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Simple Summary: Personalized breast cancer treatment with targeted therapy (e.g., tamoxifen or
PI3K inhibitors) requires identification of responder patients. Phenotypical heterogeneity within
the primary, and between primary tumor and metastases, may however interfere with response to
therapy, if based on a single primary tumor biopsy. In this study, we investigated this heterogeneity,
using novel assays to measure activity of tumor-driving signal transduction pathways, e.g., estrogen
receptor and PI3K pathways, in multiple samples distributed across the tumor and in metastases.
Within the primary tumor, heterogeneity was dominant at microscale (biopsy block) and not at
macroscale (across tumor), suggesting that a single biopsy is generally representative for the whole
primary tumor. The differences found between pathway activity in primary tumor and metastases
suggests that it is recommendable to analyze pathway activity in metastatic samples for treatment
selection for late stage patients.

Abstract: Targeted therapy aims to block tumor-driving signaling pathways and is generally based
on analysis of one primary tumor (PT) biopsy. Tumor heterogeneity within PT and between PT and
metastatic breast lesions may, however, impact the effect of a chosen therapy. Whereas studies are
available that investigate genetic heterogeneity, we present results on phenotypic heterogeneity by
analyzing the variation in the functional activity of signal transduction pathways, using an earlier
developed platform to measure such activity from mRNA measurements of pathways’ direct target
genes. Statistical analysis comparing macro-scale variation in pathway activity on up to five spatially
distributed PT tissue blocks (n = 35), to micro-scale variation in activity on four adjacent samples of a
single PT tissue block (n = 17), showed that macro-scale variation was not larger than micro-scale
variation, except possibly for the PI3K pathway. Simulations using a “checkerboard clone-size” model
showed that multiple small clones could explain the higher micro-scale variation in activity found for
the TGFβ and Hedgehog pathways, and that intermediate/large clones could explain the possibly
higher macro-scale variation of the PI3K pathway. While within PT, pathway activities presented a
highly positive correlation, correlations weakened between PT and lymph node metastases (n = 9),
becoming even worse for PT and distant metastases (n = 9), including a negative correlation for the
ER pathway. While analysis of multiple sub-samples of a single biopsy may be sufficient to predict
PT response to targeted therapies, metastatic breast cancer treatment prediction requires analysis
of metastatic biopsies. Our findings on phenotypic intra-tumor heterogeneity are compatible with
emerging ideas on a Big Bang type of cancer evolution in which macro-scale heterogeneity appears
not dominant.
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1. Introduction

Cancer can be described in terms of abnormal functioning of one or more signal trans-
duction pathways that control major cellular functions, e.g., cell division, differentiation,
migration, and metabolism. Around 10–15 signal transduction pathways can drive growth
and metastasis of breast cancer [1,2]. In cancer, they can be activated by receptor ligands or
specific DNA mutations [3–11]. Signaling pathways are in principle clinically actionable,
since their activity can be modified by certain drugs or other treatments. Treatment with
targeted drugs is increasingly used in breast cancer, aiming to block the tumor-driving
pathways in a (neo)adjuvant or metastatic setting [12]. However, predicting the effect of
targeted therapy has generally proven to be very difficult [13]. One reason is that cancer
genome mutation analysis does not sufficiently predict which signaling pathways are active
in an individual tumor [13,14]. Furthermore, heterogeneity in signaling pathway activity
may be present within a tumor, while targeted drug choice is usually based on analysis of a
single primary tumor (PT) biopsy. Similar problems exist when choosing targeted therapy
for treatment of patients with metastatic disease, where therapy choice is generally based
on analysis of a tissue sample from the PT, although marked genotypic and phenotypic
differences between PT and distant site (DS) metastases have been described [15,16]. Un-
fortunately, limited knowledge is available on heterogeneity in signaling pathway activity
within a PT and between PT and lymph node (LN) and DS metastases [17,18]. One reason
has been the lack of reliable assays to measure signaling pathway activity in formalin-fixed
paraffin-embedded (FFPE) tissue samples used in routine diagnostic settings.

A novel analysis method was described before to quantify signaling pathway ac-
tivity in cancer. Based on Bayesian models, the method infers a pathway activity score
from transcription factor-specific target gene mRNA levels [19–22]. While originally de-
veloped for use on fresh frozen tissue samples, this method was recently adapted for
use on FFPE material for a number of signaling pathways, i.e., androgen receptor (AR),
estrogen receptor (ER), PI3K-FOXO, Hedgehog (HH), TGFβ and Wnt pathways [23–25];
see Supplementary Materials Methods (Figures S-M2 and S-M3). Using this approach, we
analyzed heterogeneity in signaling pathway activity within breast PT and between PT
and LN and DS metastases.

