr was used as positive control.

Induced-fit docking

After the screening of the two databases and the identified
similar compounds, a composite database of the top 80
compounds was generated. This database contains ligands
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with high docking scores and interactions with the key resi-
dues. IFD produces better accuracy. Thus, using IFD docking
protocol, the top 80 hits were re-docked to validate the
results. The compounds were further lessened to a reason-
able figure using the IFD protocol, which could then be
assessed and docked individually against the Mac-I
active site.

Re-docking of top hits using genetic algorithm

For the re-docking, we used AutoDock Vina software, which
is based on a Genetic Algorithm (GA) (Morris et al., 2009;
Trott & Olson, 2010). AutoDock software was used to define
the grid dimension and box based on the defined residues.
The protein structure was converted to .pdbqt format while
using the ligands preparation criteria such as root detection,
charges, hydrogen and aromaticity criteria were used for
ligands preparation. Each ligand molecule was prepared indi-
vidually and converted to .pdbqt file. To achieve high accur-
acy, we set exhaustiveness to 64. Thus here, multisteps
docking and re-docking approaches were utilized to identify
the most potential hits that could probably inhibit the SARs-
CoV-2.

ADMET and bioactivity prediction

To predict the bioactivity of each top ligand Molinspiration
Cheminformatics tool was used while for ADMET analysis,
SwissADME was utilized (Daina et al., 2017). Molinspiration
has been used by approximately 4500 studies to predict the
bioactivity results.

Molecular dynamics simulation of the top hits

To understand the dynamics and interacting behaviour, the
top hits identified complexed with Mac-I were subjected to
molecular dynamics simulation. To obtain better and more
accurate simulation results, all of the complexes were sub-
mitted to Propka 3.1, which is an online web server, for
protonation state correction. Amber 18 package with
PMEMD.CUDA implementation was used to perform the sim-
ulations (Case et al., 2005; Pearlman et al., 1995). For protein
AMBER ff14SB while for drug molecules GAFF2 (generalized
Amber force field) (Vassetti et al., 2019). Before protein–li-
gands topology generation, antechamber and frcmod were
used to obtain the ligand topologies file for simulation
(Wang et al., 2001). Systems were solvated with TIP3P water
box with 8.0 Å distance each side and were neutralized by
adding Naþ ions. Using the 300 K and a pressure of 1.0 bar
controlled by Langevin thermostat and Berendsen Barostat
was used (Davidchack et al., 2009; Lin et al., 2017). For the
hydrogen bonding SHAKE algorithm, while for long-range
interactions, particle mesh Ewald summation (PME) algorithm
was used (Kr€autler et al., 2001; Toukmaji et al., 2000). The
nonbonded cut-off was fixed at 10.0 Å. Each system was
minimized by using two-step minimization approach. A time
step was set as 2.0 fs. Followed by heating and equilibration,
the production simulation was carried for 100 ns at the NPT

ensemble, and the Cartesian coordinates were stored at
every 10 ps. Overall, 5000 frames were obtained from each
production simulation. Each simulation was repeated
three times.

Post-simulation analysis and visualization

Post-simulation analyses such as root mean square deviation
(RMSD) was carried out on the trajectories obtained from
each system to estimate the stability of each system while
root mean square fluctuation (RMSF) to access flexibility at
residues level. For compactness of the structure, we calcu-
lated the Rg (radius of gyration) as criteria for determining
the structural compactness during the simulation time using
CPPTRAJ and PTRAJ (Roe & Cheatham, 2013).

Binding free energy calculations

The binding of each ligand molecule was measured using
the Poisson–Boltzmann surface area molecular mechanics
(MMGBSA) method. (Junaid et al., 2019; Khan, Junaid, et al.,
2018, 2020; M. T. Khan et al., 2020; Sun et al., 2014). The
most extensively used MMPBSA.py script was utilized as an
input, which contains all the protocols for calculating free
energy. For each system, 5000 structural frames were used
to calculate the free energy using the following equation.

DGbond ¼ DGcomplex � ½DGreceptor þ DGligand�
The total binding energy is represented DGbind, while the
others demonstrate the binding energy of complex, protein
and ligand. The whole energy can be divided into specific
energy term, which contributes to the total binding free
energy. To calculate the contribution of particular energy
term, the following equation was used:

G ¼ Gbond þ Gele þ GvdW þ Gpol þ Gnpol � TS

The above equation contains representation for each energy
term, such as vdW and electrostatic. In addition, both polar
and nonpolar interaction energy terms are given. This
method of calculating the total binding free energy is widely
accepted and used by colossal studies (Khan, Ali, et al., 2020;
Khan, Rehman, et al., 2020; Khan, Saleem, et al., 2018; Khan
et al., 2019; M. T. Khan et al., 2020; Wang et al., 2019).

