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A B S T R A C T   

Background: Coronary artery disease (CAD) is a leading cause of death worldwide, and the diagnostic process 
comprises of invasive testing with coronary angiography and non-invasive imaging, in addition to history, 
clinical examination, and electrocardiography (ECG). A highly accurate assessment of CAD lies in perfusion 
imaging which is performed by myocardial perfusion scintigraphy (MPS) and magnetic resonance imaging (stress 
CMR). Recently deep learning has been increasingly applied on perfusion imaging for better understanding of the 
diagnosis, safety, and outcome of CAD. 
The aim of this review is to summarise the evidence behind deep learning applications in myocardial perfusion 
imaging. 
Methods: A systematic search was performed on MEDLINE and EMBASE databases, from database inception until 
September 29, 2020. This included all clinical studies focusing on deep learning applications and myocardial 
perfusion imaging, and excluded competition conference papers, simulation and animal studies, and studies 
which used perfusion imaging as a variable with different focus. This was followed by review of abstracts and full 
texts. A meta-analysis was performed on a subgroup of studies which looked at perfusion images classification. A 
summary receiver-operating curve (SROC) was used to compare the performance of different models, and area 
under the curve (AUC) was reported. Effect size, risk of bias and heterogeneity were tested. 
Results: 46 studies in total were identified, the majority were MPS studies (76%). The most common neural 
network was convolutional neural network (CNN) (41%). 13 studies (28%) looked at perfusion imaging classi
fication using MPS, the pooled diagnostic accuracy showed AUC = 0.859. The summary receiver operating curve 
(SROC) comparison showed superior performance of CNN (AUC = 0.894) compared to MLP (AUC = 0.848). The 
funnel plot was asymmetrical, and the effect size was significantly different with p value < 0.001, indicating 
small studies effect and possible publication bias. There was no significant heterogeneity amongst studies ac
cording to Q test (p = 0.2184). 
Conclusion: Deep learning has shown promise to improve myocardial perfusion imaging diagnostic accuracy, 
prediction of patients’ events and safety. More research is required in clinical applications, to achieve better care 
for patients with known or suspected CAD.   

1. Introduction 

1.1. Background 

Coronary artery disease (CAD) continues to be a major cause of death 
and hospitalisation worldwide including in high-income countries [1]. 
The main underlying pathology lies in the progressive nature of coro
nary atherosclerotic process. Therefore, timely diagnosis to aid 

management of patients with CAD has significant impact on both 
morbidity and mortality. 

There have been significant advancements in CAD imaging in the last 
two decades, from anatomical imaging of the coronary tree by means of 
invasive x-ray coronary angiography and cardiac computed tomography 
(CCTA), to functional assessment of coronary stenoses and their impact 
on the myocardium both at rest and stress (physical or pharmacolog
ical), using stress echocardiography, nuclear myocardial perfusion 
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scanning (MPS), and stress perfusion cardiac magnetic resonance 
(CMR). Myocardial perfusion abnormalities are one of the early stages in 
the ischaemic cascade and ischaemic constellation, which also includes 
angina symptoms, electrocardiographic (ECG) changes and ventricular 
wall motion abnormalities [2]. 

Another exciting advancement has been made in computer vision 
technology following the revolution of neural networks and artificial 
intelligence (AI) algorithms. Deep learning is the main subfield of AI 
which has been the focus of computing in medical imaging, with car
diovascular imaging being one of the common arenas for such novel 
applications. Cardiac perfusion imaging is one of the main applications 
which has been studied by many deep learning practitioners and com
puter vision experts. 

One of the key aspects of deep learning is that it allows automation of 
clinical tasks, and thus reduces dependence on users. This has significant 
advantage in perfusion imaging interpretation given that the diagnostic 
accuracy of visual assessment by users is highly dependent on level of 
training, and previously it has been demonstrated that automated 
quantitative analysis performed similar to highly trained users (level 3) 
in interpreting perfusion CMR imaging [3]. 

1.2. Rationale and objectives 

There is mounting evidence of the successful applications of deep 
learning in cardiac perfusion imaging, as demonstrated by the increasing 
number of publications. Moreover, data derived from medical imaging 
can be integrated into specific machine learning approaches to provide 
valuable information for the prediction of different outcomes by 
exploring new correlations between variables and clinical data to build 
predictive models. 

