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Abstract

The neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still
under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS),
such as neurogranin (NRGN), can be used to identify these mechanisms. In this study we examined the association
of two common NRGN risk single nucleotide polymorphisms (SNPs) with functional and structural brain-based
intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92
schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two
schizophrenia-associated NRGN SNPs (rs12807809 and rs12541) were tested for association with working memory-
elicited dorsolateral prefrontal cortex (DLPFC) activity and surface-wide cortical thickness. NRGN rs12541 risk allele
homozygotes (TT) displayed increased working memory-related activity in several brain regions, including the left
DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers.
NRGN rs12807809 non-risk allele (C) carriers showed reduced cortical gray matter thickness compared to risk allele
homozygotes (TT) in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus.
Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-
based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate
NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle
changes in neural functioning and anatomy that can be quantified with neuroimaging methods.
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Introduction

Twin and family studies suggest a high heritability for
schizophrenia [1], but results of candidate gene studies have
been inconsistent. Often, findings could not be replicated and it

is likely that genes unrelated to the canonical neurotransmitter
pathways have an impact on disease etiology.

Genome-wide association studies (GWAS) allow for a
hypothesis-free approach to genetic investigations. A recent
study of more than 300,000 single nucleotide polymorphisms
(SNPs) in 12,945 schizophrenia patients and 34,591 healthy
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controls reported associations at genome-wide significance
with rs12807809 located near neurogranin (NRGN) [2].
Interestingly, the NRGN gene was also found to be associated
with schizophrenia in three additional independent samples
[3,4], although there have also been conflicting findings [5–7].

In order to understand the role of new genetic markers in
disease pathophysiology careful clinical and biological follow
up studies are necessary. Studying the effects of risk variants
for psychiatric disorders on brain function and structure can
provide insight into disease-associated changes and
mechanisms on a neuroscience systems level, but also helps
to verify GWAS results. Here, we studied the effects of NRGN
risk variants on brain-based intermediate phenotypes for
schizophrenia. Neuroimaging-based intermediate phenotypes
are heritable, disease-associated and stable traits that may
show a stronger association with risk genes than behavior or
diagnosis due to their greater proximity to the underlying
biology [8]. In fact, inconsistent findings in case-control studies
can partially be due to small effect sizes of single genes on
complex entities such as diagnostic categories. Dorsolateral
prefrontal cortex (DLPFC) dysfunction during working memory
processing and widespread reduced cortical thickness have
both been shown to be heritable markers closely related to
schizophrenia [9].
NRGN protein is an important component in the NMDA-

signaling pathway, which is associated with synaptic plasticity
and memory formation [10]. In fact, NRGN knockout mice
display deficits in neural and behavioural correlates of learning
and memory [11,12]. Furthermore, NRGN has been associated
with working memory-elicited neural activity in healthy controls
[13,14] while data from patient samples are still lacking.
However, a study using postmortem brain tissue of
schizophrenia patients found reduced NRGN
immunohistochemical staining in working memory-associated
areas such as the anterior cingulate cortex (ACC) and the
DLPFC [15]. Furthermore, NRGN has been implicated in
neuronal cortico- and synaptogenesis during brain
development [16] – both found to be impaired in schizophrenia
[17,18].

Given the evidence for an association of NRGN with a
diagnosis of schizophrenia and cortical development, as well
as a reduced NRGN expression in frontal brain regions of
schizophrenia patients, the aim of the present investigation was
to understand the neurogenetic risk mechanisms of two
common NRGN SNPs (rs12807809 and rs12541) and their
haplotypes by studying intermediate phenotypes for
schizophrenia: abnormal working memory-elicited DLPFC
activity and reduced cortical thickness. Because rostral ACC
volume reduction, especially in the left hemisphere, has been
associated with both, a diagnosis of schizophrenia and NRGN
risk variants [19,20], we also investigated NRGN genotype
effects on left rostral ACC volume in an additional analysis.

Materials and Methods

Participants
We studied a total of 206 participants (92 schizophrenia

patients and 114 healthy volunteers) who enrolled in the

multisite Mind Clinical Imaging Consortium study [21,22], were
between 18 and 60 years of age, and fluent in English and who
had complete structural, functional MRI and genotype data.
Patients had a Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) diagnosis of schizophrenia, established
using a Structured Clinical Interview for DSM disorders (SCID)
and a review of case files by trained clinicians. There were no
exclusions based on treatment with antipsychotic drugs. For
further details, see SI 1.1 in File S1 and [23].

Controls were matched to the patient cohort for age, gender,
and parental education and were excluded if they had a history
of a medical or Axis I psychiatric diagnosis. Participants were
excluded if they had a history of neurological or psychiatric
disease other than schizophrenia, history of a head injury,
history of substance abuse or dependence within the past
month, severe or disabling medical conditions, contraindication
to MR scanning or an estimated verbal IQ less than 70 (based
on the reading subtest from the Wide Range Achievement Test
(WRAT-III)).

Ethics statement
After complete description of the study the participants

provided written informed consent. The human research review
committees at each of the four sites (Universities of Iowa (UI),
Minnesota (UMN), and New Mexico (UNM) and Massachusetts
General Hospital (MGH)) approved the study protocol. We
confirm that all potential participants who declined to participate
or otherwise did not participate were eligible for treatment (if
applicable) and were not disadvantaged in any other way by
not participating in the study. During the consent process the
subjects were asked a series of questions to assure that they
understood the nature of the study, that if they chose to
participate it was voluntary and that they could stop at any time
without affecting their care, and that they understood the risks
and benefits of the study. If they stated that they wanted to
participate, they were also asked the reason why they chose to
participate. If there was any question as to the ability to provide
informed consent (i.e., they don’t understand the risks or
benefits, or they suffer from acute delusions that could
significantly impair a patient’s judgment) then they were not
recruited for the study. In addition, if during the clinical
interview it was determined that they lacked the ability to
provide informed consent, then they were dropped from the
study at that time.

Behavioral task
The Sternberg Item Recognition Paradigm (SIRP) is a

working memory task, previously shown to consistently activate
the DLPFC and parietal regions in healthy controls and
schizophrenia patients [24]. In each block during the Encode
phase, a memory set, composed of one (load 1), three (load 3),
or five (load 5) digits, was presented (two blocks per load
condition). The Encode phase was followed by a presentation
of 14 digits, one at a time (the Probe phase) and participants
responded to each probe to indicate whether or not the probe
digit was in the memory set. For additional details about the
paradigm, see [21] and SI 1.2 in File S1.

NRGN on Two Schizophrenia Intermediate Phenotypes
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Image acquisition and processing
Structural magnetic resonance imaging (MRI) data was

acquired with either a 1.5T Siemens Sonata (UNM, MGH, UI)
or a 3T Siemens Trio (UMN). Functional MRI data was
acquired with either a 1.5T Siemens Sonata (UNM) or a 3T
Siemens Trio (UMN, MGH, UI). To reduce variability due to
acquisition site differences, all sites followed guidelines
developed by the biomedical informatics research network
(BIRN) test bed, which included standardized acquisition
parameters across sites (matched button press devices,
common calibration methods, usage of human phantoms)
[25,26].

Cortical reconstruction and volumetric segmentation based
on high resolution structural MRI scans was performed with the
FreeSurfer surface reconstruction software (http://
surfer.nmr.mgh.harvard.edu, for more details, see SI 1.3 in File
S1). Functional data were analyzed using the Function
Biomedical Informatics Research Network (FBIRN) Image
Processing Stream (FIPS), a pipeline using the Functional MRI
of the Brain (FMRIB) Software Library of FSL (http://
www.fmrib.ox.ac.uk/fsl). For additional information about data
acquisition and processing, see SI 1.3 in File S1.