Per-Residue energy decomposition analysis

Free energy decomposition for each residue was conducted
using the MM-GBSA integrated script to obtain a comprehen-
sive view of the protein–ligand interaction and classify the
main residues responsible for the interaction. This study of
energy decomposition is carried out on the same snapshots
that were used in the above analysis.

Hydrogen bonding analysis

Hydrogen bonding occupancy analysis was used to monitor
the bonding lifetime during the simulation. Both Intra and
inter molecular hydrogen bonding analysis were performed.
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Results

Drug similarity search

SwissSimilarity webserver was utilized to identify similar com-
pounds like ADPr, which could bind to Mac-I. The server fol-
lows a criterion of Tanimoto, also known as Jaccard score to
classify compounds similarity from 0 to 1. Compounds with a
greater score (near to 1) are considered as the most similar
while the low score shows diversity. Hence, using
SwissSimilarity server, a total of 400 similar compounds were
predicted from the RCSB databank. For compounds docking,
we set a criterion of 0.8. Compounds with score >0.8 will be
considered for screening while the rest will be discarded.
Using this criterion, only 131 compounds were found to
have a score higher than 0.8. In contrast, the rest of 269
compounds were reported to have a score less than 0.8. In
the same way, only 11 compounds were predicted from
Chembl to have a score higher than 0.8. These 11 com-
pounds were also from a total of 400 predicted compounds.
However, using the same criteria, no molecule Zinc Drug like
a molecule database was found to have a similar scaffold.
Thus, a total of 142 compounds were obtained for screening
from a similarity search. Results from this protocol were ana-
lyzed, and the top six hits were subjected to molecular
dynamics simulation and post-simulation analyses. The over-
all flow of the work is given in Figure 1.

Virtual screening and molecular docking

A computational approach, virtual screening, is an ultrafast
paradigm to develop novel potential drugs against the latest
coronavirus (SARs-CoV-2). Computational virtual screening is
a time saving and reliable approach to find novel hits.
Herein, we used VS approach to screen the screen 141 com-
pounds from Drug similarity search result, 6482 compounds
were screened from NANPDB database while 57,320 com-
pounds were screened from the TCM database. The active
site was carefully selected based on the ADPr. The active site
residues include the two conserved residues Asp22 and
Asn40 which are indispensable for the function of macrodo-
main-I. Among the active site residues Asp22, Ile23, Asn40,
Lys44, Gly46, Gly47, Val49, Ser128, Gly130, Ile131, Phe132
and Phe156 makes the active site cavity. The overall informa-
tion regarding the nps3 domains, the crystal structure of
Macrodomain-I and its active site residues are given in
Figure 2.

First screening
In the first round of screening a total of 64,043 compounds
were tested. The docking score for these 64,043 compounds
ranges from �11.02 to �7.5 kcal/mol. Among these only
compounds with docking score greater than �9.0 kcal/mol
were selected for interaction analysis. Using this criterion,
only 80 compounds were found to have a score higher than
�9.0 kcal/mol. Among these, the top-scoring compounds 73
compounds were from similar drug compounds, while three
compounds from NANPDB and TCM were reported to have

scores higher than �9.0 kcal/mol. Compounds were analyzed
for interactions, and only those which form interactions with
Asp22 and Asn40 were selected. Furthermore, these com-
pounds were also analyzed for hydrogen bonding vdW and
electrostatic interactions with the key residues.

Second screening
In the second round of screening to the top 80 compounds
were subjected to induced-fit docking. The docking scores
for these compounds range from �11.0 to �9.50 kcal/mol.
To select the best compounds from all these, a criterion
based on docking score and multiple interactions with the
defined active site residues was used to filter the top hits.
This screening resulted in 36 best compounds satisfying the
specified criteria. Each conformation was manually visualized
for this purpose. The obtained 36 compounds were then
subjected to ADMET analysis, which excluded 17 compounds
while the remaining were the best fit. Hence, from these 80
compounds, only 19 compounds were found to form the
best interactions with active site residues and to have a
good binding affinity.

