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Abstract: Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ
a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of
different membrane materials and compositions has also been explored. Some membrane materials
are employed strictly as membrane separators, while some have gained significant attention in the
immobilization of enzymes or microorganisms within or behind the membrane at the electrode
surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen
molecules, and products) involved in the chemical reaction, which in turn has an impact on the
performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan
membranes have been used widely and continue to hold great promise in the long-term stability of
enzymes and microorganisms encapsulated within them. This article provides a review of the most
widely used membrane materials in the development of enzymatic and microbial biofuel cells.
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1. Introduction

A conventional fuel cell is an electrochemical power source that continuously converts the stored
chemical energy in a fuel to electrical energy as long as there is a continuous supply of fuel. These fuel
cells consist of the fuel, oxidant, and the anodic and cathodic substrate materials. The anodic and
cathodic substrates are typically separated by a semi-permeable membrane. Michael Cresse Potter in
1911 conceptualized and described a biofuel cell consisting of two platinum electrodes in the presence
of E. coli, where a potential difference was observed between the two platinum electrodes. Since then,
different biofuel cells have been developed and can be categorized as follows [1]:

1. A primary fuel is used by a biofuel cell and generates a material such as hydrogen, which can be
used as a secondary fuel within a conventional hydrogen/oxygen fuel cell.

2. An organic fuel, such as glucose, is used in a biofuel cell and directly generates bioelectricity.
This biofuel cell may contain enzymes or microorganisms.

3. Photochemically active systems and biological moieties are used to harvest energy from sunlight
and convert it to electrical energy.

However, biofuel cells differ slightly from conventional fuel cells, in that they employ naturally
occurring proteins or microorganisms as the biocatalysts for the anodic and cathodic substrate
materials to catalyze the electrochemical reactions between the fuel, oxidant, and the biocatalysts.
Biocatalysts such as enzymes have high electrocatalytic activity at moderate conditions (pH and
temperature). In addition, they are renewable and can be developed to oxidize many different fuels.
These characteristics render biocatalysts as attractive alternatives to metal catalysts employed in
conventional fuel cells. Herein, we explore the study of different membranes, which have been used in
organic biofuel cells employing both enzymatic and microbial fuel cells.
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2. Enzymatic Biofuel Cell

Enzyme-based fuel cells (enzymatic biofuel cells) and microorganism-based biofuel cells
(microbial biofuel cells) generate bioelectricity through the oxidation of renewable energy sources such
as organic acids and sugars, coupled with the reduction of oxygen to water [2–9], and are safer than
Li-ion batteries and direct methanol fuel cells [10]. These biofuel cells are expected to produce higher
energy density and enable a wide range of applications, thereby becoming the next generation energy
devices. Although enzymes and microorganisms are highly efficient biocatalysts, some challenges
exist when it comes to the immobilization of the biocatalysts on the electrode surface. Hence, the early
enzymatic and microbial biofuel cells utilized solution-borne enzymes or microorganisms rather than
immobilized biocatalysts on the electrode surface. These biofuel cells were found to be stable for only
a few days, whereas biofuel cells with immobilized enzymes or microorganisms were stable for several
months. Heineman et al. employed a transparent thin layer electrode with a mediator to determine
enzyme activity and solution potential, E◦’, values using a spectropotentiostatic method [11]. The major
drawback of this work is the lack of a semi-permeable membrane to separate the half-cell reactions
occurring at the anode and cathode of the biofuel cell. The incorporation of a membrane material in this
system is essential in order to control the enzyme and substrate reaction at the surface of the electrode.
Given that a semi-permeable membrane was not employed to separate the anodic and cathodic
compartments, it was very challenging for Heinemann et al. to determine the correlation between
solution potential and enzyme activity. One of the earliest glucose biofuel cells that incorporated
a semi-permeable membrane enabled the realization of a compact construction of the biofuel cell
to enable effective mass transport and the determination of the electrode characteristics. The active
anode was prepared from platinum-nickel alloy, and activated carbon or porous silver was used as
the cathode material. Rao et al. [12] described the use of cuprophane, dialysis-tubing material, and
foil derived from sulfonated Teflon as the semi-permeable membrane in the development of a circular
biofuel cell. A stable bonding method was employed to keep all the components of the biofuel cell
tightly together and the various layers of the complete circular biofuel cell was confirmed via scanning
electron microscopy.