Genotyping
Blood samples were obtained from 255 participants and sent

to the Harvard Partners Center for Genetics and Genomics for
DNA extraction. All DNA extraction and genotyping was done
blind to group assignment. Genotyping was performed at the
Mind Research Network Neurogenetics Core Lab using the
Illumina HumanOmni-Quad BeadChip. Quality control steps
included common standard procedures [27] using PLINK, 1.06
[28]. We removed seven participants with extreme
heterozygosity values (+/- 3SD) resulting in a final dataset of
206 participants after excluding additional participants failing
imaging quality control steps (see SI 1.3 in File S1). Using this
dataset, NRGN SNPs rs12541 and rs12807809 were
extracted. The SNP rs12807809 was reported to be
significantly associated with schizophrenia in a recent GWAS
[2]. Based on this, we searched for other potential disease-
associated SNPs in the NRGN gene using the continuously
updated meta-analysis of genetic studies on schizophrenia
available at http://www.schizophreniaresearchforum.org
updated on October 22nd, 2010. Apart from the above
mentioned SNP rs12807809, this website lists another three
SNPs for NRGN: rs7113041, rs1804829, and rs12541. Our
datasets contained rs12807809 and rs12541. Since it is not
uncommon that different genetic studies identify the same risk
genes while their results differ in the risk allele structure, we
used data from the most recent and largest GWAS [29]
including 6,458 schizophrenia cases and 8,971 controls, to
identify the risk allele. According to this dataset the T allele
represents the risk allele for both rs12807809 (p=0.020) and
rs12541 (p=0.017). The two SNPs were not in linkage
disequilibrium with each other (r2 = 0.05). More quality control
measures are given in Table S1 in File S1. Because of the low
frequency of C/C genotypes for both rs12541 and rs12807809
(nrs12541=17, nrs12807809=8), C/C and C/T participants were
combined into one C allele-carriers group (nrs12541=87,

nrs12807809=85). We hypothesized that TT allele homozygosity in
both SNPs would be associated with abnormal working
memory-elicited DLPFC activity and reduced cortical thickness.

Statistical analyses
Basic demographic characteristics were compared across

genotype group and all four acquisition sites using a series of
one-way ANOVA and subsequent Bonferroni-corrected post
hoc tests. Chi-square statistics were used to examine
differences in categorical variables. Alpha was set to 0.05 for
all analyses.

In our fMRI analyses, we used a Contrast Of Parameter
Estimate (COPE) that modeled all working memory loads (load
1, load 3, load 5) during the Probe phase versus fixation. In our
main higher level models (referred to as model 1 for rs12541
and model 2 for rs12807809) we tested the effects of genotype
of each SNP by fitting a univariate general linear model to the
fMRI time course at each voxel in the whole brain to estimate
the average activation during the three loads of the probe
condition in a whole brain model. Equal weight was given to all
loads. All models were cluster-corrected according to FSL
default settings (following random field theory) with a z-value of
2.3 and a p-value of 0.05 and controlled for scanner field
strength and diagnostic group. We also modeled the diagnosis
by SNP interaction effect.

In order to control for potentially confounding effects of
population stratification, we checked rs12541 and rs12807809
allele frequencies across population groups. Hapmap3 data
(http://hapmap.ncbi.nlm.nih.gov) showed that individuals of
African ancestry (Hapmap populations: African ancestry in
Southwest USA (ASW), Luhya in Webuye, Kenya (LWK),
Maasai in Kinyawa, Kenya (MKK), and Yoruban in Ibadan,
Nigeria (YRI)) had a much higher rs12541 C allele frequency
than all other populations (Chi-Square test χ2=27.592, p<0.001)
(Table S2 in File S1). This could be confirmed in our own
sample (Chi-Square test χ2=19.512, p<0.001). No allele
frequency differences were observed for rs12807809 (Chi-
Square testHapmap χ2=1.333, p=0.248; Chi-Square testMCIC

χ2=2.667, p=0.102). We therefore tested the effect of rs12541
genotype in an additional model (model 1a) on a sample limited
to participants of non-African ancestry (n=182).

Entire cortex vertex-wise analyses of cortical thickness were
performed contrasting rs12541 and rs12807809 C allele
carriers vs. TT homozygotes. Briefly, spherical registered
cortical thickness data from all subjects were mapped to an
average subject (http://surfer.nmr.mgh.harvard.edu/fswiki/
FsAverage). Cortical thickness maps were smoothed using a
10mm full-width-at-half-maximum Gaussian kernel. Finally,
univariate general linear models were run for each SNP
separately (model 3 and 4) at all vertices (n=163,842) per
hemisphere. We included age, gender, scanner field strength
and diagnostic group into the models as covariates and also
tested for the diagnosis by SNP interaction effect. All cortical
thickness results were corrected for multiple comparisons using
a Monte-Carlo simulation with 10,000 repeats. Vertex-wise
threshold and cluster-wise probability (CWP) were set to 0.05.
For details, see SI 1.6 in File S1. Final statistical maps are
shown on the inflated surface of the standard average subject,

NRGN on Two Schizophrenia Intermediate Phenotypes
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allowing visualization of data across the entire cortical surface
without interference from cortical folding.

Given previous results indicating an association between
NRGN rs12807809 and left rostral ACC volumes [19,20] we
tested this relationship in an additional analysis (model 4a)
using a two-way ANCOVA model in SPSS (SPSS Inc., Chicago
IL) with the two genotype groups and diagnostic group as
factors as well as age, gender, scanner field strength, and
intracranial volume as additional covariates of no interest. Total
intracranial volume [30] and rostal ACC volume are a standard
output of the FreeSurfer volumetric segmentation [31].

In order to perform haplotype subanalyses on our main
findings, we obtained estimates of the actual cortical thickness
in the identified cluster in millimeter (mm) and indices of neural
activity for the DLPFC in mean percent signal change (mean
%Δ). Haplotype analyses were carried out in Plink. In detail, a
standard E-M algorithm was used to impute the distribution of
probabilistically-inferred sets of haplotypes for each individual.
Then we carried out a linear regression omnibus test with three
degrees of freedom, jointly testing all haplotype effects on both
intermediate phenotypes (model 5 and 6), covarying for the
effects of diagnosis and scanner field strength and additionally
for age and gender in the structural model. In case of a
significant omnibus test, we carried out haplotype-specific tests
to infer the direction of the effects.

To check for potential medication effects, we used the
extracted activation and thickness estimates, regressed out all
relevant covariates and correlated these residuals with lifetime
exposure to antipsychotic medication estimates. Furthermore,
we tested the effects of NRGN in schizophrenia patients and
healthy individuals in separate analyses. Statistical analyses
were carried out in SPSS 17.0. Power analyses were carried
using G*Power 3 [32]. Additional details are included in SI 1.7,
SI 1.8, and SI Figure S1 in File S1.

Results

Sample characteristics
Patients and controls did not differ in age, parental socio-

economic status (SES) or handedness, but the percentage of
females and participants of European descent among the
healthy controls was higher and patients had lower WRAT-
IIIRT Scores. There was no effect of acquisition site on gender,
WRAT-IIIRT Score or handedness, but sites differed in their
participants’ age, parental SES and ancestry (Table 1).

For both NRGN SNPs, rs12541 and rs12807809, there were
no differences between genotype groups with respect to
diagnosis, gender, age, WRAT-IIIRT Score, parental SES,
handedness, working memory performance, reaction time, and
acquisition site (Table 2). The percentage of participants of
European descent among the rs12541 TT homozygotes was
higher than for C carriers.