Third screening
In the third round of screening GA implemented in AutoDock
Vina was used with improved parameters to increase the
accuracy. A total of 19 compounds with 64 exhaustiveness
and Num_mode set to 25 was used. The top-scoring
compounds were analyzed for final selection to be subjected
to molecular dynamics simulation. The docking scores
for these top compounds were predicted from �12.152 to
�10.007 kcal/mol. The top six complexes were analyzed
for interaction analysis and given in Figure 3. Compound
P1,P5-Di(guanosine-50) pentaphosphate ammonium salt
(ChemSpider ID: 4484327) with the docking score �12.152
was found to form 9 hydrogen bonds with the key active site
residues. Among these interacting residues, Asn40, which is
essential for the function of this domain also form multiple
interactions with the compound. A single pie-cation and salt
bridge with Ala102 and Ala104 were formed. To understand
the mechanism of how this compounds interacts with the
receptor molecule an atomic level pattern was explored. It
was observed that the [N51] of the ligand formed hydrogen
bond with the Ile123 [N] by accepting a hydrogen. The same
way [O7] formed interaction with [CA] of the Gln130 and [N]
of Ile131. O [16] and O [19] from the ligand interacted with
the [ND2] of Asn40 and [N] of gly47. Furthermore, O [43]
formed a H-pi interaction by interacting with the 6-ring of
the Phe130. Conversely, compound (R)-RETRO-THIORPHAN
(ChemSpider ID: 394363) formed only 11 hydrogen bonds,
but no other interactions were reported. The docking score
for compounds (R)-RETRO-THIORPHAN was reported to be
�12.27 kcal/mol. Among the 11 hydrogen bonds formed by
(R)-RETRO-THIORPHAN, useful interactions with the two key
residues Asp22 and Asn40 were also formed. Herein, the N
[34] of the second ligand formed a hydrogen bond by inter-
acting with the [N41] of Ile23. While in case of Asp22 [OD1]
was reported to be involved in the interaction. Likewise, O
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[31], O [44], O [10], O [19] and O [52] interact with the [O] of
Ala154, Ala138 while the [N] of Gly147, Ser128, Leu126, Ala50
and the [NZ] of Lys102 are actively involved in the

interactions. Based on the docking score, the third-ranked
compound significant interactions with Ala38, Asn40, Gly46,
Gly47, Val49 and many other residues formed hydrogen

Table 1. Detail information regarding the interactions with the key residues such as hydrogen interaction, hydrophobic interactions, pie-cation interactions, salt-
bridges and the docking scores are given kcal/mol.

ChemSpider
Compound ID

Interactions

Docking
score BioactivityHydrogen bonding

Hydrophobic
bonds Other bonds

P1,P5-Di(guanosine-50)
pentaphosphate ammonium salt
(ChemSpider ID: 4484327)

Ala38, Asn40, Gly46, Gly47,
Val49, Ser128, Gly130,
Ile131,Phe132

– Ala102, Ala104 –12.15 0.74

(R)-RETRO-THIORPHAN
(ChemSpider ID: 394363)

Asp22, Ile23, Asn40, Gly46,
Gly47, Val49, Ser128,
Gly130, Ile131,Phe132,

– – –12.27 0.82

P(1),P(6)-bis(50-adenosyl)
hexaphosphate
(ChemSpider ID: 110267)

Asn40, Ly44, Gly46, Val49,
Gly47, Leu127, Ser128,
Gly130, Ile131,Phe132, Ala155

– – –11.19 0.75

(Rib5)ppA (ChemSpider ID: 30975) Asp22, Ile23, Asn40, Gly46,
Gly47, Val49, Ser128, Gly130,
Ile131,Phe132,

– – –11.03 0.58

NA7 (ChemSpider ID: 393480) Asn40, Ly44, Val49, Gly47,
Leu127, Ser128, Gly130,
Ile131,Phe132, Ala155

– – –11.03 0.52

dephospho-CoA (ChemSpider ID: 24785028) Asp22, Asn40, Ly44, Val49, Gly47,
Leu127, Ser128, Gly130,
Ile131,Phe132, Ala155

Ile131,Phe132 – –10.94 0.64

(continued)
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bonds with the compound P(1),P(6)-bis(50-adenosyl)hexaphos-
phate. The docking score for compound P(1),P(6)-bis(50-
adenosyl)hexaphosphate (ChemSpider ID: 110267) was

reported to be �11.19 kcal/mol. No other interactions such as
pie-cation, hydrophobic and salt bridges were reported. To
further give an insight into the mechanism we have explored

Table 1. Continued.