It has become common practice to employ semi-permeable membrane material for the immobilization
or physical entrapment of enzymes or microorganisms on the surface of the electrode, while separating
the anodic and cathodic compartments. The semi-permeable membrane plays an integral role in the
performance of a biofuel cell due to its impact on the transfer rate of different chemical species in
the electrolyte/solutions. Additionally, the power density of an implantable biofuel cell as a power
supply for bioelectronic devices can be significantly decreased by orders of magnitude due to the
limitations to the mass transfer rate of fuels (organic acids and sugar), oxygen, and permeability
barriers of the immobilized biocatalysts [13]. Tsuchida et al. employed an asymmetric membrane
for the immobilization of glucose oxidase in an enzymatic biofuel cell. It was reported that the
asymmetric membrane was perm-selective to hydrogen peroxide byproduct generated as a result of
glucose oxidation. This perm-selective asymmetric membrane was prepared by casting acetyl cellulose
in a mixed solvent of acetone and cyclohexanone, upon which glucose oxidase was immobilized.
A final layer of a porous polycarbonate membrane was used to coat the electrode. Figure 1 shows the
scheme of the immobilized glucose oxidase asymmetric membrane electrode. This work demonstrated
that in the presence of likely interfering oxidative species, the asymmetric membrane was selectively
permeable [14]. The permeability of asymmetric acetyl cellulose membrane to hydrogen peroxide was
shown to increase in alkaline conditions [15].
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Figure 1. Scheme of the immobilized glucose oxidase membrane electrode.

Moreover, Johnson et al. encapsulated the working electrode with a cation exchange membrane in
order to design a unique membrane-controlled electrode assembly [16]. This way, the larger cation and
anion species would be preserved to perform the electrochemical experiments. A thin semi-permeable
membrane was also used to separate the external bulk solution in the biofuel cell and at the electrode,
as shown in Figure 2. The thin layer contained galactose oxidase as the biocatalyst and ferricyanide as
the mediator. Galactose was used as the substrate fuel in this system. A gold mini-grid electrode was
then sandwiched between two cellulose acetate membranes (B), and these layers were supported by a
porous polycarbonate membrane (A). In addition, the gold mini-grid electrode showed rapid total
electrolysis of the chemical species that were too large to diffuse out of membrane (B), whereas smaller
species were able to pass rapidly through the membrane (B). The solution potential activity of substrate
reactions was acquired via cyclic voltammetry. Since then, significant progress towards a membraneless
biofuel cell has been made. The first membraneless bioanode was reported by Persson et al., who
constructed a glucose biofuel cell with glucose dehydrogenase immobilized on the surface of a graphite
felt anode [17]. A simulated oxygen electrode that generated a current-independent voltage of +560 mV
versus saturated calomel electrode (SCE) was used as the cathode material. A relatively high current
density (up to 10 mA·cm−2) was demonstrated, and this was attributed to the adsorption property of
the graphite felt electrodes.
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Figure 2. Microscopic cross-section of the permeable thin layer cell. The membrane control electrode
assembly is comprised of three unique layers: polycarbonate membrane (A); cellulose acetate
membrane (B); and the enzyme thin layer containing the gold grid and entrapped galactose oxidase (C).

Polymers with distinct hydrophilic and hydrophobic domains can naturally form polymers
with micellar structure, which are more stable than surfactant micelles [18–20]. Nafion is a micellar
polymeric membrane that has been widely used as a membrane separator in the development
of fuel cells because of its micellar porous structure, which further facilitates the transport and
preconcentration of cations within the membrane [21]. Although Nafion has garnered significant
attention for the immobilization of biocatalysts at the electrode surface [22], it has been shown to be
quite ineffective in extending the stability of the immobilized biocatalysts. This is because of Nafion’s
tendency to form an acidic membrane, which decreases the lifetime and activity of immobilized
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biocatalysts [23]. Therefore, a mixture cast of Nafion and quaternary ammonium salts such as
tetrabutylammonium bromide have been used to improve the mass transport of small analytes
through the membrane and enhance the stability of immobilized biocatalysts. In addition, Nafion has
been shown to decrease the selectivity of the membrane against anions [24]. Nafion modified with
tetrabutylammonium bromide and unmodified Nafion exhibit similar properties regarding cation
transport properties; however, modified Nafion has been shown to exhibit higher selectivity to proton
transport because the unmodified and modified versions have different acidic or basic properties.
Titrations of tetrabutylammonium bromide Nafion membrane showed that the membrane resists
re-exchange of protons, and this property helps buffer the pH environment, which would prevent the
membrane from becoming too acidic for the biocatalysts, such as enzymes [25]. To ensure reproducible
and stable modification of Nafion, the excess bromide salt that may be trapped in the pores or
deactivated in the equilibrated membrane is removed from the casting solution using salt-extracted
membrane. However, modified Nafion has several disadvantages; it is expensive, non-biodegradable,
and not biocompatible [26].