Functional MRI
Main effects of task on activation were observed in working

memory-associated brain regions such as the DLPFC and
parietal regions as described previously [22,33]. NRGN
rs12541 TT homozygotes displayed increased working

memory-related activity in several brain regions when
compared to C carriers in a whole-brain model (model 1)
covarying for the effects of scanner field strength and
diagnosis. Local maxima were found in areas including the left
DLPFC, left insula, left somatosensory cortex and the cingulate
cortex (Figure 1). Cluster-related maxima were found over the
left DLPFC and the left insula. For more details on the
statistical assessment of each of these findings, see SI 2.1 and
SI Table S3 in File S1. We found no increased neural activity in
C carriers compared to TT homozygotes. Also, the interaction
term between NRGN rs12541 genotype and diagnosis was not
significant. In subanalyses, investigating patients and controls
separately, we found comparable genotype effects on DLPFC
dysfunction in each group. Furthermore, we did not find a
significant correlation with lifetime exposure to antipsychotic
medication. Neural activity did also not differ by rs12807809
genotype (model 2).

In an additional whole-brain model (model 1a) excluding
participants of African ancestry from the analysis (remaining
sample size n=182, see methods section for further details)
and again controlling for the same covariates, the main finding
from our initial model could be replicated, i.e. TT homozygotes
had increased neural activity in the left DLPFC, left insula, left
somatosensory cortex and the cingulate cortex when compared
to C carriers (Figure S2 in File S1). Cluster-related maxima
were found over the left DLPFC and the cingulate cortex.
Again, no significant increase of activity of C carriers compared
to TT homozygotes and no interaction between NRGN rs12541
and diagnosis could be found.

Additional haplotype analyses (model 5) showed that DLPFC
activity was higher in participants with the NRGN rs12541-
rs12807809 TT haplotype and lower for CC and CT haplotypes
confirming NRGN rs12541 T allele as the major risk allele (see
SI 2.3 and Table S4 in File S1).

Structural MRI
In accordance with previous findings we observed

widespread bilateral thickness reductions in schizophrenia
patients (data not shown, for details please refer to [33]).
NRGN rs12807809 C carriers showed reduced cortical gray
matter thickness compared to TT homozygotes in an area
comprising the right pericalcarine gyrus, the right cuneus, and
the right lingual gyrus in an entire surface model (model 4)
controlling for gender, diagnosis, age and scanner field
strength (Figure 2a, corrected for multiple comparisons). The
average thickness in this cluster of TT homozygotes (1.84 mm)
was reduced by 3.88% in C carriers (1.77 mm). Again, the
interaction term between NRGN rs12807809 and diagnosis
was not significant. In subanalyses investigating patients and
controls separately, we found qualitatively similar genotype
effects on cortical thickness. There was no effect of rs12541
genotype on cortical thickness (model 3) and no effect of
lifetime exposure to antipsychotic medication on cortical
thickness in the cluster identified in our surface-wide analysis.

Additional haplotype analyses (model 6) confirmed NRGN
rs12541-rs12807809 TC as the risk haplotype (β=-0.0669;
p=0.0144) supporting our main findings that identified the C

NRGN on Two Schizophrenia Intermediate Phenotypes
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Table 2. Basic demographics according to NRGN rs12541 and rs12807809 genotype.

 

Diagnosis (SCZ
Patients)

 

Sex (female)

 

Ancestry (White/
African)a

 Age
WRAT-
IIIRT

Parental
SES HandednessPerformance

Reaction
time

Site
(MGH/UI/UMN
/UNM)

 N % N % N % Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) N
rs12541              

C carriers (n=87) 39 44.8 32 36.8 68/14 78.2/16.1
34.23
(10.97)

48.61
(6.54)

2.73
(0.96)

1.25 (3.01) 96.84 (4.15)
678.95
(97.64)

28/30/15/14

TT homozygotes
(n=119)

53 44.5 37 31.1 107/4 89.9/3.4
32.55
(11.46)

49.08
(5.10)

2.72
(0.81)

0.74 (2.37) 97.44 (2.82)
676.99
(117.60)

20/44/29/26

χ2/t-test 0.002  0.730  10.215  -1.052 0.554 -0.117 -1.308 -1.233 -0.102 7.240
df 1  1  2.0  201 158.67 201 163.58 201 129 3
p 0.967  0.393  0.006  0.294 0.580 0.907 0.909 0.219 0.919 0.065
rs12807809              

C carriers (n=85) 36 42.4 26 30.6 68/10 80.0/11.8
33.63
(11.53)

48.38
(6.02)

2.80
(0.87)

0.93 (2.30) 97.22 (3.43)
688.04
(116.95)

19/26/22/18

TT homozygotes
(n=121)

56 46.3 43 35.5 107/8 88.4/6.6
33.02
(11.10)

49.23
(5.55)

2.68
(0.88)

0.98 (2.90) 97.15 (3.49)
669.75
(102.27)

29/48/22/22

χ2/t-test 0.312  0.549  2.784  -0.382 1.033 -0.962 0.142 0.15 -0.954 2.819
df 1  1  2.0  201 200 201 202 201 129 3
p 0.577  0.459  0.249  0.703 0.303 0.337 0.887 0.881 0.342 0.420

WRAT-IIIRT, reading subtest of the Wide Range Achievement Test – III; SES, socio-economic status; handedness, Annett Handedness Scale. a ancestry based on self
report, numbers not shown for other ancestries, mixed descent or missing data. Due to measuring device errors at one acquisition site, reaction time data is based on 70
SCZ and 61 HC. T-tests did not show any significant main effects of rs12541 or rs12807809 genotype group (C carrier vs. TT) on age, WRAT-IIIRT Score, parental SES,
handedness, working memory performance, and reaction time. Chi-square statistics did not reveal any relationships between genotype and diagnosis, gender or acquisition
site, but there was an effect of ancestry on rs12541 genotype groups.
doi: 10.1371/journal.pone.0076815.t002

Figure 1.  Effect of NRGN risk variant on brain function.  Functional map illustrating increased neural activity in rs12541 TT
homozygotes compared to C carriers. SSC, somatosensory cortex; CC, cingulate cortex. Results were cluster-corrected and z-
values are represented according to the color code.
doi: 10.1371/journal.pone.0076815.g001
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allele in rs12807809 as a potential risk allele (see SI 2.3 and
Table S4 in File S1).

Additional analysis (model 4a) with a region-of-interest
approach revealed that NRGN rs12807809 C carriers
displayed reduced left rostral ACC volume compared to TT
homozygotes (Figure 2b, F(1,194)=3.99, p=0.047). The
average rostral ACC volume was reduced by 6.32% in C
carriers (2325.95 mm^3) when compared to TT homozygotes
(2482.85 mm^3). Again, no significant interaction between
NRGN rs12807809 and diagnosis was found.

Discussion

In the present study we used multimodal brain imaging to
explore potential effects of the schizophrenia risk gene NRGN
on two independent schizophrenia-related brain-based
intermediate phenotypes in schizophrenia patients and healthy
controls. We found that NGRN rs12541 TT homozygotes
showed increased neural activity during a working memory task
in the left DLPFC and other task-associated areas such as the
ACC and the left insula. NRGN rs12807809 C carriers showed
regional cortical thinning in the right pericalcarine gyrus, the
right cuneus, and the right lingual gyrus as well as reduced left
ACC volume. Haplotype analyses further supported the T allele
in rs12541 and the C allele in rs12807809 as potential risk
alleles.