2. Materials and Methods
2.1. Study Design

The goal of this study was to investigate phenotypic heterogeneity within primary and
between primary and metastatic breast cancer lesions, using a novel mRNA-based assay
platform to measure the functional activity of relevant signal transduction pathways on
multiple samples pertaining to the same patient. Within the primary tumor, heterogeneity
was estimated at macro-scale and at micro-scale. Macro-scale heterogeneity analysis was
performed on up to five spatially distributed PT tissue blocks from 35 primary breast
cancers of various subtypes; micro-scale heterogeneity analysis was performed on four
adjacent samples of a single tissue block from 17 matched PT. To investigate phenotypic
heterogeneity between primary tumor and metastatic breast cancer lesions, samples from 9
PT with matched lymph node (n = 33) and 9 PT with distant metastatic sites (n = 12) were
analyzed. Table 1 gives a summary description of the sample sets used in this study. A
detailed description with the respective sample numbers per patient is given in Supple-
mentary Materials Data File S1. Measured pathway activity scores for all samples are given
in Supplementary Materials Data File S2.
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Table 1. Summary description of sample sets used. The total number of patients and number of patients per subtype are
given. Between brackets are the corresponding number of samples and their type; b: Primary tumor tissue block sample, PT:
primary tumor sample, LN: lymph node metastasis sample, DS: distant site metastasis sample. Detailed description is given
in the Supplementary Materials Information (Supplementary Information, SampleCounts).

Sample Set Description Total
Per Breast Cancer Subtype

LumA LumB HER2 TN

I 1 to 5 block (b) samples
from primary tumors 18 (49 b) 8 (20 b) 5 (15 b) - 5 (14 b)

II

2 to 5 block samples from
primary tumors with
4 matched quadrant
samples (per patient)

17 (50 b) 9 (28 b) 4 (12 b) 1 (2 b) 3 (8 b)

III
Primary tumors (PT) and

1 to 3 matched distant
metastasis samples

10 (9 PT/13 DS) Subtyping not available

IV

1 to 10 lymph node
metastasis from

9 patients from sample
sets II and III

9 (33 LN) * 4 (20 LN) 2 (3 LN) 1 (1 LN) 1 (8 LN)

* Subtyping not available from one patient.

Archival samples were retrospectively collected under appropriate Dutch ruling and
analyzed in a blinded manner; all tissue samples were formalin-fixed paraffin-embedded
(FFPE). Breast cancer molecular subtyping was performed on surgically resected PT in
a standard manner using the surrogate definitions from the 13th St Gallen International
Breast Cancer Conference [26], based on ER, PR and HER2 protein staining (Figure 1A).
Thus, in this study, the nomenclature Luminal A and B should be interpreted as Luminal
A-like and Luminal B-like.

2.2. Tissue Sample Sets

A variable number of tissue blocks, taken from different locations, was available per
PT to investigate heterogeneity in pathway activity at the macro-scale. To investigate
heterogeneity at the micro-scale, four adjacent “quadrant” samples from the same tissue
block (one block per tumor) were made available for a subgroup of PT. To investigate
variation in pathway activity between primary tumor and metastases, two separate patient
sample sets were analyzed: one with multiple PT blocks matched with a variable number
of LN metastasis samples, the other containing a single PT block and a variable number of
metastasis samples from different DS.

2.3. Sample Preparation

Tissue slides were cut from the FFPE blocks at 10 µm thickness. The tumor area was
annotated by an experienced pathologist and macrodissected, aiming at similar tumor
tissue volumes for RNA extraction (Figure 1B,C and Figure S-M1). RNA was isolated from
the annotated areas using standard procedures, as described in detail in the Supplementary
Materials Methods.

2.4. Measuring Pathway Activity

Functional activity of signal transduction pathways was assessed using biologically
validated computational pathway models as described before [19–21,25]. The approach
uses mRNA levels of a number of a pathway’s direct target genes, which were selected
based on extensive proof points from the literature, as increased levels of expression are
direct evidence of activation of the respective pathways. Underlying the approach is a
Bayesian computational model, as shown in Supplementary Figure S-M2, which describes
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(i) how the expression of the target genes depends on the activation of the respective
transcription complex, and (ii) how qPCR results depend in turn on the expression of the
respective target genes. After calibration of the model parameters using samples with a
known ground truth status of pathway activity, the activity of a new test sample can be
assessed by feeding its mRNA measurements in the bottom nodes of the network and
applying Bayesian reasoning to determine the odds that the pathway was activated or not.
After a logarithmic transformation and normalization, this yields a pathway activity score
on a 0–100 scale, where 0 corresponds to the lowest and 100 corresponds to the highest
odds in favor of an active pathway that a specific model can theoretically infer.

Figure 1. Analyzed primary breast cancer samples. (A) Pathology classification of analyzed primary breast cancers. Surro-
gate classification of Luminal A and Luminal B subtypes based on the surrogate definitions from [26], using ER/PR/HER2
immunohistochemistry staining. (B) Tissue samples analyzed from surgically resected primary tumors were either a tissue
block sample or a quadrant sample. Tissue block samples were obtained by scraping one or more adjacent slides (depending
on the amount of cancer tissue per slide) from each available FFPE tissue block. The tumor tissue area was annotated by a
pathologist and tumor-containing areas were scraped from the slide(s) for RNA isolation. Quadrant samples were obtained
from one randomly selected FFPE tissue block per patient. Sequential tissue slides were divided into 4 quarts, tumor areas
annotated and tissue from the quarts scraped from the slides for RNA isolation. Care was taken to scrape only cancer tissue.
To obtain similar amounts of tumor tissue, multiple adjacent slides were scraped until the same area of scraped tumor had
been collected. (C) Typical example of a tissue block sample, showing how quadrant sample areas were divided. More
examples are given in Supplementary Figure S-M1.