In the search for an alternative to modified Nafion, researchers began to explore the hydrophobicity
of modified chitosan [19,27]. Chitosan is formed from chitin, which is abundant in the outer shells
of crustaceans and insects. It is a linear polysaccharide, and it is an inexpensive biopolymer [19,27].
Because of its biocompatibility, biodegradability, high-mechanical strength, and non-toxic properties, it
has gained significant attention in the construction of biofuel cells. Hydrophobically-modified chitosan
alters the flux of redox species to the electrode surface. It supplies the optimal microenvironment
for enzyme immobilization [21]. The ion-exchange capacity of hydrophobically-modified chitosan
and Nafion membranes were characterized [21], where the hydrophobically-modified Nafion was
made by mixture casting large hydrophobic ammonium salts. The process exchanges the ammonium
cations for the protons on the sulfuric acid groups on Nafion [28]. Hydrophobically-modified chitosan
was made by a reductive amination with long alkyl chain aldehydes [21]. The number of exchange
sites available to protons increase with hydrophobic modification. The activity of enzymes was
studied using glucose oxidase immobilized within these two membrane motifs. The modified Nafion
membrane modified with trimethyldodecylammonium bromide (TMDDA) suspended in ethanol
and hexyl modified chitosan suspended in t-amylalcohol showed the highest enzyme activities
by creating a microenvironment that stabilizes the enzymes. A two-fold increase in the enzyme
activity was observed for both modified Nafion and chitosan. Accordingly, hydrophobically-modified
chitosan and Nafion were observed to yield a better microenvironment for enzyme in comparison
to physiological buffers. This is because the hydrophobically-modified chitosan with long chain
aldehydes forms a micellar polymer which exhibits similar properties to hydrophobically-modified
Nafion. In addition, the modified chitosan membrane allows for the tailoring of ion-exchange and
mass transfer capacities. Minteer et al. characterized a hydrophobically-modified chitosan and
Nafion membrane for the immobilization of dehydrogenase enzymes [29], where it was observed that
the hydrophobically-modified chitosan membrane showed higher electrochemical flux compared to
hydrophobically-modified Nafion membrane. It is important to note that the performance of a biofuel
cell depends on the membrane properties, such as transport properties and the ability to extract or
preconcentrate NAD+, in addition to the size and catalytic activity of the enzymes. Table 1 provides a
summary of semi-permeable membranes commonly employed in enzymatic biofuel cells.
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Table 1. Summary of the performance of enzymatic biofuel cells employing semi-permeable
membranes.

Anode Cathode Membrane Fuel Power Output Ref.

Ag/glucose
oxidase (GOX) Pt/peroxidase Asymmetric acetyl

cellulose Glucose/H2O2 – [14]

Gold/galactose oxidase Pt
Cellulose acetate and

porous
polycarbonate

Galactose – [16]

Graphite Felt/glucose
dehydrogenase (GDH) Simulated oxygen

D-3-hydroxybutyrate
dehydrogenase

(BDH)
Glucose – [17]

Au/glucose oxidase
(GOX) Au/microperoxidase Glass frit Glucose/H2O2

32 µW at 0.31 V
vs. SCE or SCE [30]

Au/GOX Au/microperoxidase H2O/CH2Cl2
interface

Glucose/cumene
peroxide

520 µW at 1 V vs.
SCE [31]

Graphite
(formate/aldehyde/alcohol

dehydrogenases soln.)
Pt Nafion MeOH/O2

670 µW·cm−2 at
0.49 V vs. SCE

[9]

Pt C or Pt with laccase in
solution Nafion H2/O2

42 µW·cm−2 at
0.61 V vs. SCE

[32]

Porous C/C
nanotube/GOX

Porous C/C
nanotube/laccase Nafion Glucose/O2 99.8 µW·cm−2 [2,33]