These results support recent findings from a GWA study and
other independent case-control studies, which found
associations between NRGN and schizophrenia [2–4]. Given
that some case-control studies also reported negative findings
for NRGN [5–7] - possibly due to small effect sizes of single

genes on complex, polygenic and heterogeneous clinical
phenotypes - our results also underline the importance of
follow-up studies using brain-based intermediate phenotypes to
investigate the mechanisms of new genetic markers on a
neuroscience systems level.

DLPFC dysfunction during working memory is a widely
acknowledged intermediate phenotype for schizophrenia [9].
Compared to performance-matched healthy controls, patients
display aberrant DLPFC functioning across task difficulties [34]
by recruiting more neural resources for easy tasks
(hyperfrontality, often seen with the SIRP task [24,34–36]), but
may show decreased frontal neural activity (hypofrontality) and
declining behavioral performance when the task is too difficult
[35,37]. This pattern has been termed “inefficiency” of the
prefrontal cortex [24,34,35]. DLPFC dysfunction can also be
observed in medication naïve schizophrenia patients, high risk
individuals and those showing prodromal symptoms [34,38–40]
and therefore reflects most likely a medication independent
process.

As part of a larger working memory network the ACC and the
insula are also involved in many cognitive and attention-related
processes [41,42]. Aberrant ACC and insula activity in
schizophrenia patients has been observed during the SIRP
working memory paradigm [43–45], during the n-back working
memory task [46] and during attentional and executive tasks
[47–49], although the direction of the effect varied, depending
on the difficulty of the task.

Associations between NRGN and a functionally defined
brain-based schizophrenia intermediate phenotype is in line
with the aforementioned GWA and post-mortem brain tissue
findings [15]. A study by Krug et al. [13] also found effects of

Figure 2.  Effect of NRGN risk variant on cortical thickness and ACC volume.  a) Cortical statistical map illustrating reduced
cortical thickness for rs12807809 C carriers compared to TT homozygotes. The -log(CWP-value) is represented according to the
color code. b) Boxplot showing mean and two standard errors of the standardized residuals for the effects of NRGN rs12807809
genotype on left rostal ACC volume controlled for intracranial volume, age, gender, diagnosis and scanner field strength.
doi: 10.1371/journal.pone.0076815.g002

NRGN on Two Schizophrenia Intermediate Phenotypes

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e76815



NRGN variants on brain activation. In their study, healthy
controls had to memorize neutral faces for a later recognition
trial. NRGN rs12807809 risk allele TT homozygotes had
increased neural activity in the ACC during the encoding phase
and less deactivation in the left insula during the recognition
phase. Similarly, Rose et al. [14] investigated NRGN genotype
effects on brain activity during a spatial working memory task in
healthy controls. They reported a failure to disengage
ventromedial prefrontal areas in rs12807809 risk allele TT
homozygotes, but found no effect on grey or white matter
volume. Despite discrepancies with respect to risk SNP and
allele (which might be due to differences in the functional
paradigms and sample characteristics), our joint findings
suggest that NRGN may be involved in biological pathways,
which eventually affect a broader working memory network
including the DLPFC.

What are the potential molecular mechanisms of NRGN risk
variants? NRGN binds CaM and thereby acts as a regulator of
downstream CaM-associated pathways which include AMPA
receptor insertion into the postsynaptic membrane [50–52]. A
disturbance of AMPA receptor homeostasis might impair
NMDA receptor-mediated mechanism of working memory
[53,54]. Thus, a possible downstream effect of NRGN
dysfunction could be an imbalance of different glutamate
channels impeding working memory processes.

Furthermore, NRGN was also associated with cortical
thinning in three adjacent occipital areas (right pericalcarine
gyrus, right cuneus, and right lingual gyrus). Many studies have
reported cortical thickness reduction in occipital areas of
schizophrenia patients [55,56], although there is some
heterogeneity with respect to the size of the effect [57–60].
Heritability estimates of around 0.55 were reported for occipital
areas in healthy pedigrees [61]. Cortical thickness is assumed
to reflect the arrangement and density of neuronal and glial
cells as well as passing axons shaped in early brain
development and later pruning processes [62]. Postmortem
studies in schizophrenia patients report abnormalities in
neuronal migration as well as reductions in neuronal size and
arborization compared to healthy control brains [17,18]. NRGN
has been suggested to play a role in the arborization processes
and synaptogenesis in early development. Studies in macaque
monkeys suggest that NRGN expression levels peak in early
development at around postnatal day 70 [16]. This period
roughly coincides with a maximum burst of synaptogenesis in
monkeys around the second postnatal month [63]. Moreover, in
developing monkeys, the earliest and highest NRGN
expression occurred in primary visual areas in the occipital
lobe. In adult monkeys NRGN expression levels differ
substantially between occipital and other neocortical layers
[64]. It is therefore possible that neuronal corticogenesis,
especially in occipital areas, is susceptible to NRGN
disturbances during development.

Interestingly, Ohi et al. [20] reported an association between
NRGN rs12807809 TT homozygotes and reduced gray matter
volume in the ACC in a group of schizophrenia patients of
Japanese ancestry but not in controls. Similarly, we found an
association between ACC volume and NRGN rs12807809 in
our additional analysis. However, in our study C allele carriers

had reduced volumes. It is not uncommon that the risk allele
structure is inconsistent when comparing different studies and
possible reasons for this phenomenon might be multilocus
effects, variation in local patterns of LD, population structure of
study samples (the Ohi et al. sample was of Japanese
ancestry), and environmental exposure differences between
study populations [65–67]. Taken together, our joint findings
points towards an involvement of NRGN in brain development.

Given the reported relationship between the NRGN gene and
risk for schizophrenia, the present results suggest that the
studied risk variants may contribute to disease risk via
increased DLPFC activation (i.e., inefficiency) and decreased
cortical thickness as well as brain volumes in specific brain
regions. However, the results of the current study indicate that
the effect of these genotypes on brain-based phenotypes is not
limited to schizophrenia patients. It is possible that other
common polymorphisms, rare variants, epigenetic or
environmental factors interact with the investigated NRGN
polymorphisms and enhance the adverse effect of these
variants in vulnerable individuals. If we consider that the
investigated NRGN variants were previously associated with
schizophrenia and that DLPFC dysfunction and reduced
cortical thickness are well validated intermediate phenotypes
for schizophrenia, our imaging genetics results support a
robust relationship between NRGN and schizophrenia.

The findings of our study have to be interpreted in the light of
the following limitations. First, we focused on two NRGN SNPs
that have been previously associated with schizophrenia.
However, it is also possible that these SNPs are in high linkage
disequilibrium with other functional variants which represent the
true underlying genetic determinants responsible for the effects
described in our paper. Second, the studied SNPs were
associated with different brain modalities and the presumably
protective allele of rs12807809 (as identified in Ripke et al.
[29]) was related to decreased cortical thickness and ACC
volume. These findings may indicate that the effect of NRGN
on brain structure and function is more complex and that
incomplete penetrance, epistasis, pleiotropy, imprinting and
genetic heterogeneity may play a role. Given that both SNPs
are not in linkage disequilibrium with each other, it is
unsurprising that they may impact gene function and thus the
intermediate phenotypes somewhat differently. However,
considering the significant impact of NRGN haplotypes on both
intermediate phenotypes, it is also possible that this study was
simply underpowered to detect the presumably weaker effects
of the respective other SNP on our two major intermediate
phenotypes. Third, the associations between NRGN and both
brain function and cortical thickness in schizophrenia patients
may be influenced by the effects of antipsychotic medications.
Despite our attempts to estimate the influence of antipsychotics
(which indicated no effects on our results), we are currently
unable to distinguish completely between the potential effects
of antipsychotic medications versus those of the underlying
disease process on measures of brain function and structure.
However, prefrontal dysfunction and reduced cortical gray
matter thickness have been shown to occur in persons with a
high risk of developing schizophrenia and among neuroleptic-
naïve and very young patients with a first episode of
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schizophrenia [40,68]. Furthermore, a study investigating the
effect of antipsychotic medication on cortical thickness failed to
find an association [69]. This implies that the reported
associations are likely to be medication-independent.