As a result, it is becoming increasingly important that the current 
literature and evidence behind deep learning applications in myocardial 
perfusion imaging needs further evaluation, as well as recommendations 
of how to fine-tune the research towards more meaningful results for 
patients. 

Therefore, the objective of this review is to determine the diagnostic 
accuracy of cardiac perfusion imaging using deep learning algorithms, 
the impact of deep learning on image quality, image safety, and the 
assessment of its prognostic value. 

2. Methods 

2.1. Design 

The umbrella protocol for this systematic review is registered in the 
International Prospective Register of Systematic Reviews (PROSPERO, 
CRD42020204164), and reported according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. 
This review follows the Cochrane Review structure of Diagnostic Test 
Accuracy (DTA) [4]. All searching activities were performed by two 
independent authors (EA and UD), with divergences solved after 
consensus. 

The main review question was determined using the PICO approach: 

• Population: patients with suspected or known coronary artery dis
ease (CAD)  

• Intervention: deep learning applications in CAD perfusion imaging  
• Comparison: comparison with conventional CAD imaging  
• Outcome: improve test accuracy and patient care 

2.2. Selection criteria 

Selection criteria decision was made by one author (EA) and over- 
read by a senior author (AC), with disagreement resolved after 
consensus. Both prospective and retrospective studies were included 
with no restrictions based on minimal sample sizes or recruitment 

process. The analysis focused on participants with known or suspected 
CAD who had a perfusion imaging modality with the application of deep 
learning. Comparison was made with the standard imaging tests used in 
clinical practice to identify the functional significance of coronary artery 
lesions (index test). A clinical reference standard is used for both tech
niques (reference test) which is considered the gold standard. 

Medical imaging techniques presented in conferences as part of 
challenges, such as Medical Image Computing and Computer Assisted 
Intervention (MICCAI), simulation studies and animal studies were not 
included due to the ambiguity in their direct relation to patient care. 
Given that the main scope of this review is on the direct application of 
deep learning on myocardial perfusion imaging, studies which used 
perfusion data as an input variable for prediction without deep learning 
image applications were excluded. As there are numerous studies of left 
ventricular segmentation using deep learning, these studies were not 
included unless they form the basis for perfusion quantification. Finally, 
studies of automated perfusion quantification which relied mainly on 
hand crafted algorithms or non-deep learning algorithms such as prin
ciple component analysis (PCA) were not included. 

2.3. Search procedure 

For published literature, we searched MEDLINE (with PubMed 
extension) and EMBASE using Ovid search engine. To include all 
possible Medline Subject Headings [MeSH] terms, Yale Mesh Analyzer 
was used after identifying two studies manually on MEDLINE database 
with a focus on deep learning and CAD perfusion imaging modalities. 
The PMIDs for those papers were inserted into the analyser and the 
resulting MeSH terms were used as a guide in the systematic search. 
Truncation was used in imaging terms [imag*], cardiac [cardia*], 
myocardial [myocardia*], [quantif*] and coronary [coronar*]. Wild
cards were used with one term [isch?emi*]. Plain terms were used for 
[‘perfusion’], [‘stress’], [‘deep learning’], [‘machine learning’], [‘neural 
networks’], [‘artificial intelligence’], [‘supervised learning’], [‘unsu
pervised learning’], and [‘semi-supervised learning’]. The search 
included all records from database inception until September 29, 2020 
with no language constraints. Full Ovid search strategy and output is 
shown in Appendix [1]. No routine use of methodology search filters has 
been used due to reports of missing relevant studies and inconsistency 
[4]. 

To avoid publication bias and give currency to this systematic review 
with upcoming research, the grey literature also has been searched. This 
includes:  

• Web of Science Conference Proceedings.  
• Open Grey database.  
• Manual searching of references 

2.4. Data extraction 

The extracted summary estimates included imaging modality per
formance after the application of deep learning (sensitivity, specificity, 
and area under the curve (AUC)). The sample size of each study with the 
imaging modality used and deep learning techniques were all reported. 

The following is a summary of input data which were reported from 
each study in the review:  

1. First author’s surname  
2. Year of publication  
3. Model output  
4. Total number of participants  
5. Imaging modality used  
6. Index test  
7. Reference test  
8. Deep learning methods  
9. Sensitivity 
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10. Specificity  
11. AUC 

2.5. Statistical analysis 

The diagnostic accuracy of the imaging modalities was measured 
mainly with specificity and sensitivity analyses and presented as forest 
plots. Data were reported as count or percentages. 