ChemSpider
Compound ID

Interactions

Docking
score BioactivityHydrogen bonding

Hydrophobic
bonds Other bonds

ADPr (ChemSpider ID:24785028) Asp22, Asn40, Ly44, Gly46,
Gly47, Ser128, Gly130, Ala155

Als50, Ile131, Phe132 – –9.76 0.59

Figure 1. The overall flow of the work. This methodology contains multisteps such as docking and re-docking and bioactivity prediction, molecular dynamics simu-
lation and post-simulation analyses are given.
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its atomic level interaction pattern. It was observed that O
[45]-[O]Ala38, O [51]-[O]Ala154, O [7]-[CA]Gly30, O [7]-
[N]Ile131, O [10]-[N]Gly130 and Ph2132, O [16] and [O19]-
[ND2] Asn40 while the 6-ring of the ligand form a pi-hydro-
gen bond with the [CG] of Lys44. In addition, compound
(Rib5)ppA (ChemSpider ID: 30975) with the docking score
�11.03 kcal/mol also formed almost 10 hydrogen bonds the
key residues, including significant interactions with Asp22
and Asn40. O [22]-[O]Leu126 acting as H-donor formed
hydrogen interaction. N [36] and N [29] formed hydrogen
bonds with [OD1] of Asp22 and [N] of Ile23. O [7]-[N]Val49, O
[10]-[N]Gly130 and Phe132, O [20]-[ND2] Asn40, O [21]-
[N]Ile131 and O [26]-[N]Phe156 were involved in hydrogen
bonding. Compound known as NA7 (ChemSpider ID: 393480)
formed multiple hydrogen interactions with Asp22 and
Asn40. Besides, Lys44, Val49, Ser128, Gly30 and many other
residues also formed multiple interactions. The docking score
for compound NA7 was reported to be �11.03 kcal/mol.
Furthermore, compound dephospho-CoA (ChemSpider ID:
24785028) formed two hydrophobic interactions with Ile131
and Phe132. Multiple hydrogen bonds with other active site
residues including Asp22 and Asn40 were also reported. N
[39] with [OD1] of Asp22, O [7]-[N]Val49, O [10]-[N]Gly130 and
Phe132, O [18]-[ND2] Asn40, O [19]-[N]Gly46, O [20]-
[N]Ser128, O [20]-[N]Val49, O [29]-[N]Asp157 and N [37]-
[N]Ile23 act as H-acceptor formed significant interactions. The
docking score for compound dephospho-CoA was found to
be �10.94 kcal/mol. In this case the N [39] with [OD1] of
Asp22 formed hydrogen bond, N [32] with Ile12, O [44] Gly47
[O], O [10]-[N]Gly130, O [41] and O [17]-[N]Ile131 while O
[29]-[O]Ala154 formed hydrogen bonds. The positive control
ADPr also formed interactions with the key residues and the
docking was reported to be �9.76 kcal/mol. Hence, these
results suggest that these compounds possess high affinity
towards the macrodomain-I and its interactions with the key
active site residues suggest that these compound possess

strong inhibitory properties. Detail information regarding the
interactions with the key residues such as hydrogen inter-
action, hydrophobic interactions, pie-cation interactions, salt-
bridges and the docking scores are given in Table 1.

Furthermore, results obtained from the server shows that
all these shortlisted compounds are active against the
enzyme targets. From the scores, it can be seen that com-
pound 1 with score 0.74 possesses inhibitory effects against
the enzymes while the others the reported score for com-
pound 2 (0.82), compound 3 (0.75), compound 4 (0.58), com-
pound 5 (0.52) while compound 6 possess (0.64) bioactivity
score against the macrodomain-I. Conversely, the bioactivity
score predicted for the ADPr positive control was 0.59. Thus,
these results strongly suggest that the shortlisted com-
pounds could efficiently bind with the macrodomain-I in the
experimental setup and should be tested for clinical trials as
all the compounds are obeying the ADMET rules expect few.

Stability of the protein–ligand complexes

After the screening of all the drugs and re-scoring, the best
hits were subjected to molecular dynamics simulation to
understand its dynamic behaviour. To calculate the dynamic
stability of all the systems root mean square deviation
(RMSD) was calculated as a function of time. In the case of
compound (ChemSpider ID: 4484327) it can be seen that the
average RMSD value is 1.0 Å. Soon, the system entered the
production state. No significant convergence was observed;
however, at 38 ns, a little convergence was observed.
However, after 38 ns the system, RMSD value again fell to
the normal. On the hand, the average RMSD value for com-
pound (ChemSpider ID: 394363) was found to be relatively
high. It was reported to be 1.4 Å. A major convergence
between 50 and 58 ns was observed, which is due to the
relatively large size of the ligand. In addition, the third
system (ChemSpider ID: 110267) relatively showed unstable

Figure 2. (A) showing the structural organization of SARs-CoV-2 nsp3. The sixteen different domains area given in panel A. The macrodomain-I used in this study is
shown with a green arrow. (B) showing the ADPr (yellow stick) bound structure of macrodomain-I from SARs-CoV-2. In panel B, the active site residues which are
involved in interactions with Mac-I are given and labelled. The active site residues are shown in yellow stick colour.
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behaviour till 25 ns then soon the system entered the
equilibrium state, and the average RMSD was found to 1.4 Å.
It can be seen that the RMSD converged between 60 and
80 ns but again the system gained the stability and
remained stable.