Conclusions

Taken together, our study highlights the effects of
schizophrenia risk variants in the NRGN gene on brain-based
intermediate phenotypes for schizophrenia – DLPFC
inefficiency during a working memory task and reduced cortical
thickness. These results further implicate NRGN in the
pathophysiology of schizophrenia and suggest that genetic
NRGN risk variants contribute to subtle changes in neural
functioning and anatomy which can be quantified with
neuroimaging methods.

Supporting Information

File S1.  Supporting Material and Methods, Results. Table
S1. Quality control measure for rs12807809 and rs12541.

Table S2, Allele frequencies across populations. Table S3,
Results of functional and structural imaging models for rs12541
and rs12807809 respectively. Table S4, rs12541-rs12807809
haplotype analysis results. Figure S1, Power analysis of fMRI
models. Figure S2, Additional Model.
(PDF)

Author Contributions

Conceived and designed the experiments: BCH DSM RLG.
Performed the experiments: BCH DSM RLG. Analyzed the
data: EW DG JH AY JT JL SE. Contributed reagents/materials/
analysis tools: DSM RLG AY DG. Wrote the manuscript: EW
SE. assisted in the design of this research project and helped
with the analysis and interpretation of the data: MS VR VC.
started and supervised the research project, supervised all
analyses: SE.

References

1. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex
trait: evidence from a meta-analysis of twin studies. Arch Gen
Psychiatry 60: 1187–1192. doi:10.1001/archpsyc.60.12.1187. PubMed:
14662550.

2. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S et al.
(2009) Common variants conferring risk of schizophrenia. Nature 460:
744–747. doi:10.1038/nature08186. PubMed: 19571808.

3. Ruano D, Aulchenko YS, Macedo A, Soares MJ, Valente J et al. (2008)
Association of the gene encoding neurogranin with schizophrenia in
males. J Psychiatr Res 42: 125–133. doi:10.1016/j.jpsychires.
2006.10.008. PubMed: 17140601.

4. Ohi K, Hashimoto R, Yasuda Y, Fukumoto M, Yamamori H et al. (2012)
Functional genetic variation at the NRGN gene and schizophrenia:
Evidence from a gene-based case-control study and gene expression
analysis. Am J Med Genet B Neuropsychiatr Genet 159B: 405–413.
doi:10.1002/ajmg.b.32043. PubMed: 22461181.

5. Bergen SE, O’Dushlaine CT, Ripke S, Lee PH, Ruderfer DM et al.
(2012) Genome-wide association study in a Swedish population yields
support for greater CNV and MHC involvement in schizophrenia
compared with bipolar disorder. Mol Psychiatry. doi:10.1038/mp.
2012.73.

6. Li T, Li Z, Chen P, Zhao Q, Wang T et al. (2010) Common Variants in
Major Histocompatibility Complex Region and TCF4 Gene Are
Significantly Associated with Schizophrenia in Han Chinese. Biol
Psychiatry 68: 671–673. doi:10.1016/j.biopsych.2010.06.014. PubMed:
20673877.

7. Shen Y-C, Tsai H-M, Cheng M-C, Hsu S-H, Chen S-F et al. (2012)
Genetic and functional analysis of the gene encoding neurogranin in
schizophrenia. Schizophr Res 137: 7–13. doi:10.1016/j.schres.
2012.01.011. PubMed: 22306195.

8. Gottesman II, Gould TD (2003) The endophenotype concept in
psychiatry: etymology and strategic intentions. Am J Psychiatry 160:
636–645. doi:10.1176/appi.ajp.160.4.636. PubMed: 12668349.

9. Hall MH, Smoller JW (2010) A new role for endophenotypes in the
GWAS era: functional characterization of risk variants. Harv Rev
Psychiatry 18: 67–74. doi:10.3109/10673220903523532. PubMed:
20047462.

10. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-
term potentiation in the hippocampus. Nature 361: 31–39. doi:
10.1038/361031a0. PubMed: 8421494.

11. Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP et al. (2001)
Neurogranin null mutant mice display performance deficits on spatial
learning tasks with anxiety related components. Hippocampus 11: 763–
775. doi:10.1002/hipo.1092. PubMed: 11811671.

12. Huang K-P, Huang FL, Jäger T, Li J, Reymann KG et al. (2004)
Neurogranin/RC3 Enhances Long-Term Potentiation and Learning by

Promoting Calcium-Mediated Signaling. J Neurosci 24: 10660–10669.
doi:10.1523/JNEUROSCI.2213-04.2004. PubMed: 15564582.

13. Krug A, Krach S, Jansen A, Nieratschker V, Witt SH et al. (2013) The
Effect of Neurogranin on Neural Correlates of Episodic Memory
Encoding and Retrieval. Schizophr Bull 39: 141–150. doi:10.1093/
schbul/sbr076. PubMed: 21799211.

14. Rose EJ, Morris DW, Fahey C, Robertson IH, Greene C et al. (2012)
The effect of the neurogranin schizophrenia risk variant rs12807809 on
brain structure and function. Twin Res Hum Genet 15: 296–303. doi:
10.1017/thg.2012.7. PubMed: 22856365.

15. Broadbelt K, Ramprasaud A, Jones LB (2006) Evidence of altered
neurogranin immunoreactivity in areas 9 and 32 of schizophrenic
prefrontal cortex. Schizophr Res 87: 6–14. doi:10.1016/j.schres.
2006.04.028. PubMed: 16797925.

16. Higo N, Oishi T, Yamashita A, Murata Y, Matsuda K et al. (2006)
Northern blot and in situ hybridization analyses for the neurogranin
mRNA in the developing monkey cerebral cortex. Brain Res 1078: 35–
48. doi:10.1016/j.brainres.2006.01.062. PubMed: 16497282.

17. Harrison PJ (1999) The neuropathology of schizophrenia. A critical
review of the data and their interpretation. Brain 122(4): 593–624. doi:
10.1093/brain/122.4.593.

18. Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The
neurodevelopmental model of schizophrenia: update 2005. Mol
Psychiatry 10: 434–449. doi:10.1038/sj.mp.4001642. PubMed:
15700048.

19. Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A et
al. (2004) Cingulate gyrus volume and metabolism in the schizophrenia
spectrum. Schizophr Res 71: 249–262. doi:10.1016/j.schres.
2004.02.025. PubMed: 15474896.

20. Ohi K, Hashimoto R, Yasuda Y, Nemoto K, Ohnishi T et al. (2012)
Impact of the genome wide supported NRGN gene on anterior
cingulate morphology in schizophrenia. PLOS ONE 7: e29780. doi:
10.1371/journal.pone.0029780. PubMed: 22253779.

21. Roffman JL, Gollub RL, Calhoun VD, Wassink TH, Weiss AP et al.
(2008) MTHFR 677C --> T genotype disrupts prefrontal function in
schizophrenia through an interaction with COMT 158Val --> Met. Proc
Natl Acad Sci U S A 105: 17573–17578. doi:10.1073/pnas.
0803727105. PubMed: 18988738.