Carbon felt/Nafion NBu4
+

salt alcohol + aldehyde
dehydrogenase

Pt/C Tetrabutylammonium
bromide/Nafion

MeOH/O2,
EtOH/O2

1550 µW·cm−2,
2040 µW·cm−2 [25]

Carbon/GDH

ELAT® (Woven carbon
cloth gas diffusion
layer with a carbon
microporous layer)

Butyl-Chitosan Glucose/NAD+
35 µW·cm−2,
0.699 v open

circuit potential
[29]

Carbon/GDH ELAT® Octyl-Chitosan Glucose/NAD+
17 µW·cm−2,
0.628 v open

circuit potential
[29]

3. Microbial Fuel Cell

An early example of a microbial fuel cell (MFC) was demonstrated by Potter et al., wherein
cultures of Saccharomyces cerevisiae were grown in nutrient-rich media, and a porous cylinder was used
to separate the platinum anode and cathode electrodes [34,35]. Due to the close ecological cycle of
microbial fuel cells and human food, in the 1960s, Austin characterized the direct electron transfer
microbial fuel cell [36]. Suzuki et al. characterized the indirect electron transfer in a microbial fuel cell
using Clostridium butyricum [37]. In 1964, Berk et al. studied the interaction between photosynthetic
microorganisms and platinum electrodes, while employing a dialysis membrane to allow for the
movement of ions between the half cells and generate electricity [38]. The experiments performed by
Potter et al. and Berk et al. focused on the basic principles of microbial fuel cells’ operation. The anode
in a microbial fuel cell accepts electrons from the microbial culture, and the cathode transfers electrons
to an electron acceptor. The cathodic compartment is typically exposed to air or suspended in aerobic
solutions. However, the anodic compartment is usually kept under anoxic conditions. Through an
external electrical circuit, the electrons flow from the anode to cathode, thereby generating bioelectricity.
The anode and cathode are usually separated by a semipermeable membrane. This membrane prevents
oxygen diffusion from the cathode chamber to the anode chamber, while allowing protons to move
from the anode chamber to the cathode chamber. At the cathodic compartment, oxygen, protons, and
electrons recombine to form water [39]. Figure 3 depicts the three mechanisms of electron transfer
from the anode to the cathode that are employed in microbial fuel cells to produce bioelectricity.
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Figure 3. (a) An indirect microbial biofuel cell; (b) A mediator-driven microbial biofuel cell; (c) A direct
electron transfer microbial biofuel cell.

Nafion is a widely applied semi-permeable membrane in microbial fuel cells [40–48]. However, the
use of Nafion as proton exchange membrane (PEM) has been associated with operational challenges.
For example, Gil et al. observed a decreasing pH in the anodic compartment and an increasing
pH in the cathodic compartment in a two-chamber MFC because the proton production rate at the
anode and proton consumption rate at the cathode were much faster than proton transport through
the Nafion PEM [41]. Liu el al. [46] were able to generate bioelectricity using an air-cathode single
chamber microbial fuel cell in the presence and absence of a polymeric proton exchange membrane.
This arrangement was found to be effective in increasing the total energy output and at the same time
reducing the cost of the development of the microbial fuel cell. Interestingly, the bacteria formed in
domestic water waste were employed as biocatalysts in a MFC. Glucose and waterwaste were used
as the substrate fuel and Nafion as polymeric PEM [46]. The anode was composed of Toray carbon
paper and the cathode was carbon electrode/PEM cathode (CE-PEM). The CE-PEM cathode was
constructed by bonding the PEM directly onto a flexible carbon-cloth electrode. In the absence of the
PEM membrane, the maximum power density increased, and the Coulombic efficiency was observed
to be much higher than in the presence of PEM. This indicates that substantial oxygen diffusion
into the anodic compartment was occurring in the absence of the PEM. A higher power density of
146 ± 8 mW/m2 was observed for the glucose and waterwaste fuel in the absence of PEM. However,
omitting PEM resulted in the deactivation of the platinum cathode due to the resulting contamination
in the anodic compartment.