Furthermore, compound (ChemSpider ID: 30975) showed
convergence between 30 and 35 ns with an average RMSD
1.0 Å. A little convergence at different intervals was also
observed. On the other hand, the systems compound
(ChemSpider ID: 393480) and compound 6 relatively
remained more stable, and no major convergence was
observed. A small fluctuation between 65 and 75 ns was
reported. It can be seen that the average RMSD for com-
pound 5 was reported to be 1.0 Å while 1.2 Å for
ChemSpider ID: 24785028. A major convergence between 55
and 60 ns was observed but the system remained stable until
100 ns. Thus, these results strongly indicate that these com-
pounds, when bound to the macrodomain-I, remained stable.

Furthermore, ADPr was used as positive control to compare
the results. It can be seen that the ADPr complex is relatively
more unstable during simulation until 50 ns but afterward
the system gain the stability. Figure 4 shows the RMSD
graphs of all the six systems. The x-axis is showing the simu-
lation time in nanoseconds while the y-axis is showing the
RMSD in Angstrom. The RMSDs for the replicate 2 and repli-
cate 3 are given in Supporting Information Figures S1
and S2.

Residual flexibility of all the systems

The flexibility of each system was accessed by using Root
mean square fluctuation (RMSF). It can be seen that all the
systems showed a more similar pattern of residual fluctua-
tions. In the case of compound 1 a little different pattern of
residual flexibility can be observed at residue position 50–55
and 100–105. It is due to the binding of the ligand with

Figure 3. Interaction pattern of the top 6 compounds. The light magenta colour shows the specific ligand while the yellow colour sticks are the interacting resi-
dues. (A) P1, P5-Di(guanosine-5’) pentaphosphate ammonium salt (ChemSpider ID: 4484327), (B) (R)-RETRO-THIORPHAN (ChemSpider ID: 394363), (C) P(1), P(6)-
bis(5’-adenosyl)hexaphosphate (ChemSpider ID: 110267), (D) (Rib5)ppA (ChemSpider ID: 30975), (E) NA7 (ChemSpider ID: 393480) (F) dephospho-CoA (ChemSpider
ID: 24785028), (G) ADPr native ligand.
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these residues and thus decreases the flexibility between 50
and 55 residues while the flexibility was increased between
100 and 105. The average RMSF value for all the systems
was observed to be 1.0 Å. Figure 5 shows the RMSFs graphs
of all the six systems. The x-axis is showing the number of
residues while the y-axis is showing the RMSF in Angstrom.
Using ADPr as positive control the results shows that ADPr
complex possess higher residual fluctuations at differ-
ent regions.

Structural compactness through Rg

In order to calculate the compactness of all the ligand-bound
systems, Rg (radius of gyration) was calculated. The stability of
the complexes formed also depended on the compactness
between the ligand and the target. From Figure 6, it can be
easily observed that the average Rg value for all the systems is
between 18.2–18.6 Å. In the case of P1, P5-Di(guanosine-50)
pentaphosphate ammonium salt (ChemSpider ID: 4484327)
the Rg value remained high till 10 ns. Soon after reaching 40 ns
a little convergence was observed until 42 ns. However, the
compactness remained 18.8 Å till the end of the simulation. In
the case of (R)-RETRO-THIORPHAN (ChemSpider ID: 394363)
the system remained relatively more compact than the first

one. The average Rg value was reported to be 19 Å with signifi-
cant fluctuation during the simulation time.

Furthermore, P(1), P(6)-bis(50-adenosyl)hexaphosphate
(ChemSpider ID: 110267) showed no significant divergence of
Rg. Initially, the Rg value remained low till 20 ns, but soon the
Rg value fluctuated and the value remained between 18.8 and
19.00 Å. After reaching 20 ns, the system converged its com-
pactness again, and the Rg value remained 18.8 Å until the end
of the simulation. The average Rg value for (Rib5)ppA
(ChemSpider ID: 30975) was 18.6–18.8 Å with no major fluctu-
ation was observed. Thus, this system also showed relatively
more uniform compactness than the others. In addition, the
similar pattern of Rg was also observed for NA7 (ChemSpider
ID: 393480), but the average Rg was seen to be higher than
(Rib5)ppA. The Rg value for compound 5 was reported to be
18.8 Å. Significant convergence at different intervals was
observed. In the case of dephospho-CoA (ChemSpider ID:
24785028) the Rg value remained a little higher in the start,
but major fluctuation at 15 ns and 60 ns can be observed while
the Rg value for rest of simulation remained to 18.8 Å. Thus,
these results also imply that the ligands bound to the macro-
domain-I are dynamically stable and the binding is also dynam-
ically favourable. It can be also seen that the ADPr complex
also possess more compactness. Figure 6 shows the Rg graphs