22. Walton E, Turner J, Gollub RL, Manoach DS, Yendiki A et al. (2013)
Cumulative genetic risk and prefrontal activity in patients with
schizophrenia. Schizophr Bull 39: 703–711. doi:10.1093/schbul/sbr190.
PubMed: 22267534.

23. Ehrlich S, Morrow EM, Roffman JL, Wallace SR, Naylor M et al. (2010)
The COMT Val108/158Met polymorphism and medial temporal lobe
volumetry in patients with schizophrenia and healthy adults.

NRGN on Two Schizophrenia Intermediate Phenotypes

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e76815

http://dx.doi.org/10.1001/archpsyc.60.12.1187
http://www.ncbi.nlm.nih.gov/pubmed/14662550
http://dx.doi.org/10.1038/nature08186
http://www.ncbi.nlm.nih.gov/pubmed/19571808
http://dx.doi.org/10.1016/j.jpsychires.2006.10.008
http://dx.doi.org/10.1016/j.jpsychires.2006.10.008
http://www.ncbi.nlm.nih.gov/pubmed/17140601
http://dx.doi.org/10.1002/ajmg.b.32043
http://www.ncbi.nlm.nih.gov/pubmed/22461181
http://dx.doi.org/10.1038/mp.2012.73
http://dx.doi.org/10.1038/mp.2012.73
http://dx.doi.org/10.1016/j.biopsych.2010.06.014
http://www.ncbi.nlm.nih.gov/pubmed/20673877
http://dx.doi.org/10.1016/j.schres.2012.01.011
http://dx.doi.org/10.1016/j.schres.2012.01.011
http://www.ncbi.nlm.nih.gov/pubmed/22306195
http://dx.doi.org/10.1176/appi.ajp.160.4.636
http://www.ncbi.nlm.nih.gov/pubmed/12668349
http://dx.doi.org/10.3109/10673220903523532
http://www.ncbi.nlm.nih.gov/pubmed/20047462
http://dx.doi.org/10.1038/361031a0
http://www.ncbi.nlm.nih.gov/pubmed/8421494
http://dx.doi.org/10.1002/hipo.1092
http://www.ncbi.nlm.nih.gov/pubmed/11811671
http://dx.doi.org/10.1523/JNEUROSCI.2213-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15564582
http://dx.doi.org/10.1093/schbul/sbr076
http://dx.doi.org/10.1093/schbul/sbr076
http://www.ncbi.nlm.nih.gov/pubmed/21799211
http://dx.doi.org/10.1017/thg.2012.7
http://www.ncbi.nlm.nih.gov/pubmed/22856365
http://dx.doi.org/10.1016/j.schres.2006.04.028
http://dx.doi.org/10.1016/j.schres.2006.04.028
http://www.ncbi.nlm.nih.gov/pubmed/16797925
http://dx.doi.org/10.1016/j.brainres.2006.01.062
http://www.ncbi.nlm.nih.gov/pubmed/16497282
http://dx.doi.org/10.1093/brain/122.4.593
http://dx.doi.org/10.1038/sj.mp.4001642
http://www.ncbi.nlm.nih.gov/pubmed/15700048
http://dx.doi.org/10.1016/j.schres.2004.02.025
http://dx.doi.org/10.1016/j.schres.2004.02.025
http://www.ncbi.nlm.nih.gov/pubmed/15474896
http://dx.doi.org/10.1371/journal.pone.0029780
http://www.ncbi.nlm.nih.gov/pubmed/22253779
http://dx.doi.org/10.1073/pnas.0803727105
http://dx.doi.org/10.1073/pnas.0803727105
http://www.ncbi.nlm.nih.gov/pubmed/18988738
http://dx.doi.org/10.1093/schbul/sbr190
http://www.ncbi.nlm.nih.gov/pubmed/22267534


Neuroimage 53: 992–1000. doi:10.1016/j.neuroimage.2009.12.046.
PubMed: 20026221.

24. Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC et al. (1999)
Schizophrenic subjects activate dorsolateral prefrontal cortex during a
working memory task, as measured by fMRI. Biol Psychiatry 45: 1128–
1137. doi:10.1016/S0006-3223(98)00318-7. PubMed: 10331104.

25. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A et al.
(2006) Reliability in multi-site structural MRI studies: effects of gradient
non-linearity correction on phantom and human data. NeuroImage 30:
436–443. doi:10.1016/j.neuroimage.2005.09.046. PubMed: 16300968.

26. Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A et al. (2009)
MRI-derived measurements of human subcortical, ventricular and
intracranial brain volumes: Reliability effects of scan sessions,
acquisition sequences, data analyses, scanner upgrade, scanner
vendors and field strengths. Neuroimage 46: 177–192. doi:10.1016/
j.neuroimage.2009.02.010. PubMed: 19233293.

27. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP et al.
(2010) Data quality control in genetic case-control association studies.
Nat Protoc 5: 1564–1573. doi:10.1038/nprot.2010.116. PubMed:
21085122.

28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al.
(2007) PLINK: A Tool Set for Whole-Genome Association and
Population-Based Linkage Analyses. Am J Hum Genet 81: 559–575.
doi:10.1086/519795. PubMed: 17701901.

29. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P et al. (2011)
Genome-wide association study identifies five new schizophrenia loci.
Nat Genet 43: 969–976. doi:10.1038/ng.940. PubMed: 21926974.

30. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D et al. (2004) A
unified approach for morphometric and functional data analysis in
young, old, and demented adults using automated atlas-based head
size normalization: reliability and validation against manual
measurement of total intracranial volume. NeuroImage 23: 724–738.
doi:10.1016/j.neuroimage.2004.06.018. PubMed: 15488422.

31. Fischl B, Salat DH, Busa E, Albert M, Dieterich M et al. (2002) Whole
brain segmentation: automated labeling of neuroanatomical structures
in the human brain. Neuron 33: 341–355. doi:10.1016/
S0896-6273(02)00569-X. PubMed: 11832223.

32. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible
statistical power analysis program for the social, behavioral, and
biomedical sciences. Behav Res Methods 39: 175–191.

33. Ehrlich S, Brauns S, Yendiki A, Ho B-C, Calhoun V et al. (2012)
Associations of cortical thickness and cognition in patients with
schizophrenia and healthy controls. Schizophr Bull 38: 1050–1062. doi:
10.1093/schbul/sbr018. PubMed: 21436318.

34. Karlsgodt KH, Glahn DC, van Erp TGM, Therman S, Huttunen M et al.
(2007) The relationship between performance and fMRI signal during
working memory in patients with schizophrenia, unaffected co-twins,
and control subjects. Schizophr Res 89: 191–197. doi:10.1016/j.schres.
2006.08.016. PubMed: 17029749.

35. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF et al.
(2003) Complexity of prefrontal cortical dysfunction in schizophrenia:
more than up or down. Am J Psychiatry 160: 2209–2215. doi:10.1176/
appi.ajp.160.12.2209. PubMed: 14638592.

36. Potkin, Turner JA, Brown GG, McCarthy G, Greve DN et al. (2009)
Working memory and DLPFC inefficiency in schizophrenia: the FBIRN
study. Schizophr Bull 35: 19–31. doi:10.1093/schbul/sbn162. PubMed:
19042912.

37. Manoach DS (2003) Prefrontal cortex dysfunction during working
memory performance in schizophrenia: reconciling discrepant findings.
Schizophr Res 60: 285–298. doi:10.1016/S0920-9964(02)00294-3.
PubMed: 12591590.

38. MacDonald AW, Schulz SC (2009) What We Know: Findings That
Every Theory of Schizophrenia Should Explain. Schizophr Bull 35:
493–508. doi:10.1093/schbul/sbp017. PubMed: 19329559.

39. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I et al. (2010)
Abnormal Frontostriatal Interactions in People With Prodromal Signs of
Psychosis: A Multimodal Imaging Study. Arch Gen Psychiatry 67: 683–
691. doi:10.1001/archgenpsychiatry.2010.77. PubMed: 20603449.

40. Van Veelen NMJ, Vink M, Ramsey NF, Kahn RS (2010) Left
dorsolateral prefrontal cortex dysfunction in medication-naive
schizophrenia. Schizophr Res 123: 22–29. doi:10.1016/j.schres.
2010.07.004. PubMed: 20724113.

41. Posner MI, DiGirolamo GJ (1998) Executive attention: Conflict, target
detection, and cognitive control. The attentive brain. Cambridge, MA:
The MIT Press. pp. 401–423.

42. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010)
Conscious perception of errors and its relation to the anterior insula.
Brain Struct Funct 214: 629–643. doi:10.1007/s00429-010-0261-1.
PubMed: 20512371.

43. Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC et al. (2001)
Test-Retest Reliability of a Functional MRI Working Memory Paradigm
in Normal and Schizophrenic Subjects. Am J Psychiatry 158: 955–958.
doi:10.1176/appi.ajp.158.6.955. PubMed: 11384907.

44. Koch K, Wagner G, Nenadic I, Schachtzabel C, Schultz C et al. (2008)
Fronto-striatal hypoactivation during correct information retrieval in
patients with schizophrenia: an fMRI study. Neuroscience 153: 54–62.
doi:10.1016/j.neuroscience.2008.01.063. PubMed: 18359576.

45. Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC et al. (2000)
Schizophrenic subjects show aberrant fMRI activation of dorsolateral
prefrontal cortex and basal ganglia during working memory
performance. Biol Psychiatry 48: 99–109. doi:10.1016/
S0006-3223(00)00227-4. PubMed: 10903406.

46. Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR et al. (2005)
Beyond hypofrontality: A quantitative meta-analysis of functional
neuroimaging studies of working memory in schizophrenia. Hum Brain
Mapp 25: 60–69. doi:10.1002/hbm.20138. PubMed: 15846819.

47. Carter CS, Mintun M, Nichols T, Cohen JD (1997) Anterior Cingulate
Gyrus Dysfunction and Selective Attention Deficits in Schizophrenia:
[15O]H2O PET Study During Single-Trial Stroop Task Performance.
Am J Psychiatry 154: 1670–1675. PubMed: 9396944.

48. Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C et al. (2007)
Visual Attention Circuitry in Schizophrenia Investigated With Oddball
Event-Related Functional Magnetic Resonance Imaging. Am J
Psychiatry 164: 442–449. doi:10.1176/appi.ajp.164.3.442. PubMed:
17329469.

49. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009)
Meta-analysis of 41 Functional Neuroimaging Studies of Executive
Function in Schizophrenia. Arch Gen Psychiatry 66: 811–822. doi:
10.1001/archgenpsychiatry.2009.91. PubMed: 19652121.

50. Lisman JE, Zhabotinsky AM (2001) A Model of Synaptic Memory: A
CaMKII/PP1 Switch that Potentiates Transmission by Organizing an
AMPA Receptor Anchoring Assembly. Neuron 31: 191–201. doi:
10.1016/S0896-6273(01)00364-6. PubMed: 11502252.

51. Slemmon JR, Feng B, Erhardt JA (2000) Small Proteins that Modulate
Calmodulin-Dependent Signal Transduction. Mol Neurobiol 22: 099–
114. doi:10.1385/MN:22:1-3:099.

52. Wu G-Y, Malinow R, Cline HT (1996) Maturation of a Central
Glutamatergic Synapse. Science 274: 972–976. doi:10.1126/science.
274.5289.972. PubMed: 8875937.

53. Lisman JE, Fellous J-M, Wang X-J (1998) A role for NMDA-receptor
channels in working memory. Nat Neurosci 1: 273–275. doi:
10.1038/1086. PubMed: 10195158.

54. Wang X-J (1999) Synaptic Basis of Cortical Persistent Activity: the
Importance of NMDA Receptors to Working Memory. J Neurosci 19:
9587–9603. PubMed: 10531461.

55. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I et al. (2010)
Increased parahippocampal and lingual gyrification in first-episode
schizophrenia. Schizophr Res 123: 137–144. doi:10.1016/j.schres.
2010.08.033. PubMed: 20850277.

56. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I et al. (2010)
Complex pattern of cortical thinning in schizophrenia: Results from an
automated surface based analysis of cortical thickness. Psychiatry Res
Neuroimaging 182: 134–140. doi:10.1016/j.pscychresns.2010.01.008.
PubMed: 20418074.

57. Goldman AL (2009) Widespread Reductions of Cortical Thickness in
Schizophrenia and Spectrum Disorders and Evidence of Heritability.
Arch Gen Psychiatry 66: 467–477. doi:10.1001/archgenpsychiatry.
2009.24. PubMed: 19414706.

58. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K et al. (2010)
Cortical thickness or grey matter volume? The importance of selecting
the phenotype for imaging genetics studies. Neuroimage 53: 1135–
1146. doi:10.1016/j.neuroimage.2009.12.028. PubMed: 20006715.

59. Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B et al.
(2010) Genetic and environmental influences on the size of specific
brain regions in midlife: The VETSA MRI study. NeuroImage 49: 1213–
1223. doi:10.1016/j.neuroimage.2009.09.043. PubMed: 19786105.

60. Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN et al. (2008)
Identification of Genetically Mediated Cortical Networks: A Multivariate
Study of Pediatric Twins and Siblings. Cereb Cortex 18: 1737–1747.
doi:10.1093/cercor/bhm211. PubMed: 18234689.

61. Blokland GAM, de Zubicaray GI, McMahon KL, Wright MJ (2012)
Genetic and environmental influences on neuroimaging phenotypes: a
meta-analytical perspective on twin imaging studies. Twin Res Hum
Genet 15: 351–371. doi:10.1017/thg.2012.11. PubMed: 22856370.