Given that most studies did not report the values for true positive 
(TP), false positive (FP), false negative (FN), and true negative (TN), a 
confusion matrix was generated for each of the included studies in the 
meta-analysis by taking sample size (S) to calculate FN using sensitivity 
and FP using specificity. This was followed by subtracting FN from S to 
calculate TN and FP from S to calculate TP. 

Although different studies reported different perfusion interpreta
tion scales in MPS imaging, there were 2 common scales: a binary scale 
of normal vs abnormal, and an ordinal scale from 0 to 4. Both scaling 
methods are considered similar given that the ordinal scale would group 
0 and 1 as normal, and 2,3 and 4 as abnormal. The ground truth finding 
from the reference test was considered the threshold for the summary 
receiver-operating curve (SROC) with bivariate diagnostic random 

effects meta-analysis with logit-transformed pairs of sensitivities and 
false positive rates method. Two SROC plots were performed using 
linear mixed model to compare convolutional neural network (CNN) 
performance against multi-layer perceptron (MLP). Publication bias and 
effect size derived from each study accuracy compared to mean accuracy 
was tested using funnel plot and Egger’s test. P value of less than 0.05 
was considered significant. Heterogeneity was examined using tau2, I2 

and Q tests. 
All statistical analysis was performed using RStudio software Version 

April 1, 1106 using R programming language version 4.0.4, “mada” and 
“meta” packages were used for meta-analysis. 

3. Results 

3.1. Search results 

715 study entries from the published literature Ovid search, and 432 
entries from grey literature were identified. After the screening of titles 
and duplicate selection, 320 studies were included in the initial analysis 
for which titles indicated that the study might be of relevance. Following 
full text review, 46 studies were included in the systematic review, of 

Fig. 1. PRISMA flow diagram showing the systematic search strategy.  
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Table 1 
List of all relevant studies included in this systematic review.  

First author Year Model output Sample size Imaging 
modality 

Model Index test Reference test External 
validationa 

Fujita et al. 
[5] 

1992 Perfusion classification (8 
classes) 

74 MPS MLP Expert reader Invasive coronary 
angiography 

No 

Wang et al. 
[6] 

1993 Perfusion classification (2 
classes x 64 segments) 

100 MPS MLP No Invasive coronary 
angiography 

No 

Porenta et al. 
[7] 

1994 Perfusion classification (2 
classes x 2 segments) 

159 MPS MLP Expert reader Invasive coronary 
angiography (81 
cases) 

No 

Hamilton 
et al. [8] 

1995 Perfusion classification (2 
classes x 24 segments) 

410 MPS MLP No Expert reader No 

Goodenday 
et al. [9] 

1997 Perfusion classification (2 ×
3 classes) 

42 MPS MLP Expert reader Invasive coronary 
angiography 

No 

Lindahl et al. 
[10] 

1997 Perfusion classification (2 
classes x 2 regions) 

135 MPS MLP Expert reader Invasive coronary 
angiography 

No 

Scott et al. 
[11] 

2004 Coronary artery disease 
prediction 

102 MPS MLP Expert reader Invasive coronary 
angiography 

No 

Ohlsson et al. 
[12] 

2004 Perfusion classification (5 
classes x 5 segments) 

1320 MPS MLP No Expert reader No 

Tagil et al. 
[13] 

2008 Perfusion classification (2 
classes x 5 segments) 

316 MPS MLP, KNN Logistic Regression Expert reader No 

Lomsky et al. 
[14] 

2008 Perfusion classification (2 
classes x 5 segments) 

950 MPS MLP Emory cardiac toolbox Expert reader Yes 

Guner et al. 
[15] 

2010 Perfusion classification (5 
classes) 

308 MPS MLP Expert reader Invasive coronary 
angiography 

No 

Abbasi et al. 
[16] 

2012 Perfusion classification (2 
classes x 20 segments) 

208 MPS MLP No Expert reader No 

Arsanjani 
et al. [17] 

2013 Perfusion classification (5 
classes x 17 segments) 

957 MPS SVM Expert reader Invasive coronary 
angiography 

No 

Nakajima 
et al. [18] 

2015 Perfusion classification (5 
classes x 17 segments) 

1157 MPS MLP Expert reader Invasive coronary 
angiography 

Yes 

Xiong et al. 
[19] 