Rozendal et al. [49] investigated the effects of membrane cation transport on pH-sensitive MFC
performance. MFCs that employ a Nafion PEM have the capability to transport protons and other
cation species such as Na+, K+, and Mg2+. Cation species other than protons are responsible for the
transport of positive charge through the Nafion membrane, since the concentration of these cation
species are 105 times greater than the protons. Thus, the cation species accumulated and led to an
increase in conductivity. The protons were consumed at the cathode; thus, the transport of other
cation species other than protons resulted in a decrease in the MFC performance and an increase in the
cathodic pH [49]. This rise in pH resulted in an extensive iron precipitation, which eventually caused
the membrane to break down. Ter Heijne et al. [50] employed a bipolar membrane with low catholyte
(pH < 2.5) in the development of an MFC that employed a bipolar membrane with low catholyte less
than pH of 2.5. The bipolar membrane exhibited cation and anion exchange sections, which were joined
together in series [51,52]. Figure 4 shows the MFC incorporating the bipolar membrane with cathodic
ferric iron reduction and the regeneration of ferric iron. Acidithiobacillus ferrooxidans was employed as
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the microorganism [50]. The MFC maintained low catholyte pH, which was required to keep ferric iron
soluble and from potentially damaging the membrane. Additionally, as a result of water disassociation,
the bipolar membrane provided the anodic and cathodic compartments with hydroxides and protons,
respectively. No loss of iron was observed when bipolar membrane was employed.
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Kim et al. [53] investigated the power densities, Coulombic efficiencies, and permeability to oxygen
and a substrate, for Nafion, cation exchange membrane (CEM), anion exchange membrane (AEM),
and three ultrafiltration (UF) membranes using two-chamber MFCs with different architectures.
CMI-7000 (polymer structure: Gel polystyrene cross linked with divinylbenzene, functional group:
sulphonic acid) was used as CEM and AMI-7001 (polymeric structure: gel polystyrene cross linked
with divinylbenzene, functional group: quaternary ammonium) was used as AEM. AEM was
found to produce the highest power density of up to 610 mW/m2 and Columbic efficiency of 72%.
AEM also showed an increased performance due to the facilitation of proton exchange transfer
with the ammonium cation of the AEM (–NH3

+ functional groups) versus those of the PEM and
CEM) with phosphate anions (–SO3

− functional groups), which exhibited low internal resistance.
The UF membranes produced very high resistances and showed the least permeability to oxygen
and acetate. UF membranes also showed higher permeability to acetate, whereas Nafion showed
the highest permeability to oxygen [53]. Sun et al. [54] studied the performance of an air-cathode
single compartment MFC for waterwaste treatment using microfiltration membranes (MFM) and
multiple sludge inoculation. One layer of MFM was applied only on the water-facing side of the
air cathode to improve its performance. A substantial reduction in the internal resistance from
672 to 248 was observed when PEM was exchanged with MFM, which resulted in approximately a
two-fold increase in the maximum power density of MFC with MFM in comparison to MFC with
PEM. The Coulombic efficiency increased from 4.17% to 5.16% when MFM was employed in place
of a membraneless system. This was attributed to the chemical oxygen demand (COD) removal
efficiency by using MFM [54]. Ghasemi et al. fabricated two different composite membranes that were
used in MFCs, and compared their characteristics with Nafion 117 and Nafion 112. They fabricated
carbon nanofiber (CNF)/Nafion and activated carbon nanofiber (ACNF)/Nafion membranes. The
nanocomposite membranes were observed to exhibit higher Coulombic efficiency and production
power. The MFC which had an ACNF/Nafion membrane resulted in the production of the highest
power density (57.64 mW/m2), while the MFC employing Nafion 112 resulted in the least power
density (13.99 mW/m2). Furthermore, as the nanocomposite membrane pore size and roughness
decreases, the transfer of oxygen from the cathode compartment to the anode compartment was
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inhibited, and thereby prevented the migration of bacteria from the anode compartment to the cathode
compartment. Additionally, the reduced roughness decreased the biofouling in the membrane while
enhancing its conductivity [55]. Lim et al. [56] synthesized a PEM composite by combining sulfonated
poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for fabrication of a MFC. When a small
amount of hydrophilic SPEEK (approximately 3%–5%) was added, the conductivity of the hydrophobic
PES membrane increased. During MFC operation, the conductivity and capacitance of the PES/SPEEK
composite membrane decreased. The PES/SPEEK 5% membrane exhibited the highest power density
(170 mW/m2). The MFC with composite membrane PES/SPEEK 5% COD removal efficiency increased
by 26-fold, and was two-fold higher than that of the MFC incorporating Nafion 112 and Nafion
117 membranes, respectively [56].