62. Parent A, Carpenter M (1995) Human neuroanatomy. Baltimore:
Williams & Wilkins.

NRGN on Two Schizophrenia Intermediate Phenotypes

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e76815

http://dx.doi.org/10.1016/j.neuroimage.2009.12.046
http://www.ncbi.nlm.nih.gov/pubmed/20026221
http://dx.doi.org/10.1016/S0006-3223(98)00318-7
http://www.ncbi.nlm.nih.gov/pubmed/10331104
http://dx.doi.org/10.1016/j.neuroimage.2005.09.046
http://www.ncbi.nlm.nih.gov/pubmed/16300968
http://dx.doi.org/10.1016/j.neuroimage.2009.02.010
http://dx.doi.org/10.1016/j.neuroimage.2009.02.010
http://www.ncbi.nlm.nih.gov/pubmed/19233293
http://dx.doi.org/10.1038/nprot.2010.116
http://www.ncbi.nlm.nih.gov/pubmed/21085122
http://dx.doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
http://dx.doi.org/10.1038/ng.940
http://www.ncbi.nlm.nih.gov/pubmed/21926974
http://dx.doi.org/10.1016/j.neuroimage.2004.06.018
http://www.ncbi.nlm.nih.gov/pubmed/15488422
http://dx.doi.org/10.1016/S0896-6273(02)00569-X
http://dx.doi.org/10.1016/S0896-6273(02)00569-X
http://www.ncbi.nlm.nih.gov/pubmed/11832223
http://dx.doi.org/10.1093/schbul/sbr018
http://www.ncbi.nlm.nih.gov/pubmed/21436318
http://dx.doi.org/10.1016/j.schres.2006.08.016
http://dx.doi.org/10.1016/j.schres.2006.08.016
http://www.ncbi.nlm.nih.gov/pubmed/17029749
http://dx.doi.org/10.1176/appi.ajp.160.12.2209
http://dx.doi.org/10.1176/appi.ajp.160.12.2209
http://www.ncbi.nlm.nih.gov/pubmed/14638592
http://dx.doi.org/10.1093/schbul/sbn162
http://www.ncbi.nlm.nih.gov/pubmed/19042912
http://dx.doi.org/10.1016/S0920-9964(02)00294-3
http://www.ncbi.nlm.nih.gov/pubmed/12591590
http://dx.doi.org/10.1093/schbul/sbp017
http://www.ncbi.nlm.nih.gov/pubmed/19329559
http://dx.doi.org/10.1001/archgenpsychiatry.2010.77
http://www.ncbi.nlm.nih.gov/pubmed/20603449
http://dx.doi.org/10.1016/j.schres.2010.07.004
http://dx.doi.org/10.1016/j.schres.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20724113
http://dx.doi.org/10.1007/s00429-010-0261-1
http://www.ncbi.nlm.nih.gov/pubmed/20512371
http://dx.doi.org/10.1176/appi.ajp.158.6.955
http://www.ncbi.nlm.nih.gov/pubmed/11384907
http://dx.doi.org/10.1016/j.neuroscience.2008.01.063
http://www.ncbi.nlm.nih.gov/pubmed/18359576
http://dx.doi.org/10.1016/S0006-3223(00)00227-4
http://dx.doi.org/10.1016/S0006-3223(00)00227-4
http://www.ncbi.nlm.nih.gov/pubmed/10903406
http://dx.doi.org/10.1002/hbm.20138
http://www.ncbi.nlm.nih.gov/pubmed/15846819
http://www.ncbi.nlm.nih.gov/pubmed/9396944
http://dx.doi.org/10.1176/appi.ajp.164.3.442
http://www.ncbi.nlm.nih.gov/pubmed/17329469
http://dx.doi.org/10.1001/archgenpsychiatry.2009.91
http://www.ncbi.nlm.nih.gov/pubmed/19652121
http://dx.doi.org/10.1016/S0896-6273(01)00364-6
http://www.ncbi.nlm.nih.gov/pubmed/11502252
http://dx.doi.org/10.1385/MN:22:1-3:099
http://dx.doi.org/10.1126/science.274.5289.972
http://dx.doi.org/10.1126/science.274.5289.972
http://www.ncbi.nlm.nih.gov/pubmed/8875937
http://dx.doi.org/10.1038/1086
http://www.ncbi.nlm.nih.gov/pubmed/10195158
http://www.ncbi.nlm.nih.gov/pubmed/10531461
http://dx.doi.org/10.1016/j.schres.2010.08.033
http://dx.doi.org/10.1016/j.schres.2010.08.033
http://www.ncbi.nlm.nih.gov/pubmed/20850277
http://dx.doi.org/10.1016/j.pscychresns.2010.01.008
http://www.ncbi.nlm.nih.gov/pubmed/20418074
http://dx.doi.org/10.1001/archgenpsychiatry.2009.24
http://dx.doi.org/10.1001/archgenpsychiatry.2009.24
http://www.ncbi.nlm.nih.gov/pubmed/19414706
http://dx.doi.org/10.1016/j.neuroimage.2009.12.028
http://www.ncbi.nlm.nih.gov/pubmed/20006715
http://dx.doi.org/10.1016/j.neuroimage.2009.09.043
http://www.ncbi.nlm.nih.gov/pubmed/19786105
http://dx.doi.org/10.1093/cercor/bhm211
http://www.ncbi.nlm.nih.gov/pubmed/18234689
http://dx.doi.org/10.1017/thg.2012.11
http://www.ncbi.nlm.nih.gov/pubmed/22856370


63. Zecevic N, Rakic P (1991) Synaptogenesis in Monkey Somatosensory
Cortex. Cereb Cortex 1: 510–523. doi:10.1093/cercor/1.6.510.
PubMed: 1822755.

64. Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M (2004) Cell Type-
and Region-specific Expression of Neurogranin mRNA in the Cerebral
Cortex of the Macaque Monkey. Cereb Cortex 14: 1134–1143. doi:
10.1093/cercor/bhh073. PubMed: 15115741.

65. Clarke GM, Cardon LR (2010) Aspects of observing and claiming allele
flips in association studies. Genet Epidemiol 34: 266–274. doi:10.1002/
gepi.20458. PubMed: 20013941.

66. Lin P-I, Vance JM, Pericak-Vance MA, Martin ER (2007) No gene is an
island: the flip-flop phenomenon. Am J Hum Genet 80: 531–538. doi:
10.1086/512133. PubMed: 17273975.

67. Zaykin DV, Shibata K (2008) Genetic flip-flop without an accompanying
change in linkage disequilibrium. Am J Hum Genet 82: 794–797; author
reply: 10.1016/j.ajhg.2008.02.001. PubMed: 18319078.

68. Pantelis C, Velakoulis D, Wood SJ, Yücel M, Yung AR et al. (2007)
Neuroimaging and emerging psychotic disorders: The Melbourne ultra-
high risk studies. Int Rev Psychiatry 19: 371–379. doi:
10.1080/09540260701512079. PubMed: 17671870.

69. Roiz-Santiáñez R, Tordesillas-Gutiérrez D, de la Foz Ortíz-García V,
Ayesa-Arriola R, Gutiérrez A et al. (2012) Effect of antipsychotic drugs
on cortical thickness. A randomized controlled one-year follow-up study
of haloperidol, risperidone and olanzapine. Schizophr Res. doi:10.1016/
j.schres.2012.07.014.

70. First M, Spitzer A, Gibbon M, Williams J (2002) Structured Clinical
Interview for DSM-IV-TR Axis I Disorders, Research Version,
Nonpatient Edition. New York: New York State Psychiatric Institute.

NRGN on Two Schizophrenia Intermediate Phenotypes

PLOS ONE | www.plosone.org 11 October 2013 | Volume 8 | Issue 10 | e76815

http://dx.doi.org/10.1093/cercor/1.6.510
http://www.ncbi.nlm.nih.gov/pubmed/1822755
http://dx.doi.org/10.1093/cercor/bhh073
http://www.ncbi.nlm.nih.gov/pubmed/15115741
http://dx.doi.org/10.1002/gepi.20458
http://dx.doi.org/10.1002/gepi.20458
http://www.ncbi.nlm.nih.gov/pubmed/20013941
http://dx.doi.org/10.1086/512133
http://www.ncbi.nlm.nih.gov/pubmed/17273975
http://dx.doi.org/10.1016/j.ajhg.2008.02.001
http://www.ncbi.nlm.nih.gov/pubmed/18319078
http://dx.doi.org/10.1080/09540260701512079
http://www.ncbi.nlm.nih.gov/pubmed/17671870
http://dx.doi.org/10.1016/j.schres.2012.07.014
http://dx.doi.org/10.1016/j.schres.2012.07.014

	The Impact of Genome-Wide Supported Schizophrenia Risk Variants in the Neurogranin Gene on Brain Structure and Function
	Introduction
	Materials and Methods
	Participants
	Ethics statement
	Behavioral task
	Image acquisition and processing
	Genotyping
	Statistical analyses

	Results
	Sample characteristics
	Functional MRI
	Structural MRI

	Discussion
	Conclusions
	Supporting Information
	Author Contributions
	References