2015 Perfusion classification (2 
classes x 17 segments) 

140 CCTA AdaBoost Random Forest & Naïve- 
Bayes 

Invasive coronary 
angiography 

No 

Parages et al. 
[20] 

2016 Perfusion classification (5 
classes x 17 segments) 

280 
simulated, 
133 clinical 

MPS Naïve-Bayes Non-prewhitening Expert reader na 

Lee et al. [21] 2016 Ischaemia prediction from 
FFRCT and rCTP 

250 CCTA Gradient 
Boost 

FFRCT alone Invasive FFR No 

Li et al. [22] 2017 Fully automated perfusion 
segmentation 

21 MCE CNN +
Random 
Forest 

Active Shape Model Expert reader No 

Kim et al. [23] 2017 Automated perfusion 
landmarks detection (RV 
insertion point and LV centre 
point) 

59 CMR Random 
Forest 

Histogram of Oriented 
Gradients 

Expert reader No 

Nakajima 
et al. [24] 

2017 Perfusion classification (3 
classes x 17 segments) 

1365 MPS MLP No Expert reader No 

Al Mallah 
et al. [25] 

2017 Prediction of cardiac death 
at median follow-up of 4.3 
years 

9026 MPS Random 
Forest 

Logistic Regression na No 

Nakajima 
et al. [26] 

2018 Perfusion classification (5 
classes x 17 segments) 

1157 MPS MLP No Expert reader Yes 

Do et al. [27] 2018 Fully automated perfusion 
segmentation 

28 CMR CNN No Expert reader Yes 

Eisenberg 
et al. [28] 

2018 Perfusion classification (5 
classes x 17 segments) 

1925 MPS LogitBoost Expert reader Invasive coronary 
angiography 

No 

Betancur et al. 
[29] 

2019 Perfusion classification (2 
classes x 3 segments) 

1160 MPS CNN Automated cTPD Invasive coronary 
angiography 

Yes (used leave- 
one-center-out 
cross-validation) 

Kim et al. [30] 2019 Fully automated perfusion 
quantification 

145 CMR CNN Semi-automated Expert reader No 

Scannell et al. 
[31] 

2019 LV peak signal 
enhancement, LV bounding 
box and segmentation, RV 
insertion point 

175 CMR CNN No Expert reader No 

Spier et al. 
[32] 

2019 Perfusion classification (2 
classes x 17 segments) 

946 MPS CNN No Expert reader No 

Fan et al. [33] 2019 Accelerated k-space 
perfusion processing 

40 CMR CNN Compressed sensing 
reconstruction 

Expert reader No 

Ko et al. [34] 2019 Perfusion attenuation map 
generation 

502 MPS CNN No CT-based 
attenuation maps 

No 

Chiu et al. 
[35] 

2019 Perfusion classification (5 
classes x 17 segments) 

150 MPS CNN Emory cardiac toolbox Invasive coronary 
angiography 

No 

Song et al. 
[36] 

2019 119 MPS CNN Full dose 
perfusion image 

No 

(continued on next page) 
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which 13 studies were included in the meta-analysis. The selection 
procedure and results with reasons for exclusion in the full text assess
ment is illustrated in Fig. 1. 

3.2. Characteristics of studies 

The final number of studies included in this systematic review was 
46, details of first author, year of publication, model output, sample size, 
machine learning and deep learning techniques, index test (compar
ator), and reference test (gold standard) are all given in Table 1. 

The majority of the studies were performed on MPS (76%). However, 
the number of studies in CMR has increased in the last 2 years, as shown 
in Fig. 2. 

The most common neural network architecture in early years was 
MLP (35%), which has been dominated by CNN (41%) in recent years, as 
shown in Fig. 3. 

3.3. Meta-analysis of perfusion classification 

There were several studies which applied deep learning directly to 

segment and classify perfusion imaging maps with various classes, most 
of those studies were based on MPS imaging. 

A meta-analysis was performed on 13 studies where the output of the 
classifier was based on perfusion maps segmentation and referenced to 
the presence or absence of significant CAD based on invasive coronary 
angiography or consensus of expert readers of MPS, a summary of their 
corresponding sensitivity and specificity is depicted in the coupled forest 
plot Fig. 4. The plot shows good performance of the neural networks 
with most studies reporting sensitivity and specificity of over 65%. 