Figure 4. Showing the RMSD of all the seven systems. The x-axis is showing the time in nanoseconds while the y-axis is showing RMSD in Angstrom. (A) P1, P5-
Di(guanosine-5’) pentaphosphate ammonium salt (ChemSpider ID: 4484327), (B) (R)-RETRO-THIORPHAN (ChemSpider ID: 394363), (C) P(1), P(6)-bis(5’-adenosyl)hexa-
phosphate (ChemSpider ID: 110267), (D) (Rib5)ppA (ChemSpider ID: 30975), (E) NA7 (ChemSpider ID: 393480) (F) dephospho-CoA (ChemSpider ID: 24785028), (G)
ADPr native ligand.
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of all the six systems. The x-axis is showing the number of
frames while the y-axis is showing the Rg in Angstrom. The Rg
of replicate 2 and replicate 3 are given in Supporting
Information Figures S3 and S4.

Binding free energy

A common technique, MM-GBSA, has been used to estimate
the binding free energy of all six systems. The free energy
binding specifies the binding interaction between the
ligands and the target protein or receptor. Table 2 provides
each energy expression, like van der Waals energy, electro-
static energy, polar solvent energy, solvent-accessible surface
energy and total binding free energy of all the systems. It
can be seen that the P1,P5-Di(guanosine-50) pentaphosphate
ammonium salt (ChemSpider ID: 4484327) system possesses
the highest total binding energy of �71.996 kcal/mol. The
total binding energy for (R)-RETRO-THIORPHAN (ChemSpider
ID: 394363) was reported to be �70.114 kcal/mol. Conversely,
the total binding energies for P(1),P(6)-bis(50-adenosyl)hexa-
phosphate (ChemSpider ID: 110267), (Rib5)ppA (ChemSpider
ID: 30975), NA7 (ChemSpider ID: 393480) and dephospho-
CoA (ChemSpider ID: 24785028) was reported to be
�66.201 kcal/mol, �66.949 kcal/mol, �70.268 kcal/mol and

�66.965 kcal/mol respectively. We used ADPr the native lig-
and as positive control to compare our results. The total
binding energy for ADPr was reported to be �67.123 kcal/
mol. Thus it confirms that these compound possess signifi-
cant binding free energy against the Macrodomain-I. While
the other energy terms such as van der Waals energy (DvdW),
electrostatic energy (Delec), polar solvent energy (Dps), solv-
ent-accessible surface area (DSASA) are listed in Table 2, these
findings strongly indicate that these shortlisted compounds
must be experimentally tested against SARs-CoV-2 as soon as
possible. The MMGBSA results of replicate 2 and replicate 3
are given in Supporting Information Tables S1 and S2.

Per-residue energy decomposition

To understand the impact of each residue and its contribu-
tion to the total energy, per-residue energy decomposition
analysis was carried out on the trajectory file obtained from
100 ns simulation. The per-residue contribution of each sys-
tem was calculated and given in Figure 7. As given it can be
seen that Asp22, Ala38, Asn40, Val44, Phe144 significantly
contributed to the total energy while the other residues such
as Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and
Ala155 also contributed to the total energy.

Figure 5. Showing the RMSF of all the seven systems. The x-axis is showing the time in number of residues while the y-axis is showing RMSF in Angstrom. (A) P1,
P5-Di(guanosine-5’) pentaphosphate ammonium salt (ChemSpider ID: 4484327), (B) (R)-RETRO-THIORPHAN (ChemSpider ID: 394363), (C) P(1), P(6)-bis(5’-adenosyl)-
hexaphosphate (ChemSpider ID: 110267), (D) (Rib5)ppA (ChemSpider ID: 30975), (E) NA7 (ChemSpider ID: 393480) (F) dephospho-CoA (ChemSpider ID: 24785028),
(G) ADPr native ligand.
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Hydrogen bonding analysis

In order to determine the half-life of each interaction with
the key residues we used hydrogen bonding occupancy
approach. A 50 ns trajectory was used for each system to
monitor the hydrogen bonding during the course of simula-
tion. It can be seen that most of the ligands formed signifi-
cant hydrogen bonds for longer time. In case of all the six
ligands it can be observed that the bonding with Asp22 and
Asn40 remained for longer time than the others. All the
results are calculated in percentage trajectories (0.79 mean
79% of the trajectories) and given in Table 3.