The pathway activity assays were originally developed on data from Affymetrix HG-
U133Plus2.0 (Thermo Fisher, Waltham, MA, USA) microarrays but have been converted
to qPCR mRNA measurements as input, to enable use of FFPE material [25]. Typically,
per pathway, a slightly smaller subset of about 12 target genes were used, and models
were recalibrated on qPCR measurements. For details, see the Supplementary Materials
Methods (Figure S-M2 and S-M3) and [23,24]. Next to pathways’ direct target genes, a
panel of reference genes was used for normalization purposes.

In our study, we used qPCR pathway assays for the AR, ER, PI3K, HH, TGFβ and
Wnt pathways, available on the FIPA Pathway Plate 1.0 (Philips Molecular Pathway
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Diagnostics, Eindhoven, The Netherlands). As such, these represent relevant hormone-
driven pathways (AR and ER), growth factor pathways (PI3K), and stem cell-related
pathways (HH, TGFβ and Wnt), which play a role across different breast cancer subtypes.
PI3K pathway activity is based on the inverse activity of the measured FOXO transcription
factor activity score, on the premise that no cellular oxidative stress is present; for this
reason, the FOXO activity score is interpreted in combination with SOD2 target gene
expression level to distinguish between growth control- and oxidative stress-induced
FOXO activity, as described before [20,27].

2.5. Statistical Data Analysis

Due to the heterogeneous sample set, we used linear mixed models [28,29] to enable
the best possible quantification and statistical underpinning of the pathway analysis results.
In view of readability, only a brief overview of the statistical approach is given here; for an
extensive description, including detailed analysis results, we refer to the Supplementary
Materials Statistics. The model used to analyze heterogeneity in primary breast cancer
subtypes considers patients grouped by cancer subtype classification, with multiple tumor
block measurements per patient. The pathway activity score of a given pathway is modelled
as (Figure 2A):

ypq = µt + αp + βpq. (1)

Here, ypq is the pathway activity score of patient p for tumor block q; µt is the average
of scores in this subtype classification group t (e.g., LumA or LumB); αp is a random contri-
bution of the patient tumor as a whole, compared to the group average (assumed normally
distributed around zero with standard deviation σpat); and βpq is the random contribution
of block q which is used to accommodate tumor heterogeneity for patient p (assumed nor-
mally distributed around zero with standard deviation σblock,t ). The value σblock,t describes
the spread of scores within a single patient tumor (the tumor heterogeneity) for patients
in a specific breast cancer subtype t and σpat describes the variation between individual
patients, regardless of the breast cancer subtype they belong to.

Figure 2. Schematic representation of models used for data analysis. (A) Model used for estimation of variation in signaling
pathway activity between breast cancer subtypes (ypq = µt + αp + βpq). (B) Extended model enabling additional comparison
between variation at micro-scale and macro-scale. (ypqe = µt + αp + βpq + εpqe). The models have random contributions that
are added to each other; the random character of each level of contribution is indicated by a Gaussian distribution with
standard deviation (σ) and example realizations from that distribution. The models describe the pathway activity scores ypb

and ypbe as a sum of contributions. Starting from the average score µt (computed for each breast cancer subtype t separately,
with t being Luminal A, Luminal B, or ER negative), a patient-specific contribution αp (red arrows) and a block-specific
contribution βpb (green arrows) are added to the average signaling pathway activity score (µt). In the extended model, an
additional contribution εpbe (blue arrow) is added to the pathway activity score of each block, to model the possibility of
quadrant-to-quadrant heterogeneity (see Figure 1B for block and quadrant definitions).
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The measured pathway activity scores, in combination with this statistical model
structure, are used for the statistical estimation of the parameters like σblock,t or σpat. Since
they are fitted parameters to the data, the models provide a confidence interval for these
quantities. For the analysis performed with quadrant measurements, the model was
extended to accommodate and estimate additional micro-scale heterogeneity. The model
used has an additional layer that enables taking both the tissue block and the quadrant
sample measurements into account (Figure 2B):

ypqe = µt + αp + βpq + εpqe. (2)

Macro-scale heterogeneity (from blocks) and micro-scale heterogeneity (from quad-
rants) are defined in terms of parameters of this model. Analysis was performed in STATA
(StataCorp, College Station, TX, USA, 2017, Release 15 [28]) and R (www.r-project.org,
accessed on 18 December 2020) using nlme and emmeans packages [29–31]. For details,
see Supplementary Materials Statistics.

3. Results
3.1. Signal Transduction Pathway Activity in Primary Breast Cancer Subtypes

To investigate heterogeneity in the activities of the ER, AR, PI3K-FOXO, HH, TGFβ,
and WNT signaling pathways, we analyzed samples from up to five spatially distributed
PT tissue blocks from 35 patients with breast cancers of various subtypes (Table 1 sample
sets I and II). For this analysis, pathway activity scores were available from Luminal A, B,
and ER-negative (ER−) tumors; see Figure 1 and the Materials and Methods section for
a description of the subtype classification and tissue sample sets. Mean pathway activity
score values per patient categorized by breast cancer subtype are presented in Figure 3A.
An overview of all measured pathway activity scores is given in Supplementary Materials
Data File S2. Figure 3A shows that the ER pathway had the broadest range in activity
scores and largest separation in scores between subtypes. ER pathway activity scores
were similar between Luminal A and Luminal B PT, but markedly lower in ER− patients.
FOXO pathway activity scores (as an inverse readout for PI3K pathway activity) and TGFβ
pathway activity scores were higher in Luminal A and progressively lower in Luminal B
and ER− cancers, indicating the lowest PI3K pathway activity in Luminal A tumors. WNT
pathway activity scores were higher in ER− cancers compared to Luminal type (Figure 3A,
Supplementary Materials Statistics, Table S1 and Table S2).