When comparing the performance of MLP with CNN across these 
studies using the summary receiver operating curve (SROC), CNN 
showed a higher value of SROC (higher sensitivity, lower false positive 
rate) with area under the curve (AUC) of 0.894, compared to MLP (AUC 
= 0.848), as showed in Fig. 5. The overall pooled AUC including all 13 
studies was averaged at 0.859, showing good performance. 

3.4. Assessment of heterogeneity 

Quantifying heterogeneity showed τ2 = 0.0037 with confidence in
terval [0.0000, 0.0295], which contains zero, indicating no significant 

Table 1 (continued ) 

First author Year Model output Sample size Imaging 
modality 

Model Index test Reference test External 
validationa 

Prediction of full dose 
perfusion image from 
reduced dose 

Spatiotemporal non-local 
means, Gaussian, Maximum- 
Likelihood 

Rahmani et al. 
[37] 

2019 Coronary angiography 
outcome prediction (2 
classes x 20 segments) 

93 MPS MLP No Invasive coronary 
angiography 

na 

Singh et al. 
[38] 

2020 Prediction of MACE at 
median follow-up of 385 
days 

1185 MPS CNN Clinical model, ventricular 
function model, absolute 
perfusion quantification 
model, integrated model 

na No 

Knott et al. 
[39] 

2020 Prediction of MACE and 
death at median follow-up of 
605 days 

1049 CMR CNN na na na 

Shiri et al. 
[40] 

2020 Prediction of full time from 
half time perfusion 
acquisition 

363 MPS CNN na Full time/ 
projection 
acquisition 
perfusion 

No 

Ramon et al. 
[41] 

2020 Prediction of full dose 
perfusion image from 
reduced dose 

1052 MPS CNN na Full dose 
perfusion image 

No 

Aposto- 
lopoulos 
et al. [42] 

2020 Perfusion classification (2 
classes x 17 segments) 

216 MPS CNN Expert reader Invasive coronary 
angiography 

No 

Xue et al. [43] 2020 Automated perfusion 
landmarks detection (LV 
blood pool enhancement) 

15,789 CMR CNN No Expert reader No 

Berkaya et al. 
[44] 

2020 Perfusion quantification (3 
classes x 5 sections) 

192 MPS CNN No Expert reader No 

Shi et al. [45] 2020 Perfusion attenuation map 
generation 

65 MPS CNN na CT-based 
attenuation maps 

No 

Hu et al. [46] 2020 Revascularisation prediction 
per patient/per vessel from 
49 variables 

1980 MPS LogitBoost Expert reader Invasive coronary 
angiography 

No 

Juarez- 
Orozco 
et al. [47] 

2020 Prediction of MI and death at 
medial follow-up of 6 years 

951 MPS CNN (Cox- 
Nnet) 

na Expert reader No 

Shu et al. [48] 2020 Prediction of myocardial 
ischaemia of MPS 

154 CCTA SVM CTCA stenosis and radiomics 
signature 

Expert reader Yes 

Cantoni et al. 
[49] 

2020 Prediction of CAD from 14 
variables 

517 MPS 
(CZT- 
SPECT) 

Random 
Forest 

MPS (C-SPECT) Expert reader No 

Wang et al. 
[50] 

2020 Prediction of CAD from 5 
variables 

88 MPS SVM 6 ML models (LDA, DT, KNN, 
LR, NB, RF) 

Invasive coronary 
angiography 

No 

CMR, cardiac magnetic resonance; CNN, convolutional neural network, CT; computed tomography; CCTA, coronary CT angiography; DT, decision tree; FFR, fractional 
flow reserve; KNN, K-nearest neighbours; LDA, latent Dirichlet algorithm; LR, logistic regression; LV, left ventricle; MACE, major adverse cardiovascular events; MCE, 
myocardial contrast echocardiography; MI, myocardial infarction; MLP, multi-layer perceptron; MPS, myocardial perfusion scintigraphy; na, not applicable or not 
available; NB, naïve-bayes; rCTP, resting CT perfusion; RF, random forest; RV, right ventricle; SPECT, single photon-emission computed tomography; SVM, support 
vector machine. 

a External validation by using a completely separate dataset for testing or validation outside the original training dataset. 
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between-study heterogeneity exists in our data. 
I2 was found to be 22.3%, meaning that less than quarter of the 

variation in our data is estimated to stem from true effect size differ
ences. Using literature “rule of thumb”, we can characterize this amount 
of heterogeneity as mild. 