Furthermore, we also calculated intra-molecular H-bonds
which revealed that the wild type has 79.40 (average H-Bonds),
P1, P5-Di(guanosine-50) pentaphosphate ammonium salt has
80.12, (R)-RETRO-THIORPHAN has 80.64, P(1),P(6)-bis(50-adeno-
syl)hexaphosphate has 81.24, (Rib5)ppA has 81.10, NA7 has
80.79 while dephospho-CoA formed 82.82 hydrogen bonds in
average. The intra-molecule H-bonds are given in Figure 8.

Discussion

The outbreak of SAR-CoV-2 has now affected almost every
corner of the world. Increasing fatalities and mortalities has

Figure 6. Showing the Rg of all the six systems. The x-axis is showing the number of frames while the y-axis is showing the Rg in Angstrom. (A) P1, P5-
Di(guanosine-5’) pentaphosphate ammonium salt (ChemSpider ID: 4484327), (B) (R)-RETRO-THIORPHAN (ChemSpider ID: 394363), (C) P(1), P(6)-bis(5’-adenosyl)hexa-
phosphate (ChemSpider ID: 110267), (D) (Rib5)ppA (ChemSpider ID: 30975), (E) NA7 (ChemSpider ID: 393480) (F) dephospho-CoA (ChemSpider ID: 24785028), (G)
ADPr native ligand.

Table 2. The table listed different energy terms calculated for the six complexes subjected to MM-GBSA analysis.

Complexes

MM-GBSA (kcal/mol)

DvdW Delec Dps DSASA DGTotal
P1,P5-Di(guanosine-50) pentaphosphate ammonium salt (ChemSpider ID: 4484327) –82.663 –14.465 30.700 –5.471 –71.996
(R)-RETRO-THIORPHAN (ChemSpider ID: 394363) –78.452 –22.563 32.785 –4.125 –70.114
P(1),P(6)-bis(50-adenosyl)hexaphosphate (ChemSpider ID: 110267) –66.357 –20.241 32.354 –3.478 –66.201
(Rib5)ppA (ChemSpider ID: 30975) –65.187 –13.175 205.14 –3.247 –66.949
NA7 (ChemSpider ID: 393480) –66.257 –12.785 23.478 –3.658 –70.268
dephospho-CoA (ChemSpider ID: 24785028) –72.613 –19.223 21.365 –3.007 –66.965
ADPr –64.136 –17.985 23.278 –4.356 –67.123

All the energies are given in kcal/mol.
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created a devastating scenario. With the health issue, the
world has suffered from economic loss too. This pandemic
has forced the world scientists, economists and leaders to
find a solution to cope with this disease (A. Khan, M. T.
Khan, et al., 2020). This virus belongs to beta-coronaviruses,
and previously some viruses such as SARs and MERs are
already reported to infect humans through bat and camel.
However, the recent SARs-CoV-2 seems to be more devastat-
ing because it can be transmitted from human-to-human
and reinfections are also reported.

To cope with this infection, scientists and researchers are
focusing on many aspects of this virus and host factors.
Scientists are targeting every gene/protein of this virus to

get some breakthrough and control this pandemic finally.
Many studies reported targeting the RdRp protein, PLpro,
3CLpro while others focus on host proteins such as TRPM2.
The role of these genes/proteins in the transmission, patho-
genesis and spread is indispensable. Besides, sixteen domains
long (�1945) amino acids protein nsp3 is also a major non-
structural protein with its precise role in transcription/transla-
tion, interaction with the host proteins and hijacking the
host immune system. These diverse functions are domain-
specific. Among the total sixteen domains, macrodomain-I,
also known as SARs-unique domain or X-domain, play an
essential role in the binding of G-quadruplex and hijacking
the host immune response. The binding of ADPr to this

Figure 7. The figure is showing the per-residue energy decomposition of the residues contributing to the total binding energy. All the energies are given in kcal/
mol. (A) P1, P5-Di(guanosine-5’) pentaphosphate ammonium salt (ChemSpider ID: 4484327), (B) (R)-RETRO-THIORPHAN (ChemSpider ID: 394363), (C) P(1), P(6)-
bis(5’-adenosyl)hexaphosphate (ChemSpider ID: 110267), (D) (Rib5)ppA (ChemSpider ID: 30975), (E) NA7 (ChemSpider ID: 393480) (F) dephospho-CoA (ChemSpider
ID: 24785028), (G) ADPr native ligand.