3.2. Variance Explained per Model Parameter

Subsequently, we estimated the statistical variation in pathway activity between
patients and within the same tumor (Figure 3B,C) using the model illustrated in Figure 2A
and Supplementary Materials Statistics (Figure S1 and Table S3). For all signaling pathways,
the variation in pathway activity within a single tumor for patients in a specific subtype
(σblock,t, for t = LumA, LumB, or ER−) was comparable for all breast cancer subtypes
(Figure 3B, Supplementary Materials Statistics, Table S3). This implies that there is no need
to compute a separate standard deviation (σblock,t) for each subtype. Instead, a simpler
model could be used in our subsequent analysis, in which the estimate for the spread of
scores within a single tumor is the same regardless of subtype (i.e., replacing σblock,t by
σblock). Further analysis, using this simpler model (Supplementary Materials Statistics,
Table S5), indicated that the variance in pathway activity score between patients (σpat)
is larger than the variance within a single tumor (σblock) for the WNT and ER pathways
(i.e., σpat/σblock > 1), while both variances were comparable for the remaining pathways
(Figure 3C, Supplementary Materials Statistics, Table S5).

www.r-project.org
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Figure 3. Variation in signaling pathway activity score per breast cancer subtype in the tissue block samples of sample
sets I and II. (A) Distribution of scores for Luminal A (lumA), Luminal B (lumB), and HER2-positive/triple negative
breast cancer (ER−). Each point represents the average pathway activity score across all tissue block samples of a patient.
The HER2-driven patient sample is depicted as a small red triangle. Tukey adjusted significance levels of pairwise test
for equality of means are indicated (***: p < 0.0001, *: p < 0.05, values in Supplementary Materials Statistics, Table S1).
(B) Estimated standard deviation (SD) with corresponding 95% confidence intervals (95% CI) of signaling pathway activity
scores describing the heterogeneity in activity scores between all patients, irrespective of subtype (pat) and within a single
tumor for tumors in a specific breast cancer subtype (block lumA, block lumB, block ER−), based on pathway activity scores
of primary tumor tissue block samples (values in Supplementary Materials Statistics, Table S3). (C) Estimated ratios of
between patient SD to within tumor SD (σpat/σblock) with corresponding 95% confidence intervals for subtype-independent
σblock model. Significance levels are indicated (*: p < 0.05, values in Supplementary Materials Statistics, Tables S4 and S5).

3.3. Variation in Pathway Activity within a Single Tumor in Primary Breast Cancer

To compare the variation of scores at macro-scale to the variation at micro-scale,
pathway activity scores measured in the four quadrant samples obtained from a single
FFPE block (micro-scale), as well as in all tissue blocks (macro-scale), were analyzed
(sample set II, 17 patients, see Table 1 and Figure 4). Figure 4A illustrates the range and
variation of pathway activity scores measured in all tissue blocks and quadrant samples of
sample sets I and II (Table 1). Figure 4B depicts the spread between pathway activity scores
measured in the 4 quadrant samples (micro-scale) versus the spread in scores measured
in the multiple tissue blocks of the same tumor (macro-scale). Figure 4C correlates the
averaged value for pathway activity of the quadrant samples and the respective matched
tissue block sample. While variation in pathway activity was observed between quadrant
samples and between tissue blocks of the same tumor (Figure 4B), the averaged pathway
activity scores of the quadrants strongly correlated with both the score of the matched
tissue block and with the average scores of the tissue blocks (Table S8).
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Figure 4. Heterogeneity in signaling pathway activity score within primary tumors at micro- and macro-scale (sample
sets I and II). (A) Pathway activity scores for tissue block (blue) and quadrant (red) samples of each patient. Ranges are
presented as vertical lines; individual scores are presented as triangles. (B) Spread in signaling pathway activity scores
from quadrant samples (horizontal lines) vs. spread in scores from tissue block samples of the same patient (vertical lines).
Significance level for the correlation between mean scores of tissue block samples versus mean scores of quadrant samples
(point where horizontal and vertical lines cross) are indicated in the figure by stars (*: p < 0.05, **: p < 0.01, ***: p < 0.001,
corresponding values are in Table S8). (C) Correlation between mean quadrant sample pathway activity score and score
of the corresponding tissue block sample. Stars indicate the significance level of the correlations (corresponding p values
are in Table S8). (B,C) Diagonal black lines illustrate a one-to-one relation. Samples of the same patient have the same
color. Black lines illustrate a one-to-one relation. (D) Ratio between macro-scale and micro-scale standard deviation (SD)
of signaling pathway activity scores; σmacro/σmicro measured in tissue block samples and quadrant samples, respectively.
Variances computed using the macro- vs. micro-scale model (Figure 2B, Supplementary Materials Statistics, Figure S2,
Table S6) using all samples (top) or those with less technical noise (leaving out all samples with average Cq values > 31
for the reference genes used for the qPCR measurements). Significance level of Wald test p-value for comparing the ratio
σmacro/σmicro to 1 are indicated by stars (p values for model run using all samples in Supplementary Materials Statistics,
Table S7). (E) Summarized macro (block level) and micro-scale (quadrant level) heterogeneity per patient by taking the
square root of the average variance across the six pathways, where an average SD of 10 means an average confidence
interval of about 40 points. (F) Checkerboard visualization of a primary cancer, explaining differences in heterogeneity
between micro-scale and macro-scale measurements of pathway activity. Left: Squares represent (small) cancer cell clones
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with variable pathway activity scores, simulated by grey (high pathway activity) and white (low pathway activity). For
example, analyzing HH pathway activity in a randomly localized “tissue” sample (analogous to the tissue block samples)
results in a smoothed averaged pathway activity, due to canceling out of variations in pathway activity that are present
in areas smaller than the sampled area. On the other hand, when taking four quadrant samples, the varying pathway
activity scores in the quadrants are measured, resulting in a higher measured pathway activity heterogeneity at micro-scale.
Right: Quadrangles represent large cancer cell clones, with variations in pathway activity scores. In this case, it is expected
that more heterogeneity will be found at the macro-scale, since the quadrants are more likely to have the same pathway
activity. This might be the case for the PI3K-FOXO pathway. For detailed information on the associated statistical model,
see Supplementary Materials statistics.