Predictive interval was found to be ranging from [0.8569 to 1.1645], 
meaning that it is possible that some future studies will likely find 
positive effect based on the present evidence. 

Finally, the reported p value for Q test was found to be above sig
nificance level (p = 0.2184), meaning there is no significant 
heterogeneity. 

3.5. Assessment of risk of bias 

The risk of bias was assessed using the Quality Assessment of Diag
nostic Accuracy Studies (QUADAS) tool. A modified version was 
adapted and five main fields were assessed: 

1. Patient selection: a high quality study would randomly select pa
tients from a population meeting the inclusion criteria.  

2. Index test: a high quality diagnostic test study would include a 
comparator test.  

3. Reference test: all diagnostic test studies should have a gold standard 
test for validation. 

4. Index test results blinded: a high quality study would blind the re
sults of the comparator test to the deep learning arm.  

5. Reference test results blinded: a high quality study would blind the 
results of the gold standard test to the deep learning arm. 

Taking all the above into consideration, a table of the included 
studies with their associated risk of bias is shown in Appendix [2]. There 
were 13 studies (28%) which did not include an index test to compare 
with the machine learning or deep learning model before comparing 
with the reference test (ground truth). All studies defined a ground truth 
test against which they tested the model performance, and the majority 
of the studies blinded the model reporters from the ground truth results. 
This indicates the high reliability of the reported results. 

Funnel plot in Fig. 6 shows asymmetrical pattern indicating small- 
study effects. Egger’s test was significant with p value < 0.001, in
dicates that the data in the funnel plot are indeed asymmetrical, and 
possibly related to publication bias. 

4. Discussion 

4.1. Deep learning techniques 

The application of deep learning models on myocardial perfusion 
imaging started in the early 1990s, where all the studies were focused on 
the use of MLP architecture and applied on MPS [5–10]. MLPs are 
composed of three types of layers: input layers taking the raw image 
data, hidden layers which are connected via weight vectors, and an 
output layer which takes the weighted sum, applies an output function 
and returns a prediction [51]. The main output prediction of interest in 
early studies was perfusion map classification, this has continued in 
early 2000s, when the performance of MLP was also compared to other 
traditional linear and non-linear machine learning algorithms, such as 
K-nearest neighbours (KNN) [13] and support vector machines (SVM) 
[17]. Most of the networks achieved high performance metrics when 

Fig. 2. A stacked barplot showing the number of publications for each imaging modality in myocardial perfusion imaging over the last 30 years. 
CCTA, coronary computed tomography angiography; CMR, cardiac magnetic resonance; MCE, myocardial contrast echocardiography; MPS; myocardial perfusion 
scintigraphy. 

E. Alskaf et al.                                                                                                                                                                                                                                   



Informatics in Medicine Unlocked 32 (2022) 101055

7

compared to human expert readers. 
There has been a substantial increase in the number of publications 

on deep learning in general with more focus on CNN over the last few 
years, as shown in Fig. 3. Due to the high dimensionality of imaging 
data, the fully connected layers which MLPs are based on put a 

significant limitation on the size of the model available to learn image 
features. The CNN overcomes this challenge by using convolutional 
layers which have significantly fewer parameters and make use of 
extensive weight sharing. The process of several convolutional layers 
can be thought in the following steps: detect low level features and edges 

Fig. 3. A stacked barplot showing the number of studies for each machine and deep learning algorithm used in myocardial perfusion studies over the last 30 years. 
CNN, convolutional neural network; MLP, multi-layer perceptron; SVM, support vector machine. 

Fig. 4. Forest plot of both specificity and sensitivity reported by the 13 MPS studies looking at deep learning in perfusion images classification.  
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from raw pixel data in the early layers, use these edges to detect shapes 
in the later layers, and use these shapes to detect higher-level features 
for prediction. An additional useful property of CNNs is that they lend 
themselves well to be used with transfer learning where the majority of 
the network is kept with its high-level feature extraction ability and only 
the last output layer is exchanged with a new layer to fit with the pur
pose of the study [51]. As a result, the majority of deep learning studies 
on perfusion imaging in the last few years have used CNNs as the main 
architecture, as shown in Fig. 3. Furthermore, the power and flexibility 
of CNNs has opened the window for deep learning applications in more 
challenging image analysis domains such as stress perfusion CMR [23, 
27,30,31], resting CT perfusion (rCTP), and myocardial contrast echo
cardiography (MCE) [22]. 