Table 3. The hydrogen bonding occupancy of the key residues during the course of simulation.

Complex

Life time (hydrogen bonding)

Asp22 Asn40 Val44 Gly46 Gly47 Ser128 Gly130 Ile131 Ala155

P1,P5-Di(guanosine-50) pentaphosphate ammonium
salt (ChemSpider ID: 4484327)

0.73 0.72 0.47 0.52 0.68 0.31 0.55 0.42 0.52

(R)-RETRO-THIORPHAN
(ChemSpider ID: 394363)

0.69 0.65 0.57 0.52 0.52 0.44 0.59 0.36 0.55

P(1),P(6)-bis(50-adenosyl)hexaphosphate (ChemSpider ID: 110267) 0.58 0.56 0.50 0.43 0.52 0.48 0.49 0.36 0.51
(Rib5)ppA (ChemSpider ID: 30975) 0.67 0.63 0.42 0.41 0.29 0.51 0.37 0.39 0.48
NA7 (ChemSpider ID: 393480) 0.58 0.66 0.51 0.48 0.39 0.20 0.47 0.12 0.42
dephospho-CoA (ChemSpider ID: 24785028) 0.42 0.56 0.25 0.62 0.52 0.34 0.41 0.28 0.42
ADPr 0.61 0.63 0.14 0.32 0.45 0.39 0.57 0.45 0.37

Each residue bonding is given in percentage trajectories.
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domain is required for essential processes. Thus, targeting
this domain with high binding affinity drugs could help to
reduce the burden and contain this pandemic. Therefore,
using different approaches such as rational drug designing,
conventional computer-aided drug designing approach or
the most recent deep learning and artificial intelligence-
based approaches could help to find a drug that could tar-
get this domain and rescue the host immune system.

Meanwhile, the best approach is to repurpose the old
drugs such as Chloroquine, Remdesivir, Dexamethasone and
other anti-viral drugs. These drugs are reported to work in
some cases, but the use of these drugs is limited by the
associated problems. With the practice of repurposing the
old drugs, the quest for finding a new drug is still on. In this
regard, the use of structure-based drug screening methods is
the most useful approach to find a new drug with accept-
able pharmacokinetics and pharmacodynamics properties.
Likewise, here, we also used CADD approaches to search for
a potent molecule that could target the macrodomain-I. In
addition to the drug similarity search, we also screened two
medicinal compounds databases including south African
northern medicinal compounds database and traditional
Chinese medicines database (TCM). Promising hits were iden-
tified, and their validity was checked again and again. The
top hits were confirmed by performing IFD, which further
shortlisted the top hits list very precisely. Using another

round of docking with different algorithm exempted further
hits from the list and shortlisted the top hits. The use of
molecular dynamics simulation technique and free energy
calculations is the most widely practiced approaches while
studying the protein–ligand interaction. Integrating this pipe-
line further increased the reliability of the quest to test our
top hits experimentally because of its promising results.
Thus, this study comprised of a complicated and multiple
validations stresses on the experimental assays of the top
hits to help to contain the recent outbreak.

Based on the findings of the bioinformatics study, we tar-
geted Macrodomain-I from SARS-COV-2 utilizing virtual drug
screening and drug similarity frameworks to shortlist the
most active compounds. The results of the entire article
emphasize the prospective inhibiting effect of the top hits.
We have not yet performed more anti-viral studies in vivo
and in vitro, as we want to share our findings in anti-SARS-
CoV-2 work with scientists as early as possible. This research
will assist repurpose the drug design, conduct in vivo and
in vitro evaluations of candidate drugs obtained in this study,
and prepare for applications for clinical trials.

Conclusion

In conclusion, a thorough investigation of different drugs
against the macrodomain-I was performed. A total of 64,043

Figure 8. A total number of intramolecular H-bond in all the systems. (A) wild type (79.40), (B) P1, P5-Di(guanosine-5’) pentaphosphate ammonium salt (80.12) (C)
(R)-RETRO-THIORPHAN (80.64), (D) P(1),P(6)-bis(5’-adenosyl)hexaphosphate (81.24), (E) (Rib5)ppA (81.10), (F) NA7 (80.79) (G) while dephospho-CoA formed (82.82).
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drugs were screened, and the most potential hits were re-
docked using the IFD algorithm. The final best hits were vali-
dated by using molecular dynamics simulation and free
energy calculations. These results suggest that the top six
hits identified efficiently bind to the receptor. Our analysis is
based on computational pipeline and demands the experi-
mental test of these top hits, which could help to contain
the disease caused by SARs-CoV-2.
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