To determine whether pathway activity varied more at macro-scale (tissue blocks) or
at micro-scale (block quadrants), we calculated the ratio between the standard deviation of
pathway activity score at the macro-scale and the standard deviation of pathway activity
score at the micro-scale for each signaling pathway. The standard deviations were estimated
using the model illustrated in Figure 2B (details in Supplementary Materials Statistics,
Figure S2, Tables S6 and S7). For the AR, HH, TGFβ and Wnt pathways, variation in
pathway activity score was significantly higher at the micro-scale than at the macro-
scale, with the highest statistical significance for the HH pathway, p < 0.001 (Figure 4D,
Supplementary Materials Statistics, Table S7). For the ER and FOXO pathways, the variation
in score at the macro-scale was comparable to the micro-scale. Summarizing the macro
(block level) and micro (quadrant level) heterogeneity per patient by taking the square
root of the average variance across the six pathways also shows a higher variation at the
micro-scale than macro-scale (Figure 4E). The median value across patients is 3.2 and 3.8 at
the block level and quadrant level, respectively.

Extensive noise analysis was performed to identify technical noise, which might
have biased the pathway activity scores, and therefore, the ratio between variation at
macro-scale and micro-scale (Supplementary Materials Methods, technical noise analysis,
Figures S-M4–S-M6). High qPCR Cq values, which were more frequent in measurements
of very small samples, may be associated with increased technical noise. Removal of such
samples resulted in loss of significance of the higher variation in AR and Wnt pathway
activity at micro-scale but did not change the results for the HH and TGFβ pathways
(Figure 4D bottom). Taking this into account, we can safely draw an overall conclusion
that heterogeneity in signaling pathway activity was not larger at the macro-scale (blocks)
than at the micro-scale (quadrants), except for the PI3K-FOXO pathway for which a higher
variation at macro-scale could not be excluded, based on the 95% confidence interval
computed when the high qPCR Cq values had been removed (Figure 4D bottom). Variation
in ER pathway activity was similar at micro-scale and macro-scale and variation in HH
and TGFβ pathway activity was higher at micro-scale.

3.4. Variation in Signaling Pathway Activity at Micro-Scale versus Macro-Scale

Since the observed higher variation in HH and TGFβ pathway activity on micro-scale
compared to macro-scale seemed counter-intuitive, a hypothetical computational checker-
board model was developed to help explain observed results (Figure 4F, Supplementary
Materials Statistics, Figures S3 and S4). In this checkerboard model, squares represent
cancer cell clones with variable pathway activity scores, depicted in grey and white, which
are present across a tumor. In case cancer clones are smaller than the tissue block and
around the size of the quadrant samples (Figure 4F, left), the pathway activity scores
measured in (all) the tissue block samples will average out the varying pathway activity
scores measured in the quadrant samples, causing the variance between tissue blocks to be
smaller than the variance between quadrants. This is likely to be the case for the HH and
TGFβ pathways for which the activity scores were found to dominantly vary between the
quadrants of a block. Variation in ER pathway activity was relatively small and more or
less similar across the whole PT. This can be explained by either a homogeneous tumor, or
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variations in ER pathway activity at a very small scale (very small “clones” with varying
ER pathway activity; Figure 4F middle) across the whole tumor. In this case, the quadrant
samples are larger than the clones with varying ER pathway activity and the differences
in score between quadrants and between tissue block samples are similar. Finally, clones
that are larger than the sampled blocks and quadrants but much smaller than the whole
tumor (Figure 4F, right) could explain the potentially higher variation at the macro-scale in
PI3K-FOXO pathway activity. A detailed explanation is provided in the Supplementary
Materials Statistics.

3.5. Differences in Pathway Activity between Primary Tumors and Matched Lymph
Node Metastases

To examine whether pathway activity in LN metastasis is similar to pathway activity
in PT, multiple PT and LN matched samples per patient were analyzed (nine patients,
PT tissue blocks from a subset of sample sets II and III, LN samples from sample set
IV, see Table 1 and Supplementary Materials Data File S1). For all signaling pathways,
activity scores within the PT were positively correlated with pathway activity scores
in corresponding LN metastases (Figure 5A). However, correlations were much smaller
than the correlations obtained when comparing PT block and matched quadrant samples,
ranging from 0.448, 95% CI (−0.308, 0.857), p = 0.2, for the TGFβ pathway to 0.825, 95% CI
(0.356, 0.962), p = 0.006, for the HH pathway (Table S8). This indicates that pathway activity
measured in PT may not reflect well the pathway activity measured in the corresponding
LN metastasis.