Current work by Kim et al. demonstrated a new method to reduce the resistance of the membrane
used in MFCs. Membrane resistance is the result of low electrolyte accessibility onto the MFC
membrane surface. Kim et al. [57] coated an ultrafiltration membrane with polydopamine (PD) to
reduce the resistance of the membrane and create a negatively charged surface. Electrochemical
impedance spectroscopy showed a significant reduction in the resistance of the UF membrane and an
increase in the maximum power density. The PD-coated UF membrane resulted in a high power density
(159 mW/m2), whereas the untreated UF membrane produced a power density of 137.9 mW/m2—
approximately 15% less than the power density achieved by the previous PD-coated UF [57].
Recently, Hernández-Fernández et al. [58] employed a newly fabricated ionic liquids membrane
as the PEM in a MFC for waterwaste treatment. The supported ionic liquid membranes comprised of
1-n-alkyl-3-methylimidazolium (n-butyl, n-octyl) and methyl trioctylammonium cations combined
with hexafluorophosphate, tetrafluoroborate, chloride, and bis{(trifluoromethyl)sulfonyl}imide anions.
Nafion and Ultrex were used as reference membranes [58]. The fabrication of the supported ionic liquid
membranes was attained by transporting the corresponding ionic liquid through a Nylon membrane
using Amicon UF as described in Hernández-Fernández et al. [49]. Table 2 shows the comparison of
the reduction in COD (initial COD 1174 mg/L), the Coulombic efficiency, and the maximum power
density achieved with different ionic liquid membranes with Nafion and Ultrex membrane serving as
reference membranes [59].

Table 2. Comparison of MFC with different ionic liquids membranes and Nafion and Ultrex membrane as
reference membranes, where COD, [MTOA+][Cl−], 1-[omim+][NTf2

−], [omim+][BF4
−], and [omim+][PF6

−]
are chemical oxygen demand, methyl trioctyl ammonium chloride, Octyl-3-methylimidazolium
bis{(trifluoromethyl)sulfonyl}imide, 1-Octyl-3-methylimidazolium tetrafluoroborate, and 1-Octyl-3-
methylimidazolium hexafluorophosphate, respectively.

Membrane COD Removal (%) Coulombic Efficiency (%) Maximum Power (mW/m2)

Nafion® 90.7 4.44 157.9
Ultrex® 88.3 2.50 102.2

[MTOA+][Cl−] 89.1 2.06 103.9
[omim+][NTf2

−] 81.3 2.74 72.1
[omim+][BF4

−] 80.3 1.31 147.1
[omim+][PF6

−] 27.3 18.60 215.0

The need for hydration and the high cost associated with CEMs [60] in air-cathode-based MFCs
makes CEMs unsuitable for large-scale applications. Therefore, inexpensive membranes such as
nylon filter, glass fiber mat, and non-woven cloth have been reported [61]. Pasternak et al. [62]
compared the performance of different kinds of ceramic membranes (alumina, earthenware, mullite,
and pyrophyllite), and evaluated their characteristics in a cascade of MFCs. Pyrophyllite yielded
the best performance for the MFCs and achieved a power density of 6.93 mW/m2 [62], wherein the
chemical properties of the ceramic membranes affect the cell performance.
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4. Conclusions

Enzymatic and microbial biofuel cells have gained significant attention as a power source in
biological environments, where semi-permeable membranes have been applied for the separation of
anodic and cathodic compartments as well as the immobilization of enzyme in enzymatic biofuel cells.
Nafion, modified Nafion, and chitosan have been widely used as semi-permeable membranes and
have resulted in high power outputs. Biofuel cells employing hydrophobically-modified chitosan as
semi-permeable membrane and for the immobilization of biocatalysts result in the generation of higher
power density. For microbial biofuel cells, proton exchange membranes (Nafion) have continued
to gain attention, and CEM and AEM have been used to improve the characteristics of microbial
biofuel cells. Microbial biofuel cells which employ poly(ether sulfone) (modified PEM) have better
performance than previous microbial biofuel cells. However, ionic liquid membranes comprised of
1-n-alkyl-3-methylimidazolium (n-butyl, n-octyl) and methyl trioctylammonium cation combined with
hexafluorophosphate, tetrafluoroborate, chloride, and bis{(trifluoromethyl)sulfonyl}imide anions have
resulted in an overall higher power density.
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