4.2. Summary of main results 

The performance of neural networks for the identification of perfu
sion defects has proven to have a comparative performance to human 
expert reading, and had a strong overall accuracy in MPS studies (AUC 
0.859) regardless of the comparator or reference tests. The meta- 
analysis presented in this review also shows the superior performance 
of CNNs compared to MLPs in reading and classification of perfusion 
maps. 

The applications of deep learning on stress perfusion CMR has been 
increasing in recent years. There are some promising data on the 
effectiveness of using deep learning with CNNs to the pre-processing 

stage of perfusion quantification in CMR by automated identification 
of anatomical landmarks, such as the right ventricle (RV) insertion point 
into the septum and left ventricle (LV) centre on peak contrast 
enhancement [23,31,43]. Furthermore, CNN algorithms have been 
successfully applied to the segmentation of CMR perfusion images [27, 
30] with high performance. These applications in CMR still require 
further research. Another exciting application of CNN is on k-space ac
celeration and reconstruction for faster perfusion images acquisition 
[33] which is another attractive research application for deep learning. 
Another novel application on the horizon is using deep learning for 
predicting myocardial blood flow in perfusion CMR using 
physics-informed neural networks (PINNs) [52,53]. 

Other successful applications of deep learning include prediction, 
whether looking at prediction of death or myocardial infarction [39,47], 
prediction of revascularisation events [46], or prediction of high-quality 
full radiation dose MPS images from low dose or short time scans which 
has significant impact on the radiation dose delivered to the patients 
[36,40,41], and the identification of acquisition sequence type and 
image plane in CMR [54]. 

Furthermore, there are newer deep learning techniques using 
generative adversarial network (GAN) which have some promising 
application for image reconstruction, but this is still an active area of 
research. 

4.3. Applicability of findings to review question 

Given the evidence of multiple successful applications of deep 
learning on perfusion imaging presented in this review, the value of this 
evidence, although significant, remains in research applications with 
limited clinical use. A wider use of such applications based on the evi
dence presented could have significant impact on patients with known 
or suspected CAD. Reducing scan time, radiation dose, human resources 
and increasing diagnostic accuracy can save patients time, and result in 
better management of their coronary artery disease which has signifi
cant mortality and morbidity benefits. 

5. Limitations 

There are more applications and techniques which have been used 
without full publications of clinical studies and were not reported in this 
review, given that the main scope is clinical applications of deep 
learning in perfusion imaging. 

The published articles included in this review did not report the same 
performance metrics, which was a challenge on the meta-analysis pro
cess, one of the main observations was that the performance metrics 
were reported in some studies for both stress and rest images, but not in 
others. As a result, only the highest performance score of the models for 
the stress images was reported in this meta-analysis. 

6. Conclusion 

6.1. Implications for practice 

In this review the evidence of successful deep learning applications 
in myocardial perfusion imaging has been presented. Most of the early 
studies used the standard MLP perceptron architecture on MPS imaging, 
but more recently CNN architectures gained in popularity given its su
perior performance in image analysis, and deep learning applications 
have expanded to other perfusion imaging modalities, mainly stress 
perfusion CMR. The accuracy of deep learning has proven to be high in 
perfusion image classification to diagnose CAD compared to human 
readers and conventional diagnostic procedures performed in routine 
clinical practice, based on our meta-analysis of the relevant studies. 

Fig. 5. Summary receiver operating curve (SROC) comparing between con
volutional neural network (CNN) and multi-layer perceptron (MLP). This shows 
a higher performance of CNN (solid line) compared to MLP (dotted line). 

Fig. 6. Funnel plot showing asymmetry of the studies and significant variation 
in their effect size values (p < 0.01). 
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6.2. Implications for research 

The successful preliminary applications of deep learning in stress 
perfusion CMR have opened a wide spectrum of potential applications to 
improve accuracy, accelerate scan times, and predict outcomes. Despite 
the high performance of deep learning in MPS image classification, 
which have shown promise for more than two decades, there is still a 
lack of wide use in clinical practice. 

As a result, the findings of this review would encourage more clinical 
studies and trials to assess the performance and accuracy of deep 
learning in cardiac perfusion imaging using the latest techniques, in 
order to obtain clinical validation and to start to use this technology as 
clinical applications in perfusion imaging. Furthermore, other perfusion 
imaging modalities which are still in their infancy, such as rCTP and 
MCE, can also benefit from deep learning applications. 
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