Figure 5. Heterogeneity in signaling pathway activity between primary tumor and metastases (A) Correlation between
measured pathway activity scores in primary (x-axis) tumor and matched lymph node metastases (y-axis) visualized by
plotting pathway activity scores (Sample sets IV and II/III). (B) Correlation between measured pathway activity score in
primary tumor (single sample) and matched distant metastases (Sample set III). Per plot, colors indicate samples that belong
to one patient (patient IDs indicated in the legends), the cross indicates the average, and the black line is a visual guide for a
one-to-one relation. Significance level for the correlation between mean scores are indicated by stars (*: p < 0.05, **: p < 0.01,
corresponding values are in Table S8).

Quantitative differences in pathway activity score between LN metastatic samples
and PT samples were calculated by comparing, for each patient p with matched PT and
LN metastatic samples, (a) the delta in pathway activity score between each lymph node
metastasis and the average score of the respective PT samples, ∆p,LN, and (b) the delta
in score between each PT tissue block and the respective PT block averages, ∆p,block
(Supplementary Materials Statistics, Figure S5). For all pathways, the spread in ∆p,LN
was larger than the spread in ∆p,block, indicating that difference between PT and LN
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metastases was larger than the variation in pathway activity within the PT (Supplementary
Materials Statistics, Tables S8 and S9). For the TGFβ and FOXO pathways, activity scores
were generally lower in lymph node metastases compared to the PT, with lower FOXO
indicating higher PI3K pathway activity; for AR, HH and WNT pathways, activity scores
were more frequently higher in lymph node metastases compared to the PT (Figure 5A,
Supplementary Materials Statistics, Tables S8–S10).

3.6. Differences in Pathway Activity between Primary Tumors and Matched Distant Metastases

For this analysis, a single PT sample (per patient, n = 9) matched with a variable
number of DS metastatic samples was available (sample group III). Except for the TGFβ
pathway, correlations between DS metastasis and matched PT were worse than correlations
between LN metastasis and matched PT. Correlations remained positive for FOXO and
the HH and TGFβ pathways, but became negligible for the AR and WNT pathways, and
negative for the ER pathway, ranging from positive correlation of 0.601, 95% CI (−0.105,
0.904), p = 0.09 for the HH pathway to a negative correlation of −0.359, 95% CI (−0.826,
0.401), p = 0.3, for the ER pathway (Figure 5B, Table S8).

To further examine the differences in pathway activity score between distant metas-
tases and PTs, for each patient q with matched PT and DS metastatic samples, deltas in
activity score between each DS metastatic sample and the one available matched PT sample,
∆q,meta, were compared to the previously computed PT tissue block deltas, ∆p,block (Supple-
mentary Materials Statistics, Figures S6–S8, Tables S8 and S9, the indices q and p emphasize
the use of two different patient cohorts). Here again, the spread in ∆q,meta was larger than
the spread in ∆p,block for all pathways, indicating that, as with LN metastasis, differences
in pathway activity scores between PT and DS metastases are larger than the variation
within the PT (Supplementary Materials Statistics, Table S8 and S9). While a loss of AR, ER
and TGFβ pathway activity was frequently observed in metastases compared with the PT,
WNT pathway activity was regularly increased in metastases (Figure 5B, Supplementary
Materials Statistics, Tables S8 and S9).

3.7. Comparing Pathway Activity between Lymph Node and Distant Metastases

Variation between distant metastases and lymph node metastases were analyzed by
comparing the spread in ∆q,meta to the spread in ∆p,LN. Apart from the TGFβ pathway,
variation between distant metastases (spread in ∆q,meta) was larger than variation between
lymph nodes (the spread in ∆p,LN, Supplementary Materials Statistics, Tables S8 and S9).

3.8. Pathway Activity Related to Metastatic Organ Site

Specific tissues are thought to provide a favorable niche for metastatic growth that is
driven by a signaling pathway for which the activating ligand is provided by the tissue
niche [32]. The small number of metastatic samples from a similar organ site precluded
investigation of a relation between signaling pathway activity and metastatic location.
Given this limitation, pathway activity scores in individual metastatic tumors may still
provide interesting information. Wnt pathway activity score was highest in bone (n = 2)
and ileum (n = 1); HH pathway activity was highest in ovarian, ER pathway activity highest
in a brain, and TGFβ highest in a skin and a bone metastatic lesion (see Supplementary
Materials Data File S2).

3.9. PI3K-FOXO Pathway Analysis

For only three patients, all triple negative subtype, FOXO activity was high in combi-
nation with elevated SOD2 expression level, indicating oxidative stress-associated FOXO
activity, precluding direct inference of PI3K pathway activity (Supplementary Materials
Methods, Figure S-M7, [20]). For all other analyzed samples, PI3K pathway activity could
be directly (inversely) inferred from the respective FOXO activity score.
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4. Discussion

To investigate variation in tumor-driving signaling pathway activity within primary
breast cancer tumors and between matched primary tumor and LN and DS metastases,
activity of the PI3K growth factor pathway, the ER and AR hormonal pathways, and the
developmental Wnt, HH and TGFβ pathways was measured at multiple locations in PT
as well as in metastatic samples. Pathway activity scores were quantified using a novel
method for signaling pathway analysis, adapted for FFPE samples [19–21]. While initial
semi-quantitative analysis of the various groups of pathway measurement results already
indicated our major findings [33], the complex relationships between the available sample
sets required an innovative statistical model-based data analysis approach to objectively
quantify our results [29].

4.1. Variation in Pathway Activity between Breast Cancer Subtypes

As expected, based on previous work, ER pathway activity was mostly defined
by the breast cancer subtype and scores were much higher in PT of Luminal A and B
patients, compared to ER− tumors [19,23]. More interesting is that within Luminal A and
B subtypes, activity of the ER pathway showed a large dynamic range. We previously
showed that ER protein expression is a prerequisite, but not sufficient, for functional
activity of the ER pathway, and the current results further confirm this [19]. In the absence
of activating mutations in the ER gene, the presence of ER ligands and specific downstream
proteins (e.g., cofactors) determine the actual activity of the ER transcription factor. This
creates the necessity to measure the functional activity of the ER pathway to optimally
predict sensitivity to hormonal therapy [23,34]. The highest activity scores of the FOXO
transcription factor, which is associated with an inactive PI3K pathway, were found in
Luminal A cancers. This is in agreement with our earlier findings and with the known
tumor-driving role of the ER pathway, in the absence of PI3K pathway activity, in this
subtype [20].

4.2. Within Tumor Heterogeneity of Signaling Pathway Activity

To the best of our knowledge, to date, no information is available on phenotypic
heterogeneity within primary breast cancer with respect to functional signaling pathway
activity. Knowledge on signaling pathway heterogeneity is limited to studies on variations
in ER and HER2 IHC staining, and on spatial variations observed in specific gene mutations
and copy number changes across the tumor [17,18,35–38]. However, this does not provide
information on variations in functional signaling pathway activity. In the current study,
with a possible exception of the PI3K pathway, such pathway activity variation was found
be comparable both at the macro-scale, across the primary tumor, and at the micro-scale,
within a single tumor tissue block.

The HH and TGFβ pathway showed consistently higher variation in activity at the
micro-scale. Both pathways are typically active in stem cells, suggesting that multiple small
clones may be present and spread throughout the PT and composed of cancer stem cells.
This fits well with the cancer stem cell hypothesis, which assumes that small groups of
relatively quiescent cancer cells that have acquired stem cell characteristics are present in
tumor tissue [1,39,40]. Both pathways are generally thought to play an important role in
governing metastatic behavior and therapy resistance of cancer stem cells, another hallmark
of cancer [1]. Previous pathway analysis, using the same pathway activity measurement
approach, suggested that overt HH pathway activity, measured in a standard tissue slide,
was associated with a worse prognosis [41]. In the current study, no outcome data were
available, preventing further investigation of the prognostic role of activity of this signaling
pathway at the micro-scale.

For the ER pathway, variation in pathway activity within the PT was lower than for
the other pathways, and similar at the micro-scale versus macro-scale. The variation within
the primary tumor was also relatively small compared to the variation in ER pathway
activity between individual luminal A/B patients. These observations can be readily
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explained by considering the ER pathway as the prime tumor-driving pathway in luminal
breast cancer, in contrast to HER2 and triple negative cancer subtypes. Variations in ER
immunohistochemistry (IHC) staining within an ER positive primary tumor have been
reported, but not related to pathway activity [36]. ER-activating estrogens are expected to
distribute relatively evenly in tissue, which is compatible with only small differences in
pathway activity as we observed before [35,42,43].

4.3. A “Checkerboard” Clone-Size Cancer Model and “Big Bang” Type of Cancer Evolution

Our observation that, with the possible exception of the PI3K-FOXO pathway, the
variation in pathway activity was generally not larger at the macro-scale than micro-scale,
and for the HH and TGFβ pathways, even higher at the micro-scale, is compatible with
currently emerging ideas on a Big Bang type of cancer evolution based on genomic analysis
of PT, in which macro-scale heterogeneity appeared to be not the dominant form [17].
Compatible with this model, the presented “checkerboard” model for cancer heterogeneity
can be used to explain our findings in terms of variable cancer cell clone sizes, all spread
more or less evenly across the tumor: the smallest “clones” or cancer cell areas with slightly
varying ER pathway activity; small clones that have an active HH and/or TGFβ pathway,
and possibly intermediate/large clones with varying PI3K pathway activity. In such a
model, combined ER and PI3K pathway active clones may be more rapidly proliferating,
while HH and TGFβ pathway active clones are “neutral”, less proliferative, and may have
a stem cell character.

4.4. Variation in Pathway Activity between Primary and Lymph Node Metastases

Subsequently, we investigated whether pathway analysis of the primary tumor could
predict pathway activity in metastatic tumors. While pathway activity scores between
quadrant samples of a single block, and between blocks of one PT showed highly significant
correlations, correlations decreased between PT and LN metastases and significance was
lost. The lowest correlation was found between PT and DS metastases. These results
provide interesting new information about breast cancer metastasis. Since LN metastatic
samples were spatiotemporally close to the PT, a closer relation to the PT was expected
compared to the DS metastases that are spatiotemporally further away. The PI3K pathway is
generally thought to be an important metastasis-driving pathway in addition to its general
role as a tumor “survival” pathway, explaining the relatively strong correlation in activity
between PT and LN metastases [44]. The observed higher variation in pathway activity
between DS metastases compared to LN metastases is probably due to LN representing a
singular type of metastatic niche, while DS metastases grow in all kinds of organ niches
with their respective variations in the microenvironment, including ligand availability for
the various signaling pathways [45,46]. As a few tentative examples to illustrate this, Wnt
ligand availability may have caused the one intestinal metastatic tumor to have the highest
Wnt pathway activity score, while local Sonic Hedgehog ligand availability may have
induced the high HH pathway activity score in the ovarian metastatic lesion [32,47,48].
For the ER pathway, such heterogeneity has also been demonstrated in ER-positive breast
cancer patients [49].

Interestingly, a negative correlation was present for ER pathway activity between PT
and DS metastases. Since only ER-positive luminal patients were included in this part
of the study, a number of patients probably had received adjuvant hormonal therapy,
potentially resulting in selection for ER pathway-inactive metastases [50]. Unfortunately,
lack of treatment information precluded further analysis of this relationship between
treatment and ER pathway activity.

Obvious limitations of the study were the relatively limited patient and sample num-
bers, and lack of clinical treatment and outcome data. Despite this, to the best of our
knowledge, the study is unique in allowing a quite detailed comparison between signaling
pathway activity scores within a PT and between PT and metastases.
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5. Conclusions

The clinically relevant conclusions that can be drawn suggest that heterogeneity with
respect to pathway activity within a single biopsy may generally be representative for
the whole tumor, with the possible exception of the PI3K pathway, while variation in ER
pathway activity is relatively small within the PT compared to that seen between luminal
breast cancers from different patients. We cannot exclude that for the PI3K pathway,
multiple spatially separated biopsies may be required to obtain a sufficiently complete
picture of this pathway’s activity pattern across the tumor. Pathway activity scores found
in the PT predicted activity in LN metastases to some extent, especially with respect to
the PI3K-FOXO pathway. Prediction of pathway activity in DS metastases is no longer
realistic, also in view of the large variation between metastases in different organ locations.
If possible, taking biopsies from multiple metastatic locations may, therefore, be preferred
when considering targeted therapy for metastatic disease, to choose the most effective
(targeted) drug or drug combination.

In view of its high clinical relevance, especially with respect to targeted treatment
in (neo)adjuvant and metastatic settings, the current findings should be confirmed in
subsequent clinical studies. We recommend that a confirmation study should: (1) optimize
standardization of tissue sampling; (2) note size of the tumor and location of the sample
taken in the 3D space of the tumor, to reduce the influence of variable microenvironment,
e.g., oxygen concentration, immune cell infiltrate, etc.; (3) use similar amounts of can-
cer cells to extract RNA from. Importantly, application and further development of the
statistical models that we introduced should help to improve quantification of cancer
heterogeneity, necessary to objectively compare clinical studies and bring the field forward.
We believe that such studies will further complement knowledge on tumor evolution and
the resulting tumor heterogeneity, enabling improvement in choosing the most effective
therapy for patients with breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1345/s1. The supplementary statistics file includes: Figure S1: Diagram of heterogeneity
between subtype classification model; Figure S2: Diagram of the macro- and micro-scale model
implementing linear mixed models with three layers; Figure S3: Checkerboard model for cancer
clones; Figure S4: Checkerboard model simulated standard deviation as a function of relative sample
size; Figure S5: Lymph node metastases and matched primary tumor model; Figure S6: Distant
metastases and matched primary tumor model; Figure S7: Comparison of frequency counts of the
lymph node metastasis sample-specific contributions; Figure S8: Comparison of percent frequency
counts of the metastatic sample-specific contributions; Table S1: Pairwise test for equality of means for
µLumA, µLumB, and µER−; Table S2: Average activity score (µt) estimates for the subtype-dependent
σblock,t model; Table S3: Standard deviation (σpat and σblock,t) estimates for the subtype-dependent
σblock,t; Table S4: Average activity score (µt) estimates for subtype-dependent σblock model; Table
S5: Standard deviation (σpat and σblock) estimates and σpat/σblock ratio estimates for the subtype-
independent σblock model; Table S6: Macro- and micro-scale model standard deviations (σ parameter)
estimates; Table S7: Macro- and micro-scale model derived parameters; Table S8: Correlation between
signaling pathway activity scores within PT and between PT and LN or DS metastasis; Table S9: Mean
and standard deviation computed for ∆q,blockj

, ∆q,LNi
, and ∆p,metak

; Table S10: differences between
means and ratios between standard deviations for the various pathway models. The supplementary
methods file includes: Figure S-M1: Example slides for scraping, where tumor areas have been
annotated and divided into four quadrants; Figure S-M2: Structure of the Bayesian networks used to
model the transcriptional program of signaling pathways; Figure S-M3: Conversion of the Affymetrix
ER pathway model to qPCR pathway model; Figure S-M4: Comparison between the estimated qPCR-
related technical noise variance and the model variance as estimated by the statistical model; Figure
S-M5: Ratio between macro-scale and micro-scale standard deviation (SD) of signaling pathway
activity scores; Figure S-M6: Comparison between amounts of RNA which were isolated from tissue
samples, for quadrant and block samples; Figure S-M7: Verification of inverse FOXO-PI3K readout.
Supplementary data files are: Data file S1—Sample counts: Tables describing the type and number of
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samples taken per patient; Data file S2—Sample sets: Tables with measured pathway activity scores
per sample.
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